Package ‘ttbary’

November 16, 2022

Version 0.3-1

Date 2022-11-16

Title Barycenter Methods for Spatial Point Patterns

Maintainer Dominic Schuhmacher <dominic.schuhmacher@mathematik.uni-goettingen.de>
Depends R (>=3.5.0), spatstat (>= 3.0-0)

LinkingTo Rcpp

Imports spatstat.geom, spatstat.explore, spatstat.model,
spatstat.random, spatstat.linnet, grDevices, graphics, stats,
Repp

Description Computes a point pattern in R*2 or on a graph that is representative of a collec-
tion of many data patterns. The result is an approximate barycen-
ter (also known as Fréchet mean or prototype) based on a transport-transform metric. Possi-
ble choices include Optimal SubPattern Assignment (OSPA) and Spike Time metrics. De-
tails can be found in Miiller, Schuhmacher and Mateu (2020) <doi:10.1007/s11222-020-09932-

y>.

LazyData yes
Encoding UTF-8
License GPL (>=2)
RoxygenNote 7.2.1
NeedsCompilation yes

Author Raoul Miiller [aut],
Dominic Schuhmacher [aut, cre]
(<https://orcid.org/0000-0001-7079-6313>)

Repository CRAN
Date/Publication 2022-11-16 13:40:02 UTC

R topics documented:

drezner e
kmeansbary
kmeansbaryeps

https://doi.org/10.1007/s11222-020-09932-y
https://doi.org/10.1007/s11222-020-09932-y
https://orcid.org/0000-0001-7079-6313

2 drezner

kmeansbarynet e e e e 9
kmeansbaryweightnet 11
netsplit. L e e e e 14
plotmatch L. e 15
PPAISt . . e e e 16
ppdistnet e e e e e e 19
pplist-data L e e e e 21
sumppdiSt L e e 22
sumppdiStnet L. L e 23
Index 25
drezner Run an Improved Version of the Algorithm by Drezner, Mehrez and

Wesolowsky for Finding Barycenters Based on Limited Distances

Description

Find a barycenter of a 2-d point cloud based on minimizing the p-th power of the Euclidean distance,
cut off at C = 2 % penalty”. In addition to using a pre-screening procedure to further alleviate the
computational burden of the original algorithm, an option may be specified to allow the algorithm
to return NA if no location in 2-d space is "good enough".

Usage
drezner(clusterx, clustery, penalty, p = 2, reduction = TRUE, aleph = FALSE)

Arguments

clusterx, clustery
vectors of x- and y-coordinates for the point cloud.

penalty the p-th power of the Euclidean distance is cut off at 2 - penalty”. To cut off at
C, set penalty = (C/2)'/7,
p the exponent for the distances and cutoffs. Currently only implemented for p=2.
reduction logical. Shall the pre-screening procedure be applied?
aleph logical. Shall the returned value be NA if no good barycenter can be found?
Details
For points zy, . .., z, with z-coordinates clusterx and y-coordinates clustery find a minimizer

b* (barycenter) of
¥(b) =Y min{||z — b||,C}
i=1
or return NA if y(b) > 2C forall b € R?

The original algorithm is due to Drezner, Mehrez and Wesolowsky (1991). The improvements are
from Miiller, Schobel and Schuhmacher (2022).

kmeansbary 3

Value
A list containing the following components:

barycenterx,barycentery
the x- and y-coordinates of the barycenter b* that was found. May both be NA if
option aleph=TRUE and no actual barycenter is good enough.

cost the total cost v(b*) of the barycenter .

calculations If reduction=FALSE, the number of point pairs from which the barycenter can-
didates are calculated. Each point pair yields eight candidates.

skipped If reduction=TRUE, the number of skipped point pairs due to the pre-screening
procedure.

Author(s)

Raoul Miiller <raoul.mueller@uni-goettingen.de>

References

Zvi Drezner, Avram Mehrez and George O. Wesolowsky (1991).
The facility location problem with limited distances.
Transportation Science 25.3 (1991): 183-187.
www.jstor.org/stable/25768490

Raoul Miiller, Anita Schobel and Dominic Schuhmacher (2022).
Location problems with cutoff.
Preprint arXiv:2203.00910

Examples

X <= rnorm(20)

y <= rnorm(20)

plot(x, y, asp=1)

res <- drezner(x, y, 2)

points(res$barycenterx, res$barycentery, col=2)
res <- drezner(x, y, 0.5)
points(res$barycenterx, res$barycentery, col=4)

kmeansbary Compute Pseudo-Barycenter of a List of Point Patterns

Description

Starting from an initial candidate point pattern zeta, use a k-means-like algorithm to compute a
local minimum in the barycenter problem based on the TT-2 metric for a list pplist of planar point
patterns.

https://arxiv.org/abs/2203.00910

kmeansbary (

zeta,

pplist,
penalty,
add_del = Inf,
surplus = 0,

N = 200L,

eps = 0.005,
exact = FALSE,

kmeansbary

verbose =
)
Arguments

zeta a point pattern. Object of class ppp or a list with components x and y.

pplist a list of point patterns. Object of class ppplist or any list where each elements
has components x and y.

penalty the penalty for adding/deleting points when computing TT-2 distances.

add_del for how many iterations shall the algorithm add points to / delete points from
zeta if this is favorable? Defaults to Inf.

surplus by how many points is the barycenter point pattern allowed to be larger than
the largest input point pattern (among pplist and zeta) if add_del > 0. A larger
number increases the computational load.

