Package ‘unheadr’

May 13, 2024

Type Package

Title Handle Data with Messy Header Rows and Broken Values
Version 0.4.0

Depends R (>=3.1.0)

Description Verb-like functions to work with messy data, often derived from
spreadsheets or parsed PDF tables. Includes functions for unwrapping
values broken up across rows, relocating embedded grouping values,
and to annotate meaningful formatting in spreadsheet files.

License MIT + file LICENSE
Encoding UTF-8
LazyData true

Imports dplyr (>=0.8.4), rlang (>= 0.2.1), forcats, stringr, tidyr,
magrittr, tidyxl, readxl, tibble

RoxygenNote 7.3.1
Suggests knitr, rmarkdown, testthat (>= 2.1.0), covr
VignetteBuilder knitr

URL https://github.com/1luisDVA/unheadr, https://unheadr.liomys.mx/

BugReports https://github.com/luisDVA/unheadr/issues
NeedsCompilation no

Author Luis D. Verde Arregoitia [aut, cre]
(<https://orcid.org/0000-0001-9520-6543>)

Maintainer Luis D. Verde Arregoitia <luis@liomys.mx>
Repository CRAN
Date/Publication 2024-05-13 19:10:02 UTC

R topics documented:

annotate._ Mmf L e
annotate_mf all e

https://github.com/luisDVA/unheadr
https://unheadr.liomys.mx/
https://github.com/luisDVA/unheadr/issues
https://orcid.org/0000-0001-9520-6543

2 annotate_mf

AOEUNItS e e e e e e 4
AOEUNItS Taw o e e, 5
boutiques.XISX L e 5
dog test.XISX e 6
mash_colnames e e 6
primates2017 8
primates2017_broken 9
primates2017_wrapped 9
regex_valign L e e e e e 10
squish_newlines e 11
unbreak rows L L e e e e 12
unbreak_vals 13
untangle2 oL L L e e e e e 14
UNWIap_cols e e e e e e 15

Index 16

annotate_mf Annotate meaningful formatting
Description

Turns cell formatting into annotations for values in the target variable.

Usage

annotate_mf(x1lfilepath, orig, new)

Arguments

x1filepath Path to a single-sheet spreadsheet file (xIs or xIsx).

orig Target variable to annotate formatting in.

new Name of new variable with cell formatting pasted as a string.
Details

Seven popular approaches for meaningful formatting (bold, colored text, italic, strikethrough, un-
derline, double underline, and cell highlighting) are hardcoded in the function. sheets, skip, and
range arguments for spreadsheet input are not supported. The hex8 code of the fill color used for
text color and cell highlighting is also appended in the output. Ensure the data in the spreadsheet
are rectangular before running; this includes blank but formatted cells beyond the data rectangle.

Value

A tibble with a new column in which the meaningful formatting is embedded as text.

annotate_mf _all 3

Examples

example_spreadsheet <- system.file("extdata/dog_test.xlsx”, package = "unheadr")
annotate_mf (example_spreadsheet, orig = Task, new = Task_annotated)

annotate_mf_all Annotate meaningful formatting for all cells

Description

Turns cell formatting into annotations for all values across all variables.

Usage

annotate_mf_all(x1filepath)

Arguments

x1filepath Path to a single-sheet spreadsheet file (xIs or xIsx).

Details

Seven popular approaches for meaningful formatting (bold, colored text, italic, strikethrough, un-
derline, double underline, and cell highlighting) are supported in this function. sheets, skip, and
range arguments for spreadsheet input are not supported. The hex8 code of the fill color used for
text color and cell highlighting is also appended in the output. Ensure the data in the spreadsheet
are rectangular before running; this includes blank but formatted cells beyond the data rectangle.

Value

A tibble with meaningful formatting embedded as text for all rows and columns.

Examples

example_spreadsheet <- system.file("extdata/boutiques.xlsx”, package = "unheadr")
annotate_mf_all (example_spreadsheet)

4 AOEunits

AOEunits Statistics for game units in Age of Empires II: Definitive Edition

Description

A dataset with the numerical values that determine the behavior and performance of selected mili-
tary units available in AoE2:DE (July 2020 Game Update).

Usage
AOEunits

Format
A data frame with 128 observations of 19 variables:

unit Unit name

building Building in which each unit is trained
type Unit class

age Age at which the unit becomes trainable
cost_wood Unit cost in Wood

cost_food Unit cost in Food

cost_gold Unit cost in Gold

build_time Training time in seconds
rate_of_fire Attack speed

attack_delay Retasking time

movement_speed Travel speed on land
line_of_sight Vision over the surrounding area
hit_points Unit health

min_range Minimum attacking range for ranged units
range Maximum attacking range for ranged units
damage Damage inflicted per attack

accuracy Chance that an attack will be on target
melee_armor Armor against melee attacks

pierce_armor Armor against projectiles

Source

Age of Empires II. Copyright Microsoft Corporation. This dataset was created under Microsoft’s
Usage rules for Digital Goods using assets from Age of Empires II, and it is not endorsed by or
affiliated with Microsoft. All information shown is an interpretation of data collected in-game with
no guarantee on the accuracy of any of the data presented.

