
T
ik

Z
D

e
v

ic
e LATEX Graphics for R

Charlie Sharpsteen

Cameron Bracken

NA
https://github.com/yihui/tikzDevice

Version: 0.12.6
-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

x

p
(x

)

p(x) = 1
√

2π

e−
x

2

2

∫
2

−2

p(x)dx ≈ 0.954

https://github.com/yihui/tikzDevice

Contents i

Contents

1 Introduction 1
1.1 Acknowledgements . 2

I Usage and Examples 3

2 Loading the Package 4
2.1 Options That Affect Package Behavior . 5

The tikzDefaultEngine Option . 5
The tikzLatex, tikzXelatex and tikzLualatex Options . 5
The tikzMetricsDictionary Option . 5
The tikzDocumentDeclaration Option . 6
The tikzLatexPackages, tikzXelatexPackages and tikzLualatexPackages Options 6
The tikzMetricPackages and tikzUnicodeMetricPackages Options . 7
The tikzFooter Option . 7
The tikzSanitizeCharacters and tikzReplacementCharacters Options 7
The tikzLwdUnit Option . 7
The deprecated tikzRasterResolution Option . 8
The tikzPdftexWarnUTF Option . 8

3 The tikz Function 8
3.1 Description . 8
3.2 Usage . 8
3.3 Font Size Calculations . 9

UTF-8 Output . 10
3.4 Examples . 10

Default Mode . 10
bareBones Mode . 11
standAlone Mode . 13
console output Mode . 13
Using X ELATEX . 15
Annotating Graphics with TikZ Commands . 16
tikz vs. pdf for plotmath symbols and Unicode characters . 19

4 The getLatexCharMetrics and getLatexStrWidth Functions 20
4.1 Description . 20
4.2 Usage . 20
4.3 Examples . 20

II Installation Guide 23

5 Obtaining a LATEX Distribution 24
5.1 Windows . 24
5.2 UNIX/Linux . 24
5.3 Mac OS X . 24
5.4 Installing TikZ and Other Packages . 24

Using a LATEX Package Manager . 25
Manual Installation . 25

TikZDevice LATEX Graphics for R

Contents ii

IIIPackage Internals 27

6 Introduction and Background 28

7 Anatomy of an R Graphics Device 28
7.1 Drawing Routines . 28
7.2 Font Metric Routines . 29
7.3 Utility Routines . 29

8 Calculating Font Metrics 29
Character Metrics . 30
Calling R Functions from C Functions . 30
Implementing a System Call to LATEX . 32

9 On the Importance of Font and Style Consistency in Reports 36
9.1 The pgfSweave Package and Automatic Report Generation . 36

Bibliography 37

TikZDevice LATEX Graphics for R

Introduction 1

Introduction

Chapter 1

The tikzDevice package provides a graphics output device for R that records plots in a LATEX-friendly format. The
device transforms plotting commands issued by R functions into LATEX code blocks. When included in a paper typeset
by LATEX, these blocks are interpreted with the help of TikZ—a graphics package for TEX and friends written by Till
Tantau. By allowing LATEX to handle typesetting of text in R plots along with the rest of the text in the paper the
full power of TEX is available to the R user. There are also no discontinuities in font selection and typesetting as
demonstrated by a comparison between Figure 1 and Figure 2.

pdf('pdf-example.pdf',

width = 3.25, height = 3.25)

plot(1, 1, main = 'Hello!')

dev.off()

0.6 0.8 1.0 1.2 1.4

0
.6

1
.0

1
.4

Hello!

1

1

Figure 1: Output from pdf()

tikz('tikz-example.tex',

width = 3.25, height = 3.25)

plot(1, 1, main = 'Hello \\TeX !')

dev.off()

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Hello TEX!

1

1

Figure 2: Output from tikz()

This document is divided into three parts. Part I describes the package functionality and provides example usage.
Besides the R environment, use of the TikZ device requires the user to have a working LATEX compiler along with an
installed version of the TikZ package—version 2.00 or greater. Part II of this documentation offers suggestions on
how to get these dependencies installed and working properly.

Part III is intended for those who are curious as to the details of how this package is implemented. This part
attempts to explain how the tikzDevice package does the things that it does and why it chooses to do them that
way. The authors have attempted to write this part of the documentation in a way that is accessible to users as well
as developers. This information is provided in the hope that the tikzDevice may serve as a case study for creating
new R graphics devices. This part of the documentation may also help those considering undertaking the transition
from casual package-building to full-on hacking of the R internals.