N the maximum number of iterations.

eps the algorithm stops if the relative improvement of the objective function between
two iterations is less than eps.

exact logical. Shall the barycenter of a cluster be calculated exactly by Algorithm 1 of
Drezner, Mehrez and Wesolowsky (1991)? In our experience setting exact=TRUE
yields no systematic improvement of the overall objective function value, while
the computation times are substantially larger.

verbose the verbosity level. One of 0, 1, 2, 3, where 0 means silent and 3 means full
details.

Details
Given k planar point patterns &1, . . ., & (stored in pplist), this function finds a local minimizer (*
of

> (4,07

j=1

where 75 denotes the TT-2 metric based on the Euclidean metric between points.

Starting from an initial candidate point pattern zeta, the algorithm alternates between assigning a
point from each pattern &; to each point of the candidate and computing new candidate patterns
by shifting, adding and deleting points. A detailed description of the algorithm is given in Miiller,
Schuhmacher and Mateu (2020).

kmeansbary 5

For first-time users it is recommended to keep the default values and set penalty to a noticeable
fraction of the diameter of the observation window, e.g. between 0.1 and 0.25 times this diameter.

Value

A list with components:

cost the sum of squared TT-2 distances between the computed pseudo-barycenter and
the point patterns.
barycenter the pseudo-barycenter as a ppp-object.
iterations the number of iterations required until convergence.
Author(s)

Raoul Miiller <raoul.mueller@uni-goettingen.de>
Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

References

Zvi Drezner, Avram Mehrez and George O. Wesolowsky (1991).
The facility location problem with limited distances.
Transportation Science 25.3 (1991): 183-187.
www.jstor.org/stable/25768490

Raoul Miiller, Dominic Schuhmacher and Jorge Mateu (2020).
Statistics and Computing 30, 953-972.
doi:10.1007/s1122202009932y

See Also

kmeansbaryeps for a variant with epsilon relaxation that is typically faster

Examples

data(pplist_samecard)
plot(superimpose(pplist_samecard), cex=0.7, legend=FALSE,
xlim=c(-0.2,1.2), ylim=c(-0.1,1.1), main="", use.marks=FALSE) #plotting the data

set.seed(12345)
zeta <- ppp(runif(100), runif(100))
plot(zeta, add=TRUE, col="beige"”, lwd=2, pch=16) #plotting the start-zeta over the data

res <- kmeansbary(zeta, pplist_samecard, penalty=0.1, add_del=Inf)
plot(res$barycenter, add=TRUE, col="blue”, pch=16) #adding the computed barycenter in blue

res$cost

#[1] 30.30387

sumppdist(res$barycenter, pplist_samecard, penalty=0.1, type="tt", p=2, g=2)

#[1] 30.30387

#attr(, "distances”)

#[1] ©0.5991515 0.6133397 0.6040680 0.6020058 0.5648000 0.6415018 0.6385394 0.5784291 0.5985299

https://doi.org/10.1007/s11222-020-09932-y

kmeansbaryeps

#[10] 0.6313200 0.7186154 ...

kmeansbaryeps

Compute Pseudo-Barycenter of a List of Point Patterns (with epsilon-
relaxation)

Description

Starting from an initial candidate point pattern zeta, use a k-means-like algorithm to compute a
local minimum in the barycenter problem based on the TT-2 metric for a list pplist of planar point

patterns.

Usage

kmeansbaryeps(
epsvec,
zeta,
pplist,
penalty,
add_del
surplus = 0,

Inf,

relaxVec = c(20, 1, 1, 1),

N = 200L,
eps = 0.005,

exact = FALSE,

verbose = 0

Arguments

epsvec

zeta

pplist

penalty
add_del

surplus

a vector containing the values for the relaxed assignment. Last entry should
be < 1/n, where n is the largest cardinality among the point patterns. Other-
wise the algorithm has no guarantee of terminating in a local minimum! If
epsvec[1] is too small, the computational load may be large. If in doubt, choose
c(1078,101r7,1076,...,10/(n+1),1/(n+1)).

a point pattern. Object of class ppp or a list with components x and y.

a list of point patterns. Object of class ppplist or any list where each elements
has components x and y.

the penalty for adding/deleting points when computing TT-2 distances.

for how many iterations shall the algorithm add points to / delete points from
zeta if this is favorable? Defaults to Inf.

By how many points is the barycenter point pattern allowed to be larger than
the largest input point pattern (among pplist and zeta) if add_del > 0. A larger
number increases the computational load.

kmeansbaryeps 7

relaxVec a vector of four integers controlling the epsilon-relaxation of the assignments.
See details below.