AOEunits_raw 5

AOEunits_raw Statistics for game units in Age of Empires Il: Definitive Edition in a
messy presentation

Description

A messy version of the AOEunits dataset, meant for demonstrating data cleaning functions.

Usage

AOEunits_raw

Format

A data frame with 139 observations of 15 variables. See AOEunits for variable descriptions.

Source

Age of Empires II. Copyright Microsoft Corporation. This dataset was created under Microsoft’s
Usage rules for Digital Goods using assets from Age of Empires II, and it is not endorsed by or
affiliated with Microsoft. All information shown is an interpretation of data collected in-game with
no guarantee on the accuracy of any of the data presented.

boutiques.x1lsx boutiques.xlsx spreadsheet

Description

Open XML Format Spreadsheet with 1 sheet, 6 columns, and 8 rows. Toy dataset with Q1 profits
for different store locations. Additional information is encoded as meaningful formatting. Bold
indicates losses (negative values), colors indicate continent, and italic indicates a second location in
the same city.

Details

This data is used in the example for annotate_mf_all().

6 mash_colnames

dog_test.x1sx dog_test.xlsx spreadsheet

Description

Open XML Format Spreadsheet with 1 sheet, 2 columns, and 12 rows. Items describe various tasks
or behaviors that dogs can be evaluated on, assigned into three categories which appear along with
their average scores as embedded subheaders with meaningful formatting.

Details

This data is used in the example for annotate_mf ().

Source

Items are modified from the checklist written by Junior Watson.

References

http://www.dogtrainingbasics.com/checklist-well-behaved-dog/

mash_colnames Make many header rows into column names

Description

Make many header rows into column names

Usage

mash_colnames(
df,
n_name_rows,
keep_names = TRUE,
sliding_headers = FALSE,

non

sep = "_
)
Arguments
df A data.frame or tibble object in which the names are broken up across the
top n rows.
n_name_rows Number of rows at the top of the data to be used to create the new variable

(column) names. Must be >= 1.

mash_colnames

keep_names

Defaults to TRUE.

sliding_headers

sep

Details

Tables are often shared with the column names broken up across the first few rows. This function
takes the number of rows at the top of a table that hold the broken up names and whether or not to
include the names, and mashes the values column-wise into a single string for each column. The
keep_names argument can be helpful for tables we imported using a skip argument. If keep_names

If TRUE, empty values in the first (topmost) header header row be filled column-

wise. Defaults to FALSE. See details.

Character string to separate the unified values (default is underscore).

is set to FALSE, adjust the value of n_name_rows accordingly.

This function will throw a warning when possible NA values end up in the variable names. sliding_headers
can be used for tables with ragged names in which not every column has a value in the very first
row. In these cases attribution by adjacency is assumed, and when sliding_headers is set to TRUE
the names in the topmost row are filled row-wise. This can be useful for tables reporting survey

data or experimental designs in an untidy manner.

Value

The original data frame, but with new column names and without the top n rows that held the broken

up names.

Author(s)

This function was originally contributed by Jarrett Byrnes through a GitHub issue.

Examples

babies <-
data.frame(

)

stringsAsFactors = FALSE,

Baby = c(NA, NA, "Angie”, "Yean", "Pierre"),
Age = c("in", "months"”, "11", "9",6 "7"),
Weight = c("kg”, NA, "2", "3", "4"),

Ward = c(NA, NA, "A" "B", "C")

Including the object names
mash_colnames(babies, n_name_rows = 2, keep_names = TRUE)

babies_skip <-
data.frame(

)

#' # Discarding the automatically-generated names (X1, X2, etc...)

stringsAsFactors = FALSE,

X1 = c("Baby"”, NA, NA, "Jennie"”, "Yean"”, "Pierre"),
X2 = c("Age"”, "in", "months", "11", "9",6 "7"),

X3 = c("Hospital”, NA, NA, "A", "B", "A")

If TRUE, existing names will be included when building the new variable names.