TikZDevice LATEX Graphics for R

Introduction 2

1.1 Acknowledgements

This package would not have been possible without the hard work and ingenuity of many individuals. This package
straddles the divide between two great open source communities—the R programming language and the TEX
typesetting system. It is our hope that this work will make it easier for users to leverage the strengths of both
systems.

First off, we would like to thank the R Core Team for creating such a wonderful, open and flexible programming
environment. Compared to other languages we have used, creating packages and extensions for R has always been a
liberating experience.

This package started as a fork of the PicTEX device created by Valerio Aimale which is part of the R core graphics
system. Without access to this simple, compact example of implementing a graphics device we likely would have
abandoned the project in its infancy. We would also like to thank Paul Murrell for all of his work on the R graphics
system and especially for his research and documentation concerning the differences between the font systems used
by TEX and R.

This package also owes its existence to Friedrich Leisch’s work on the Sweave system and Roger D. Peng’s
cacheSweave extension. These two tools got us interested in the concept of Literate Programming and development
of this package was driven by our desire to achieve a more seamless union between our reports and our code.

The performance of this package is also enhanced by the database capabilities provided by Roger D. Peng’s
filehash package. Without this package, the approach to calculating font metrics taken by the tikzDevice would be
infeasible.

Last, but certainly not least, we would like to thank Till Tantau, Mark Wibrow and the rest of the PGF/TikZ
team for creating the LATEX graphics package that makes the output of this device meaningful. We would also like to
express deep appreciation for the beautiful documentation that has been created for the TikZ system.

As always, there are many more who have contributed in ways too numerous to list.

Thank you!
—The tikzDevice Team

TikZDevice LATEX Graphics for R

P
a
r
t

I Usage and Examples

-1 0 1 2

-1
0

1
2

Hello LATEX!

x

y

Linear model: R2 = 0.9894

y = 1.005x + 0.069

Loading the Package 4

Loading the Package

Chapter 2

The functions in the tikzDevice package are made accessible in the R environment by using library():

library(tikzDevice)

Upon loading, the package will search for the following LATEX compilers:

• pdfLATEX

• X ELATEX

• LuaLATEX

Access to LATEX is essential for the device to produce output as the compiler is queried for font metrics when
constructing plots that contain text. For more information on why communication between the device and LATEX is
necessary, see Part III. The package will fail to load if pdfLATEX cannot be located. The presence of the X ELATEX and
LuaLATEX compilers is optional. When the package loads successfully, a startup message will be printed that looks
similar to the following:

Loading required package: filehash

filehash: Simple key-value database (2.2 2011-07-21)

tikzDevice: R Graphics Output in LaTeX Format (v0.7)

LaTeX found in the PATH using the command: pdflatex

XeLaTeX found in the PATH using the command: xelatex

LuaLaTeX found in the PATH using the command: lualatex

If a working pdfLATEX compiler cannot be found, the tikzDevice package will fail to load and a warning message
will be displayed:

Error : .onLoad failed in loadNamespace() for 'tikzDevice', details:

call: fun(libname, pkgname)

error:

An appropriate LaTeX compiler could not be found.

Access to LaTeX is required in order for the TikZ device

to produce output.

The following places were tested for a valid LaTeX compiler:

the global option: tikzLatex

the environment variable: R_LATEXCMD

the environment variable: R_PDFLATEXCMD

the global option: latexcmd

the PATH using the command: pdflatex

the PATH using the command: latex

the PATH using the command: /usr/texbin/pdflatex

...

Error: loading failed

TikZDevice LATEX Graphics for R

Loading the Package 5

In this case, tikzDevice has done its very best to locate a working compiler and came up empty. If you have
a working LATEX compiler, the next section describes how to inform the tikzDevice package of its location. For
suggestions on how to obtain a LATEX compiler, see Part II.

2.1 Options That Affect Package Behavior

The tikzDevice package is influenced by a number of options that may be set locally in your R scripts or in the
R console or globally in a .Rprofile file. All of the options can be set by using options(<option> = <value>). These
options allow for the use of custom documentclass declarations, LATEX packages, and typesetting engines (e.g. X ELATEX
or LuaLATEX).

For convenience the function setTikzDefaults() is provided which sets all the global options back to their original
values.