N the maximum number of iterations.

eps the algorithm stops if the relative improvement of the objective function between

two iterations is less than eps.

exact logical. Shall the barycenter of a cluster be calculated exactly by Algorithm 1 of
Drezner, Mehrez and Wesolowsky (1991)? In our experience setting exact=TRUE
yields no systematic improvement of the overall objective function value, while
the computation times are substantially larger.

verbose the verbosity level. One of 0, 1, 2, 3, where 0 means silent and 3 means full
details.
Details
Given k planar point patterns &1, . . ., & (stored in pplist), this function finds a local minimizer (*
of

k
> (4,07
j=1

where 7 denotes the TT-2 metric based on the Euclidean metric between points.

Starting from an initial candidate point pattern zeta, the algorithm alternates between assigning a
point from each pattern £; to each point of the candidate and computing new candidate patterns
by shifting, adding and deleting points. A detailed description of the algorithm is given in Miiller,
Schuhmacher and Mateu (2020).

For first-time users it is recommended to keep the default values and set penalty to a noticeable
fraction of the diameter of the observation window, e.g. between 0.1 and 0.25 times this diameter.

The argument relaxVec must be a vector of four integers c(a,b,c,d) > ¢(0,0,0,0). For the first a it-
erations step by step one entry of epsvec is additionally considered in the assignment, starting with
only the first entry in the first iteration. In this a iterations the algorithm can stop if it has improved
by less than eps between iterations. After a iterations all entries of epsvec before epsvec[b] are
ignored and everytime the algorithm does not improve, the next d entries of epsvec are addition-
ally considered in the following iterations. When the last entry of epsvec is considered in the
assignments, the entries of epsvec before epsvec[c] are ignored. relaxVec defaults to ¢(20,1,1,1)
meaning that in every one of the first 20 iterations one additional entry of epsvec is considered
until the algorithm converges. This allows the algorithm to converge before the full epsvec was
considered! For further details see example.

Warning: The argument relaxVec offers many different options for controlling the epsilon-relaxation
of the assignments in order to save computation time. But choosing bad parameters may heavily
increase the computational load! If in doubt, go with c(length(epsvec),1,1,1) (see examples).

Value

A list with components:

cost the sum of squared TT-2 distances between the computed pseudo-barycenter and
the point patterns.

barycenter the pseudo-barycenter as a ppp-object.

iterations the number of iterations required until convergence.

8 kmeansbaryeps

Author(s)

Raoul Miiller <raoul.mueller@uni-goettingen.de>
Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

References

Raoul Miiller, Dominic Schuhmacher and Jorge Mateu (2020).
Metrics and Barycenters for Point Pattern Data.

Statistics and Computing 30, 953-972.
doi:10.1007/s1122202009932y

See Also

kmeansbary for a similar function that works without epsilon relaxation

Examples

data(pplist_samecard)
plot(superimpose(pplist_samecard), cex=0.7, legend=FALSE,
xlim=c(-0.2,1.2), ylim=c(-0.1,1.1), main="", use.marks=FALSE) #plotting the data

set.seed(12345)
zeta <- ppp(runif(100),runif(100))
plot(zeta, add=TRUE, col="beige", lwd=2, pch=16) #plotting the start-zeta over the data

epsvec <- c(1e8,1e7,1e6,1e5,1e4,1e3,1e2,10,1,10/101,1/101)

relaxVecl <- c(length(epsvec),1,1,1)

#0ne additional entry of epsvec is considered in each iteration;

#algorithm can stop before full epsvec was used.

#Runs fast with little to no drawback in the quality of the computed solution.
#Time advantage more visible for large datasets.

relaxVec2 <- c(1,1,1,length(epsvec))

#In the first iteration only epsvec[1] is used, after that every assignment is exact.
#Not as fast as the previous version but usually no drawbacks at all in the computed solution.
#Time advantage more visible for large datasets.

relaxVec3 <- ¢(3,2,3,2)

#in the first 3 iterations epsvec[1],epsvec[1:2],epsvec[1:3] are used in the assignments,
#after that epsvec[2:x] is used, where x starts at 3 (=maximum(a,b)) and increases

#by 2 everytime the algorithm does not improve. When x >= length(epsvec) all assignments
#are done with epsvec[3:length(epsvec)].

res1 <- kmeansbaryeps(epsvec, zeta, pplist_samecard, penalty=0.1, add_del=5, relaxVec = relaxVecl)
res2 <- kmeansbaryeps(epsvec, zeta, pplist_samecard, penalty=0.1, add_del=5, relaxVec = relaxVec2)
res3 <- kmeansbaryeps(epsvec, zeta, pplist_samecard, penalty=0.1, add_del=5, relaxVec = relaxVec3)
plot(resi$barycenter, add=TRUE, col="blue"”, pch=16) #adding the computed barycenter in blue

https://doi.org/10.1007/s11222-020-09932-y

kmeansbarynet 9

kmeansbarynet Compute Pseudo-Barycenter of a List of Point Patterns on a Network

Description

Starting from an initial candidate point pattern zeta, use a k-means-like algorithm to compute
a local minimum in the barycenter problem based on the TT-1 metric for a collection of point
patterns on a network. The data needs to be in a special form which can be produced with the
function netsplit.