8 primates2017

mash_colnames(babies_skip, n_name_rows = 3, keep_names = FALSE)

fish_experiment <-
data.frame(
stringsAsFactors = FALSE,
X1 = c("Sample”, NA, "Pacific”, "Atlantic"”, "Freshwater"),
X2 = c("Larvae", "Control”, "12", "11", "10"),
X3 = c(NA, "Low Dose”, "11", "12", "8"),
X4 = c(NA, "High Dose”, "8", "7", "9"),
X5 = c("Adult”, "Control”, "13", "13", "8"),
X6 = c(NA, "Low Dose”, "13", "12", "7"),
X7 = c(NA, "High Dose”, "10", "10", "9")
)
Ragged names
mash_colnames(fish_experiment,
n_name_rows = 2,
keep_names = FALSE, sliding_headers = TRUE
)

primates2017 Comparative data for 54 species of primates

Description

A dataset with embedded subheaders.

Usage

primates2017

Format

A data frame with 69 rows and 4 variables:

scientific_name scientific names, with geographic region and taxonomic family embedded as sub-
headers.
common_name vernacular name

red_list_status TUCN Red List Status in January 2017

mass_kg mean body mass in kilograms

Source

Estrada, Alejandro, et al. "Impending extinction crisis of the world’s primates: Why primates
matter." Science Advances 3.1 (2017): €1600946. doi:10.1126/sciadv.1600946

https://doi.org/10.1126/sciadv.1600946

primates2017_broken 9

primates2017_broken Comparative data for 16 species of primates with some broken values

Description

A dataset with embedded subheaders and some values (T. obscurus, T. leucocephalus and N. ben-
galensis) in the scientific_names variable broken up across two rows (typically done to fit the content
in a table).

Usage

primates2017_broken

Format

A data frame with 19 rows and 4 variables:

scientific_name scientific names, with embedded subheaders for geographic region and taxonomic
family and broken values
common_name vernacular name

red_list_status TUCN Red List Status in January 2017

mass_kg mean body mass in kilograms

Source

Estrada, Alejandro, et al. "Impending extinction crisis of the world’s primates: Why primates
matter." Science Advances 3.1 (2017): e1600946. doi:10.1126/sciadv.1600946

primates2017_wrapped Comparative data for two species of primates

Description

A dataset in which the elements for some of the values are in separate rows’

Usage

primates2017_wrapped

https://doi.org/10.1126/sciadv.1600946

10 regex_valign

Format
A data frame with 9 rows and 6 variables:

scientific_name scientific names, see reference
common_name vernacular name

habitat habitat types listed in the IUCN Red List assessments
red_list_status TUCN Red List Status in January 2017
mass_kg mean body mass in kilograms

country Countries where the species is present, from IUCN Red List assessments

Source

Estrada, Alejandro, et al. "Impending extinction crisis of the world’s primates: Why primates
matter." Science Advances 3.1 (2017): €1600946. doi:10.1126/sciadv.1600946

regex_valign Vertical character string alignment through regular expressions

Description

Aligning strings with regex.

Usage
regex_valign(stringvec, regex_ai, sep_str = "")
Arguments
stringvec A character vector with one element for each line.
regex_ai A regular expression matching the position for alignment.
sep_str Optional character vector that will be inserted at the positions matched by the
regular expression.
Details

Written mainly for reading fixed width files, text, or tables parsed from PDFs.

Value

A character vector with one element for each line, with padding inserted at the matched positions
so that elements are vertically aligned across lines.

See Also

This function is based loosely on textutils::valign().

https://doi.org/10.1126/sciadv.1600946

squish_newlines 11

Examples
guests <-
unlist(strsplit(c("6 COAHUILA 20/03/2020
7 COAHUILA 20/03/2020
18 BAJA CALIFORNIA 16/03/2020
109 CDMX 12/03/2020
1230 QUERETARO 21/03/2020"), "\n"))

align at first uppercase word boundary , inserting a separator
regex_valign(guests, "\\b(?=[A-Z])", " - ")

align dates at end of string

regex_valign(guests, "\\b(?=[0-91{23[\\/1{13}[0-91{23[\\/1{1}[0-9]1{4}$)")

squish_newlines Deduplicate and remove trailing line breaks

Description

Deduplicate and remove trailing line breaks

Usage

squish_newlines(sepstring)

Arguments

sepstring A character vector with new line control characters.

Details
Useful for tables with merged cells, often imported from Word or PDF files. Can be applied across
multiple columns before separating into rows.

Value

A vector without trailing or multiple consecutive new line sequences.

Examples

vecWithNewlines <- c("dog\n\ncat\n\n\npig\n")
squish_newlines(vecWithNewlines)

12 unbreak rows

unbreak_rows Merge rows up

Description

Merge rows up

Usage
unbreak_rows(df, regex, ogcol, sep =" ")
Arguments
df A data frame with at least two contiguous rows to be merged.
regex A regular expression to identify sets of rows to be merged, meant for the leading
of the two contiguous rows.
ogcol Variable with the text strings to match.
sep Character string to separate the unified values (default is space).
Details

nn

This function recodes empty strings ("") to NA for smoother pattern matching.