The proper placement of a .Rprofile file is explained in the R manual page ?Startup. For the details of why calling
the LATEX compiler is necessary, see Part III.

A lot of power is given to you through these global options, and with great power comes great responsibility.
For example, if you do not include the TikZ package in the tikzLatexPackages option then all of the string metric
calculations will fail. Or if you use a different font when compiling than you used for calculating metrics, strings may
be placed incorrectly. There are innumerable ways for packages to clash in LATEX so be aware.

The tikzDefaultEngine Option

This option specifies which typesetting engine the tikzDevice package will prefer. Current possible values are pdftex,
xetex or luatex which will respectively trigger the use of the pdfLATEX, X ELATEX or LuaLATEX compilers.

options(tikzDefaultEngine = 'pdftex')

Default

options(tikzDefaultEngine = 'xetex')

options(tikzDefaultEngine = 'luatex')

Choosing the TEX engine

The tikzLatex, tikzXelatex and tikzLualatex Options

Specifies the location of the LATEX, X ELATEX and LuaLATEX compilers to be used by tikzDevice. Setting a default
for this option may help the package locate a missing compiler:

options(tikzLatex = '/path/to/pdflatex')

options(tikzXelatex = '/path/to/xelatex')

options(tikzLualatex = '/path/to/lualatex')

Setting default compilers in .Rprofile

The tikzMetricsDictionary Option

When using the graphics device provided by tikzDevice, you may notice that R appears to “lag" or “hang” when
commands such as plot() are executed. This is because the device must query the LATEX compiler for string widths
and font metrics. For a normal plot, this may happen dozens or hundreds of times—hence R becomes unresponsive
for a while. The good news is that the tikz() code is designed to cache the results of these computations so they
need only be performed once for each string or character. By default, these values are stored in a temporary cache
file which is deleted when R is shut down. Using the option tikzMetricsDictionary, a permanent cache file may be
specified:

TikZDevice LATEX Graphics for R

Loading the Package 6

options(tikzMetricsDictionary = '/path/to/dictionary/location')

Setting a location in .Rprofile for a permanent metrics dictionary

The tikzDocumentDeclaration Option

For standAlone == TRUE, tikzDocumentDeclaration also influences the calculation of font metrics. If a base font size is
specified as an option to the document class, the tikzDevice will use this value as the base font size for graphics.

options(tikzDocumentDeclaration = "\\documentclass[10pt]{article}")

Default

The tikzLatexPackages, tikzXelatexPackages and tikzLualatexPackages Options

Character vectors. These are the packages which are included when using the standAlone option as well as when font
metrics are calculated. If you use additional packages that affect fonts, such as mathpazo, or additional LATEX macros,
such as amsmath, these packages should be added to this list.

options(

tikzLatexPackages = c(

"\\usepackage{tikz}",

"\\usepackage[active,tightpage]{preview}",

"\\PreviewEnvironment{pgfpicture}",

"\\setlength\\PreviewBorder{0pt}")

),

tikzXelatexPackages = c(

"\\usepackage{tikz}\n",

"\\usepackage[active,tightpage,xetex]{preview}\n",

"\\usepackage{fontspec,xunicode}\n",

"\\PreviewEnvironment{pgfpicture}\n",

"\\setlength\\PreviewBorder{0pt}\n"

),

tikzLualatexPackages = c(

"\\usepackage{tikz}\n",

"\\usepackage[active,tightpage,psfixbb]{preview}\n",

"\\usepackage{fontspec,xunicode}\n",

"\\PreviewEnvironment{pgfpicture}\n",

"\\setlength\\PreviewBorder{0pt}\n"

)

)

Default

options(tikzLatexPackages = c(

getOption("tikzLatexPackages"),

"\\usepackage{mathpazo}"

))

Adding a package that affects fonts

TikZDevice LATEX Graphics for R

Loading the Package 7

The tikzMetricPackages and tikzUnicodeMetricPackages Options

Character vectors. These are the extra packages which are additionally loaded when doing font metric calculations.
As you see below, the font encoding is set to Type 1. This is very important so that character codes of LATEX and R

match up. The Unicode metric packages are used when the X ETEX or LuaTEX engines are in use.

options(

tikzMetricPackages = c(

"\\usepackage[T1]{fontenc}\n",

"\\usetikzlibrary{calc}\n"

),

tikzUnicodeMetricPackages = c(

"\\usepackage[T1]{fontenc}\n",

"\\usetikzlibrary{calc}\n",

"\\usepackage{fontspec,xunicode}\n"