Usage

kmeansbarynet(dpath, zeta, ppmatrix, penalty, N = 200L, eps = 0.005)

Arguments
dpath a square matrix whose (i,J)th entry is the shortest-path distance between vertex
i and vertex j. Vertex means either network vertex or data point.
zeta a vector containing the vertex-indices of the initial candidate for the barycenter.
ppmatrix a matrix specifying in its columns the vertex-indices of the different data point
patterns. A virtual index that is one greater than the maximum vertex-index can
be used to fill up columns so they all have the same length (see examples).
penalty the penalty for adding/deleting points when computing TT-1 distances.
N the maximum number of iterations.
eps the algorithm stops if the relative improvement of the objective function between
two iterations is less than eps.
Details

Given k planar point patterns &1, .. .,&; (specified by giving the indices of their points in the k
columns of ppmatrix), this function finds a local minimizer ¢* of

k
> n(8,9),
j=1

where 7, denotes the TT-1 metric based on the shortest-path metric between points in the network.

Starting from an initial candidate point pattern zeta (specified by giving the indices of its points),
the algorithm alternates between assigning a point from each pattern £; to each point of the can-
didate and computing new candidate patterns by shifting points (addition and deletion of points
is currently not implemented). A detailed description of the algorithm is given in Miiller, Schuh-
macher and Mateu (2019).

The most convenient way to obtain objects dpath and ppmatrix of the right form is by calling
netsplit and extracting components network$dpath and ppmatrix from the resulting object (see
examples below).

10 kmeansbarynet

Value

A list containing the following components:

cost the sum of TT-1 distances between the computed pseudo-barycenter and the
point patterns.

barycenter the pseudo-barycenter as a vector of vertex-indices.

zetalist a list containing the alternative vertex-indices for each point of the pseudo-
barycenter.

barycost a vector containing the cluster costs for each point of the pseudo-barycenter (the
alternative indices in zetalist lead to the same cluster cost).

perm the permutation matrix for the clusters.

iterations the number of iterations required until convergence.

Author(s)

Raoul Miiller <raoul.mueller@uni-goettingen.de>
Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

References

Raoul Miiller, Dominic Schuhmacher and Jorge Mateu (2019).
Metrics and Barycenters for Point Pattern Data.
Preprint arXiv:1909.07266

See Also

kmeansbary for a similar function for point patterns in R

Examples

set.seed(123456)
nvert <- 100 #number of vertices in the network
npp <- 5 #number of data point patterns
npts <- 40 #number of points per data point pattern
1n <- delaunayNetwork(runifpoint(nvert)) #create an artificial network
ppnetwork <- runiflpp(npts,ln,nsim = npp)
#simulate npp point patterns with npts points each

plot(ppnetwork[[1]]$domain, cex=0.5, main="")
for (i in 1:npp) {
plot(as.ppp(ppnetwork[[i]]),vpch=1,col=i,add=TRUE)
#plotting the point patterns in different colors
3

res <- netsplit(ln, ppnetwork)
#incorporate data point patterns into the network
#calculating all pairwise distances between vertices
#and creating matrix of vertex-indices of data point patterns

https://arxiv.org/abs/1909.07266

kmeansbaryweightnet 11

zeta <- sample(res$nvirtual - 1, median(res$dimensions))
#sample random vertex-indices in the network
#taking as cardinality the median of point pattern cardinalities

res2 <- kmeansbarynet(res$network$dpath, zeta, res$ppmatrix, penalty = 0.1)

barycenter <- ppp(res$network$vertices$x[res2$barycenter], res$network$vertices$ylres2$barycenter])
#construct the barycenter pattern based on the index information in res2

points(barycenter,cex = 1.2, lwd = 2, pch = 4, col = "magenta”)
#add the computed barycenter as magenta crosses

res2%cost

#[1] 18.35171

sumppdistnet(res$network$dpath, res2$barycenter, res$ppmatrix, penalty=0.1, type="tt", p=1, g=1)
#[1] 18.35171

#tattr(,"distances”)

#[1] 3.666471 3.774709 3.950079 3.841166 3.119284

kmeansbaryweightnet Compute weighted Pseudo-Barycenter of a List of Point Patterns on a
Network

Description

Starting from an initial candidate point pattern zeta, use a k-means-like algorithm to compute
a local minimum in the barycenter problem based on the TT-1 metric for a collection of point
patterns on a network. The data needs to be in a special form which can be produced with the
function netsplit.

Usage

kmeansbaryweightnet(

dpath,

zeta,

ppmatrix,

weights,

penalty,

N = 200L,

eps = 0.005

Arguments

dpath a square matrix whose (i,j)th entry is the shortest-path distance between vertex
i and vertex j. Vertex means either network vertex or data point.

zeta a vector containing the vertex-indices of the initial candidate for the barycenter.