Value

A tibble or data frame with merged rows. Values of the lagging rows are pasted onto the values in
the leading row, whitespace is squished, and the lagging row is dropped.

Examples

bball <-
data.frame(

stringsAsFactors = FALSE,

vl = c(
"Player”, NA, "Sleve McDichael”, "Dean Wesrey",
"Karl Dandleton”

),

v2 = c("Most points”, "in a game"”, "55", "43", "41"),

v3 = c("Season”, "(year ending)"”, "2001", "2000", "2010")

)
unbreak_rows(bball, "Most"”, v2)

unbreak_vals 13

unbreak_vals Unbreak values using regex to match the lagging half of the broken
value

Description

Unbreak values using regex to match the lagging half of the broken value

Usage

n o n

unbreak_vals(df, regex, ogcol, newcol, sep = , slice_groups)

Arguments
df A data frame with one or more values within a variable broken up across two
TOWS.
regex Regular expression for matching the trailing (lagging) half of the broken values.
ogcol Variable to unbreak.
newcol Name of the new variable with the unified values.
sep Character string to separate the unified values (default is space).

slice_groups Deprecated. See details and Package News.

Details

This function is limited to quite specific cases, but useful when dealing with tables that contain, for
example, scientific names broken across two rows. For unwrapping values, see unwrap_cols.

Value

A tibble with ’unbroken’ values. The variable that originally contained the broken values gets
dropped, and the new variable with the unified values is placed as the first column. The slice_groups
argument is now deprecated; the extra rows and the variable with broken values will be dropped.

Examples

data(primates2017_broken)
regex matches strings starting in lowercase (broken species epithets)
unbreak_vals(primates2017_broken, "“[a-z]", scientific_name, sciname_new)

14 untangle?2

untangle? Rectangling embedded subheaders

Description

Rectangling embedded subheaders

Usage

untangle2(df, regex, orig, new)

Arguments

df A data frame with embedded subheaders.

regex Regular expression to match the subheaders.

orig Variable containing the extraneous subheaders.

new Name of variable that will contain the group values.
Details

Special thanks to Jenny Bryan for fixing the initial tidyeval code and overall function structure.

Value

A tibble without the matched subheaders and a new variable containing the grouping data.

Examples

data(primates2017)
put taxonomic family in its own variable (matches the suffix "DAE")
untangle2(primates2017, "DAE$", scientific_name, family)
put geographic regions in their own variable (matching them all by name)
untangle2(
primates2017, "Asia|Madagascar|Mainland Africa|Neotropics”,
scientific_name, family
)
with magrittr pipes (re-exported in this package)
primates2017 %>%
untangle2("DAE$", scientific_name, family) %>%
untangle2(
"Asia|Madagascar|Mainland Africa|Neotropics”,
scientific_name, region

)

unwrap_cols 15

unwrap_cols Unwrap values and clean up NAs used as padding

Description

Unwrap values and clean up NAs used as padding

Usage

unwrap_cols(df, groupingVar, separator)

Arguments
df A data frame with wrapped values and an inconsistent number of NA values
used to as within-group padding.
groupingVar Name of the variable describing the observational units.
separator Character string defining the separator that will delimit the elements of the un-
wrapped value.
Details

This is roughly the opposite of tidyr: :separate_rows().

Value

A summarized tibble. Order is preserved in the grouping variable by making it a factor.

Examples

data(primates2017_wrapped)
using commas to separate elements
unwrap_cols(primates2017_wrapped, scientific_name, ", ")

separating with semicolons

df <- data.frame(
ounits = c("A”, NA, "B", "C", "D", NA),
vals = c(1, 2, 2, 3, 1, 3)

)

unwrap_cols(df, ounits, ";")

Index

+ datasets
AOEunits, 4
AOEunits_raw, 5
primates2017, 8
primates2017_broken, 9
primates2017_wrapped, 9

annotate_mf, 2
annotate_mf_all, 3
AOEunits, 4, 5
AOEunits_raw, 5

boutiques.xlsx, 5
dog_test.xlsx, 6
mash_colnames, 6

primates2017, 8
primates2017_broken, 9
primates2017_wrapped, 9

regex_valign, 10
squish_newlines, 11

unbreak_rows, 12
unbreak_vals, 13
untangle2, 14
unwrap_cols, 13, 15

16

	annotate_mf
	annotate_mf_all
	AOEunits
	AOEunits_raw
	boutiques.xlsx
	dog_test.xlsx
	mash_colnames
	primates2017
	primates2017_broken
	primates2017_wrapped
	regex_valign
	squish_newlines
	unbreak_rows
	unbreak_vals
	untangle2
	unwrap_cols
	Index