)

)

Default

The tikzFooter Option

A character vector. This footer is appended to the end of the figure when standAlone==TRUE before the \end{document}

statement.

options(tikzFooter = "")

Default

The tikzSanitizeCharacters and tikzReplacementCharacters Options

tikzSanitizeCharacters is a character vector of special LATEXcharacters to replace while tikzReplacementCharacters is a
character vector containing the corresponding replacements.

options(

tikzSanitizeCharacters = c('%','$','}','{','^','_','#','&','~'),

tikzReplacementCharacters = c('\\%','\\$','\\}','\\{','\\^{}','_{}',

'\\#','\\&','\\char❵\\~')

)

Default

The tikzLwdUnit Option

Originally, 1 unit of line width in R was translated to 0.4 pt. This results in lines that are thinner than with default
graphics or with the PDF device. This option controls the translation factor – use 72.27 / 96 for compatibility with
the R default (96 pixels in R is 1 inch, which is 72.27 points in TEX).

options(tikzLwdUnit = 72.27 / 96)

Default

TikZDevice LATEX Graphics for R

The tikz Function 8

The deprecated tikzRasterResolution Option

When tikz is requested to add a raster to a graphic, the raster is written to a PNG file which is then included by
the LATEX code. In the current version, the raster is always written “as is” (after mirroring has been applied) using
png::writePNG() (Urbanek, 2013). No resampling or transformation of any kind are applied in this process, rotation
and interpolation are carried out by LATEX.

The tikzPdftexWarnUTF Option

A TRUE/FALSE value that controls whether warnings are printed if Unicode characters are sent to a device using the
pdfTEX engine.

options(tikzPdftexWarnUTF = TRUE)

Default

The tikz Function

Chapter 3

3.1 Description

The tikz function provides most of the functionality of the tikzDevice package. This function opens an R graphics
device that records plots as a series of TikZ commands. The device supports many levels of output that range from
stand-alone LATEX documents that may be compiled into figures to code chunks that must be incorporated into
existing LATEX documents using the \include{} macro.

3.2 Usage

The tikz function opens a new graphics device and may be called with the following arguments:

tikz(file = filename,

filename = ifelse(onefile, "./Rplots.tex", "./Rplot%03d.tex"), width = 7,

height = 7, onefile = TRUE, bg = "transparent", fg = "black",

pointsize = 10, lwdUnit = getOption("tikzLwdUnit"), standAlone = FALSE,

bareBones = FALSE, console = FALSE, sanitize = FALSE,

engine = getOption("tikzDefaultEngine"),

documentDeclaration = getOption("tikzDocumentDeclaration"), packages,

footer = getOption("tikzFooter"),

symbolicColors = getOption("tikzSymbolicColors"),

colorFileName = "%s_colors.tex",

maxSymbolicColors = getOption("tikzMaxSymbolicColors"), timestamp = TRUE,

verbose = interactive())

file A character string indicating the desired path to the output file. It is recommended, but not required,
that the filename end in .tex.

width The width of the output figure, in inches.

height The height of the output figure, in inches.

onefile Controls whether output should be directed to a single file containing one tikzpicture environment per
plot or split into multiple files each containing a single tikzpicture environment.

TikZDevice LATEX Graphics for R

The tikz Function 9

bg The starting background color for the plot.

fg The starting foreground color for the plot.

pointsize Base pointsize used in the LaTeX document. This option is only referenced if a valid pointsize cannot
be extracted from the value of getOption("tikzDocumentDeclaration"). See Section 3.3 for more details.

lwdUnit The number of pts in LaTeX that lwd=1 in R is translated to. Defaults to 0.4 (LaTeX and TikZ default);
for compatibility with R default, please use 72.27/96 (96 pixels in R is 1 inch, which is 72.27 points in
TeX). See also Section 2.1, “Options That Affect Package Behavior.”

standAlone A logical value indicating whether the resulting file should be suitable for direct processing by
LATEX.

bareBones A logical value indicating whether TikZ code is produced without being placed within a tikzpicture

environment.

console Controls whether output is directed to the R console. This is useful for dumping TikZ output directly
into a LATEX document via sink. If TRUE, the file argument is ignored. Setting file=ťť is equivalent to
setting console=TRUE.

sanitize Should special latex characters be replaced (Default FALSE). See Section 2.1, “Options That Affect
Package Behavior” for which characters are replaced.

engine A string specifying which TEX engine to use. Possible values are ’pdftex’, ’xetex’ and ’luatex’.

documentDeclaration See Section 2.1, “Options That Affect Package Behavior.”

packages See Section 2.1, “Options That Affect Package Behavior.”

footer See Section 2.1, “Options That Affect Package Behavior.”