12 kmeansbaryweightnet

ppmatrix a matrix specifying in its columns the vertex-indices of the different data point
patterns. A virtual index that is one greater than the maximum vertex-index can
be used to fill up columns so they all have the same length (see examples).

weights a vector with weights for each point pattern

penalty the penalty for adding/deleting points when computing TT-1 distances.

N the maximum number of iterations.

eps the algorithm stops if the relative improvement of the objective function between

two iterations is less than eps.

Details

Given k planar point patterns &1, .. .,& (specified by giving the indices of their points in the &
columns of ppmatrix), this function finds a local minimizer ¢* of

k
Z T1 (5]7 <)>
j=1

where 7 denotes the TT-1 metric based on the shortest-path metric between points in the network.

Starting from an initial candidate point pattern zeta (specified by giving the indices of its points),
the algorithm alternates between assigning a point from each pattern £; to each point of the can-
didate and computing new candidate patterns by shifting points (addition and deletion of points
is currently not implemented). A detailed description of the algorithm is given in Miiller, Schuh-
macher and Mateu (2019).

The most convenient way to obtain objects dpath and ppmatrix of the right form is by calling
netsplit and extracting components network$dpath and ppmatrix from the resulting object (see
examples below).

Value

A list containing the following components:

cost the sum of TT-1 distances between the computed pseudo-barycenter and the
point patterns.

barycenter the pseudo-barycenter as a vector of vertex-indices.

zetalist a list containing the alternative vertex-indices for each point of the pseudo-
barycenter.

barycost a vector containing the cluster costs for each point of the pseudo-barycenter (the
alternative indices in zetalist lead to the same cluster cost).

perm the permutation matrix for the clusters.

iterations the number of iterations required until convergence.

Author(s)

Raoul Miiller <raoul.mueller@uni-goettingen.de>
Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

kmeansbaryweightnet 13

References

Raoul Miiller, Dominic Schuhmacher and Jorge Mateu (2019).
Metrics and Barycenters for Point Pattern Data.
Preprint arXiv:1909.07266

See Also

kmeansbary for a similar function for point patterns in R

Examples

set.seed(123456)
nvert <- 100 #number of vertices in the network
npp <- 5 #number of data point patterns
npts <- 4@ #number of points per data point pattern
1n <- delaunayNetwork(runifpoint(nvert)) #create an artificial network
ppnetwork <- runiflpp(npts,ln,nsim = npp)
#simulate npp point patterns with npts points each

plot(ppnetwork[[1]]$domain, cex=0.5, main="")
for (i in 1:npp) {
plot(as.ppp(ppnetwork[[i]]),vpch=1,col=i,add=TRUE)
#plotting the point patterns in different colors

res <- netsplit(ln, ppnetwork)
#incorporate data point patterns into the network
#calculating all pairwise distances between vertices
#and creating matrix of vertex-indices of data point patterns

zeta <- sample(res$nvirtual - 1, median(res$dimensions))
#sample random vertex-indices in the network
#taking as cardinality the median of point pattern cardinalities

res2 <- kmeansbaryweightnet(res$network$dpath, zeta, res$ppmatrix,
weights = ¢(1,2,3,2,1), penalty = 0.1)

barycenter <- ppp(res$network$vertices$x[res2$barycenter], res$network$vertices$yl[res2$barycenter])
#construct the barycenter pattern based on the index information in res2

points(barycenter,cex = 1.2, lwd = 2, pch = 4, col = "magenta”)
#add the computed barycenter as magenta crosses

res2$cost

#[1] 18.35171

sumppdistnet(res$network$dpath, res2$barycenter, res$ppmatrix, penalty=0.1, type="tt", p=1, g=1)
#[1] 18.35171

#attr(,"distances”)

#[1] 3.666471 3.774709 3.950079 3.841166 3.119284

https://arxiv.org/abs/1909.07266

14 netsplit

netsplit Incorporate Point Patterns into a Network

Description

Given a network and a list of point patterns on this network, create a new network from all the
vertices of the original network plus all the points in the patterns, splitting any edges that contain
such points into several shorter edges. This function keeps track which vertex-indices represent
each of the data point patterns. The returned object contains all the components needed for a call to
kmeansbarynet.

Usage

netsplit(network, pplist)

Arguments
network an object of class linnet or 1pp. In the latter case the domain component is
extracted and any points of the 1pp are ignored.
pplist a list containing (at least) x- and y-coordinates of the point patterns, which will
be projected onto the network
Details

This function relies heavily on code from the package spatstat to create the new network and
efficiently compute all pairwise shortest-path distances between the new vertices.

If not all point patterns are of the same size, this function fills up the vertex-indices of the smaller
patterns with a virtual index that is one larger than the maximal index appearing in the new network.
This structure is required for calling kmeansbarynet.

Value

A list containing the following components:

network the new network with all the points added as vertices. Contains also the matrix
of shortest-path distances between all these points.
ppmatrix a matrix containing the new vertex-indices of the data point patterns, one column
corresponds to one point pattern.
dimensions a vector containing the cardinalities of the data point patterns.
nvirtual the index of the virtual point.
Author(s)

Raoul Miiller <raoul.mueller@uni-goettingen.de>
Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

plotmatch 15

See Also

kmeansbarynet

Examples

See the example for kmeansbarynet.

plotmatch Plot Optimal Matching between Two Point Patterns

Description

After calling ppdist with argument ret_matching = TRUE in a situation where it makes sense to
assign to the points of the patterns & and 7 coordinates in R2, this function may be used to display
the result graphically.

Usage
plotmatch(
Xi,
eta,
dmat,
res,
penalty,
p=1,
cols = c(2, 4),
pchs = c(1, 1),
cexs = c(1, 1),
)
Arguments
Xi, eta objects of class ppp.
dmat a matrix specifying in its (¢, 7)-th entry the distance from the i-th point of £ to
the j-th point of 7.
res the object returned by the call to ppdist with ret_matching = TRUE.
penalty a positive number. The penalty for adding/deleting points.
p a number > 0. The order of the TT- or RTT-distance computed.

cols, pchs, cexs
vectors of length 2 specifying the corresponding graphic parameters col, pch
and cex for plotting the two point patterns.

further graphic parameters passed to the code that draws the line segments be-
tween the points.

16 ppdist

Details

The default use-case is to plot a matching obtained with ppdist. In that case dmat, penalty and p
should be the same as in the call to ppdist. These objects are used to display additional information
about the matching.

Value

Used for the side effect of plotting.

Author(s)

Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

See Also

ppdist

Examples

See examples for ppdist

ppdist Compute Distance Between Two Point Patterns

Description

Based on an arbitrary matrix of "distances" between the points of two point patterns £ and 7, this
function computes versions of the transport-transform distance between £ and 7).

Usage

ppdist(
dmat,
penalty = 1,
type = c("tt"”, "rtt", "TT", "RTT"),
ret_matching = FALSE,

p=1,
precision = NULL
)
Arguments
dmat a matrix specifying in its (¢, 7)-th entry the distance from the i-th point of £ to

the j-th point of 7).
penalty a positive number. The penalty for adding/deleting points.

ppdist 17

type either "tt"/"TT" for the transport-transform metric or "rtt"/"RTT" for the rel-
ative transport-transform metric.

ret_matching logical. Shall the optimal point matching be returned?

p anumber > 0. The matching is chosen such that the p-th order sum (£,-norm)
is minimized.

precision a small positive integer value. The precisions of the computations, which are
currently performed in integers. After correcting for the penalty, dmat*p is di-
vided by its largest entry, multiplied by 10*precision and rounded to compute

the optimal matching. The default value NULL chooses maximal integer preci-
sion possible, which is precision = 9 on almost all systems.

Details

The transport-transform (TT) distance gives the minimal total cost for “morphing” the pattern &
into the pattern 1 by way of shifting points (at costs specified in dmat) and adding or deleting points
(each at cost penalty). The total cost is determined as

n 1/p
()
j=1

where c; denotes the cost for the jth individual operation and 7 is the cardinality of the larger point
pattern.

The relative transport-transform (RTT) metric is exactly the same, but the sum in the total cost is
divided by the larger cardinality:
1 n 1/p
(n > > :
j=1

The TT- and RTT-metrics form an umbrella concept that includes the OSPA and Spike Time metrics
frequently used in the literature. See Miiller, Schuhmacher and Mateu (2020) for details.

Value

The corresponding distance between the point patterns if ret_matching is FALSE.

Otherwise a list with components dist containing this distance and two vectors target1, target?2
of integers, where targets specifies the indices of the points in the other pattern that the points of
the i-th pattern are matched to and NA every time a point is deleted.

There may be a minus in front of an index, where -j indicates that the corresponding pairing with
point j would be over a distance of more than 2'/7 - penalty. This is equivalent to saying that the
corresponding point of the first pattern is deleted and the j-th point of the second pattern is added.

Note that having more than one minus implies that the matching is non-unique.

Author(s)

Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

18 ppdist

References

Raoul Miiller, Dominic Schuhmacher and Jorge Mateu (2020).
Metrics and Barycenters for Point Pattern Data.

Statistics and Computing 30, 953-972.
doi:10.1007/s1122202009932y

Examples

small example

set.seed(181230)

xi <- spatstat.random::rpoispp(20)

eta <- spatstat.random: :rpoispp(20)

dmat <- spatstat.geom::crossdist(xi,eta)

res <- ppdist(dmat, penalty=1, type="rtt", ret_matching=TRUE, p=1)
plotmatch(xi, eta, dmat, res, penalty=1, p=1)

res$dist

for comparison: ospa-distance computation from spatstat:
res_ospa <- spatstat.geom::pppdist(xi,eta,”spa")
res_ospa$distance # exactly the same as above because nothing gets cut off

same example, but with a much smaller penalty for adding/deleting points

res <- ppdist(dmat, penalty=0.1, type="rtt"”, ret_matching=TRUE, p=1)
plotmatch(xi, eta, dmat, res, penalty=0.1, p=1)
dashed lines indicate points that are deleted and re-added at new position
grey segments on dashed lines indicate the cost of deletion plus re-addition
res$dist