The first six options should be familiar to anyone who has used the default graphics devices shipped with R. The
options standAlone and bareBones are specific to the tikz() graphics device and affect the structure the output file.
Using these options tikz supports three modes of output:

• Graphics production as complete LATEX files suitable for compilation.

• Graphics production as complete figures suitable for inclusion in LATEX files.

• Graphics production as raw figure code suitable for inclusion in an enclosing tikzpicture environment in a LATEX
file.

3.3 Font Size Calculations

The overarching goal of the tikzDevice is to provide seamless integration between text in R graphics and the text of
LATEX documents that contain those graphics. In order to achieve this integration the device must translate font sizes
specified in R to corresponding font sizes in LATEX. The issue is that font sizes in LATEX are controlled by a “base font
size” that is specified at the beginning of the document—typically 10pt. There is no easy way in LATEX to change the
font size to a new numerical value, such as 16pt for a plot title. Fortunately, the TikZ graphics system allows text to
be resized using a scaling factor. The tikzDevice calculates a scaling factor used to approximate other font sizes
using the following three inputs:

• The “base font size” specified when the graphics device is created.

• The “character expansion factor” parameter, specified using the ‘cex’ argument to functions such as described
in the documentation of the R function par.

• The “font size” parameter, specified using the ‘ps’ argument to functions such as par or the ‘fontsize’ argument
to functions such as gpar.

TikZDevice LATEX Graphics for R

The tikz Function 10

The calculation used is:

Scaling Factor = cex ·

ps

base font size

The tricky bit is the specification of the “base font size”. By default the tikzDevice will attempt to determine
this parameter by scanning the value of options("tikzDocumentDeclaration") using the regular expression \d+pt. With
the default header:

\documentclass[10pt]{article}

this regular expression will return 10 as the base pointsize to be used by the device. If the regular expression fails to
produce a match, the value of the pointsize argument to the tikz function will be used.

UTF-8 Output

Version 0.6.0 of the tikzDevice introduced support for (multibyte) Unicode characters in the text of graphics through
support for X ETEX. Version 0.7.0 extended multilingual typesetting further by adding support for the LuaTEX
compiler. Unicode support in tikzDevice is subject to a few important caveats:

System Requirements: A working version of X ELATEX or LuaLATEX along with the packages fontspec and xunicode

are required for direct processing of Unicode input. If tikzDevice cannot find a Unicode-aware compiler, then
Unicode support cannot be guaranteed.

Encoding: tikzDevice will try its best to convert characters from other encodings but do not count on it converting
things correctly, best to do the conversion yourself beforehand to avoid unexpected output.

Fonts: Having a Unicode character actually show up in your LATEX document relies on the font you use having the
glyph available. We leave it up to the user to know for themselves what is available. Otherwise you will likely
just get no output in place of where the character should be.

Plotmath: There is specifically no support for input of plotmath characters as unicode since the user can simply input
LATEX math directly. We strongly encourage the use of LATEX math over plotmath for style and consistency’s
sake. A consequence of this is that most of the R examples and demos of plotmath won’t work without significant
manipulation (your mileage may vary but you may get anything from errors to warnings to documents that
mysteriously won’t compile). That is not to say that the output could not be duplicated with tikzDevice but
the examples will not work out of the box.

Compiling: A graphic that contains UTF-8 characters should be compiled with X ELATEX or LuaLATEX with the
xunicode and fontspec packages enabled.

ASCII only: Everything should be exactly the same as previous versions if only ASCII (single byte) characters are
used (i.e. character codes less than 132).

3.4 Examples

Default Mode

The most common use of the tikz function is to produce a plot that will be included in another LATEX document,
such as a report. Running the following example in R will produce a very simple graphic using the plot function:

library(tikzDevice)

tikz('figs/simpleEx.tex',width=3.5,height=3.5)

plot(1,main='Hello World!')

dev.off()

A LATEX document is then required to display the figure. This document must include TikZ as one of the packages
that it loads. TikZ provides several libraries that enable additional functionality, however none of these libraries

TikZDevice LATEX Graphics for R

The tikz Function 11

\documentclass{article}

% All LaTeX documents including

% tikz() output must use this

% package!