for comparison: ospa-distance computation from spatstat

(if things do get cut off, we have to ensure that the cutoff distances

are the same, thus cutoff = 2*(1/p) * penalty):

res_ospa <- spatstat.geom::pppdist(xi,eta,”spa”,cutoff=0.2)

res_ospasdistance # NOT the same as above

res_ospa$distance - abs(xi$n-eta$n) * 0.1 / max(xi$n,eta$n) # the same as above

a larger example

set.seed(190203)

xi <- spatstat.random: :rpoispp(2000)

eta <- spatstat.random::rpoispp(2000)

dmat <- spatstat.geom::crossdist(xi,eta)

res <- ppdist(dmat, penalty = 0.1, type = "rtt"”, ret_matching = TRUE, p = 1)
res$dist

takes about 2-3 seconds

https://doi.org/10.1007/s11222-020-09932-y

ppdistnet

19

ppdistnet

Compute Distance Between Two Point Patterns on a Network

Description

Based on an arbitrary matrix of "distances" on a network, this function computes versions of the
transport-transform distance between two point patterns & and 7 on this network.

Usage

ppdistnet(
dmat,
xi = NULL,

eta = NULL,
penalty = 1,

type = C(”tt”, ”rtt”, "TT"’ ”RTT”),
ret_matching = FALSE,

p=1,
precision

Arguments

dmat

xi

eta

penalty

type

ret_matching

p

precision

NULL

a matrix specifying in its (4, j)-th entry the shortest-path distance from the i-th
point of ¢ to the j-th point of 17 OR the distance matrix of a whole network. In
the latter case arguments & and 7 have to be specified.

a vector specifying the vertex-indices of £, only needed if dmat is the distance
matrix of a whole network.

a vector specifying the vertex-indices of 7, only needed if dmat is the distance
matrix of a whole network.

a positive number. The penalty for adding/deleting points.

either "tt"/"TT" for the transport-transform metric or "rtt"/"RTT" for the rel-
ative transport-transform metric.

Logical. Shall the optimal point matching be returned?

a number > 0. The matching is chosen such that the p-th order sum (£,,-norm)
is minimized.

a small positive integer value. The precision of the computations, which are cur-
rently performed in integers. After correcting for the penalty, dmat*p is divided
by its largest entry, multiplied by 10*precision and rounded to compute the
optimal matching. The default value NULL chooses maximal integer precision
possible, which is precision = 9 on almost all systems.

20 ppdistnet

Details

This function provides a more convenient way for computing (relative) transport-transform dis-
tances on networks if the points of the patterns are given in terms of indices of network vertices.
If dmat contains only the distances between the points of £ and 7, this function does the same as
ppdist.

Value

The corresponding distance between the point patterns if ret_matching is FALSE.

Otherwise a list with components dist containing this distance and two vectors target1, target2
of integers, where targeti specifies the indices of the points in the other pattern that the points of
the i-th pattern are matched to and NA every time a point is deleted.

There may be a minus in front of an index, where -j indicates that the corresponding pairing with
point j would be over a distance of more than 2!/ - penalty. This is equivalent to saying that the
corresponding point of the first pattern is deleted and the j-th point of the second pattern is added.

Note that having more than one minus implies that the matching is non-unique.

Author(s)

Raoul Miiller <raoul.mueller@uni-goettingen.de>
Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

See Also

ppdist

Examples

set.seed(123456)
nvert <- 100 #number of vertices in the network
lambda <- 0.5 #expected number of points per unit length
1n <- delaunayNetwork(runifpoint(nvert)) #create an artificial network
ppnetwork <- rpoislpp(lambda, 1ln, nsim = 2)
#simulate two point patterns on the network

plot(ppnetwork[[1]]$domain, cex=0.5, main="")
plot(as.ppp(ppnetwork[[11]1),vpch=1,col=2,add=TRUE)
plot(as.ppp(ppnetwork[[2]]),vpch=1,col=4,add=TRUE)

res <- netsplit(ln, ppnetwork)
#incorporate data point patterns into the network
#calculating all pairwise distances between vertices
#and creating matrix of vertex-indices of data point patterns

xi <- res$ppmatrix[1:npoints(ppnetwork[[1]]1), 1]
eta <- res$ppmatrix[1:npoints(ppnetwork[[2]1]), 2]
res2 <- ppdistnet(res$network$dpath, xi = xi, eta = eta,
penalty = 1, type = "tt", ret_matching = TRUE, p = 1)
res2

pplist-data 21

pplist-data Simulated Point Pattern Lists

Description

Lists of simulated point patterns for illustrating the computation of barycenters.

Usage

pplist_samecard

pplist_diffcard

Format
Objects of class pplist, which are essentially lists of ppp-objects.

An object of class ppplist (inherits from solist, anylist, listof, list) of length 80.

An object of class ppplist (inherits from solist, anylist, listof, 1list) of length 50.

Details

pplist_samecard contains 80 point patterns of 100 points each. The patterns were independently
generated from a distribution that creates quite distinctive clusters.

pplist_diffcard contains 50 point patterns with cardinalities ranging from 17 to 42. The patterns
were independently generated from a distribution that creates overlapping clusters.

Author(s)

Raoul Miiller <raoul.mueller@uni-goettingen.de>
Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

Examples

plot the first eight patterns of each data set
plot(superimpose(pplist_samecard[1:8]), legend=FALSE, cex=0.4, cols=1:8)
plot(superimpose(pplist_diffcard[1:8]), legend=FALSE, cex=0.4, cols=1:8)

22 sumppdist

sumppdist Compute Sum of q-th Powers of Distances Between a Point Pattern
and a List of Point Patterns

Description

Determine the Euclidean distance based TT-p-distances (or RTT-p-distances) between a single point
pattern zeta and each point pattern in a list pplist. Then compute the sum of g-th powers of these

distances.
Usage

sumppdist(

zeta,

pplist,

penalty = 1,

type = C(”tt”’ ”rtt”’ IITTH’ HRTTH),
p=1,

q=1

)

Arguments

zeta an object of class ppp.

pplist an object of class ppplist or an object that can be coerced to this class, such as
a list of ppp objects.

penalty a positive number. The penalty for adding/deleting points.

type either "tt"/"TT" for the transport-transform metric or "rtt"/"RTT" for the rel-
ative transport-transform metric.

p a number > 0. Matchings between zeta and the patterns in pplist are chosen
such that the p-th order sums (¢,-norms) of the Euclidean distances are mini-
mized.

q a number > 0.

Details

The main purpose of this function is to evaluate the relative performance of approximate g-th order
barycenters of point patterns. A true g-th order barycenter of the point patterns &1, ..., &, with
respect to the TT-p metric 7, minimizes

k
Z TP(Ej? Q)
j=1

in C.

The most common choices are p = q =1 and p = g = 2. Other choices have not been tested.

sumppdistnet 23

Value

A nonnegative number, the g-th order sum of the TT-p- or RTT-p-distances between zeta and each
pattern in pplist. This number has an attribute distances that contains the individual distances.

Author(s)

Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

See Also
ppdist for computation of TT-p- and RTT-p-metrics,

kmeansbary for finding a local minimum of the above sum forp =q =2

Examples

See the examples for kmeansbary

sumppdistnet Compute Sum of q-th Powers of Distances Between a Point Pattern
and a Collection of Point Patterns on a Network

Description

Based on the shortest-path metric in a network, determine the TT-p-distances (or RTT-p-distances)
between a single point pattern zeta and a collection of point patterns. Then compute the sum of
g-th powers of these distances. The point patterns are specified by vectors of indices referring to the
vertices in the network.

Usage

sumppdistnet(
dmat,
zeta,
ppmatrix,
penalty = 1,
type = c("tt", "rtt", "TT", "RTT"),
p=1,
q=1

Arguments

dmat the distance matrix of a network containing all shortest-path distances between
its vertices.

zeta a vector specifying the vertex-indices of zeta.

24

ppmatrix

penalty
type

Details

sumppdistnet

a matrix specifying in its columns the vertex-indices of the point patterns in the
collection. A virtual index that is one greater than the maximum vertex-index in
the network can be used to fill up columns so that they all have the same length.

a positive number. The penalty for adding/deleting points.

either "tt"/"TT" for the transport-transform metric or "rtt"/"RTT" for the rel-
ative transport-transform metric.

a number > 0. Matchings between zeta and the patterns in ppmatrix are cho-
sen such that the p-th order sums (£,-norms) of the shortest-path distances are
minimized.

a number > 0.

The main purpose of this function is to evaluate the relative performance of approximate g-th order
barycenters of point patterns. A true g-th order barycenter of the point patterns &1, ..., &, with
respect to the TT-p metric 7, minimizes

in C.

k
> m(&,0)°
Jj=1

The most common choices are p = q =1 and p = g = 2. Other choices have not been tested.

Value

A nonnegative number, the g-th order sum of the TT-p- or RTT-p-distances between the patterns
represented by zeta and ppmatrix. This number has an attribute distances that contains the
individual distances.

Author(s)

Raoul Miiller <raoul.mueller@uni-goettingen.de>
Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

See Also

kmeansbarynet, sumppdist

Examples

See examples for kmeansbarynet

Index

x datasets
pplist-data, 21

drezner, 2

kmeansbary, 3, 8, 10, 13, 23
kmeansbaryeps, 5, 6
kmeansbarynet, 9, 14, 15, 24
kmeansbaryweightnet, 11

netsplit, 9,11, 12, 14

plotmatch, 15
ppdist, 15, 16, 16, 20, 23
ppdistnet, 19

pplist-data, 21

pplist_diffcard (pplist-data), 21
pplist_samecard (pplist-data), 21
ppp, 15, 22

ppplist, 22

sumppdist, 22, 24
sumppdistnet, 23

ttdist (ppdist), 16
ttdistnet (ppdistnet), 19

25

	drezner
	kmeansbary
	kmeansbaryeps
	kmeansbarynet
	kmeansbaryweightnet
	netsplit
	plotmatch
	ppdist
	ppdistnet
	pplist-data
	sumppdist
	sumppdistnet
	Index