\usepackage{tikz}

\begin{document}

\begin{figure}[!ht]

\centering

% The output from tikz()

% is imported here.

\input{simpleEx.tex}

\caption{Simple Example}

\end{figure}

\end{document}

Example LATEX Document

0.6 0.8 1.0 1.2 1.4

0
.6

0
.8

1
.0

1
.2

1
.4

Hello World!

Index

1
Figure 3: Example of simple tikz usage.

are currently required to use the output of tikz. Inside the LATEX document, the contents of the file simpleEx.tex are
imported using the \include command.

One of the most exciting aspects of the tikz function is that the inclusion of arbitrary LATEX code is allowed in
strings passed to plotting commands. An important issue to note is that many LATEX commands are prefixed by the
backaslash character: \. Unfortunately, in many programming languages, the backslash character is also given a
special status when it appears in strings. Therefore, it is necessary to place two backslashes, \\, in R strings in order
to cause backslash to appear in the output for LATEX. The next example demonstrates how to use LATEX commands
in plot annotation.

bareBones Mode

bareBones output is designed to facilitate inclusion of code generated by tikz into a larger TikZ graphic. Normally
tikz wraps output as a self-contained tikzpicture environment. When bareBones is invoked, the wrapping environment
is omitted. This option allows output to be embedded inside another tikzpicture of the user’s own construction.

library(tikzDevice)

library(maps)

tikz('figs/westCoast.tex', bareBones=TRUE)

map('state', regions=c('california', 'oregon', 'washington'),

lwd=4, col='grey40')

Insert some named coordinates into the picture that will

be available once the picture is included into the

TeX document.

tikzCoord(-124.161, 40.786, 'humBay')

tikzCoord(-122.962, 46.148, 'longView')

tikzCoord(-124.237, 43.378, 'coosBay')

TikZDevice LATEX Graphics for R

The tikz Function 12

library(tikzDevice)

tikz('figs/latexEx.tex',

width=3.5,height=3.5)

x <- rnorm(10)

y <- x + rnorm(5,sd=0.25)

model <- lm(y ~ x)

rsq <- summary(model)$r.squared

rsq <- signif(rsq,4)

plot(x, y, main='Hello \\LaTeX!')

abline(model, col='red')

mtext(paste("Linear model: $R^{2}=",

rsq, "$"), line=0.5)

legend('bottomright', legend =

paste("$y = ",

round(coef(model)[2],3), 'x +',

round(coef(model)[1],3), '$',

sep = ''), bty = 'n')

dev.off()

-1 0 1 2

-1
0

1
2

Hello LATEX!

x

y

Linear model: R2 = 0.9894

y = 1.005x + 0.069

Figure 4: A more complicated example of tikz usage incorporating natively rendered LATEX commands.

tikzCoord(-122.419, 37.775, 'sfBay')

dev.off()

The \include command may now be used to import the device output into another tikzpicture. The included code
must be wrapped in a scope environment that contains the options x=1pt and y=1pt. This informs TikZ of the units
being used in the coordinates of the plot output. The options xshift and yshift may also be applied to the scope in
order to position the plot. The following code demonstrates how to embed bareBones output in a tikzpicture:

\begin{tikzpicture}

% Include bareBones output inside a scope with x and y units set to 1pt

\begin{scope}[x=1pt,y=1pt]

\input{figs/westCoast}

\end{scope}

% Label ports using coordinates placed into the barBones output by the

% tikzAnnotate function.

\foreach \name/\port in {

Longview/longView,

Coos Bay/coosBay,

Humboldt Bay/humBay,

Example of a TikZ environment including bareBones output

TikZDevice LATEX Graphics for R

The tikz Function 13

Oakland/sfBay%

} {

\node[circle, draw, ultra thick, fill=green!60!brown!40,

outer sep=6pt,minimum size=12pt,

pin={[draw, ultra thick,

rounded corners,

pin edge={black, ultra thick, <-, >=stealth}

] 180 : \name}] at (\port) {};

}

\end{tikzpicture}

standAlone Mode

When the standAlone option is passed to tikz, the resulting .tex file will be a complete LATEX document that can
be compiled into a stand-alone figure. This means that in addition to \begin{tikzpicture} and \end{tikzpicture} the
file will also contain \begin{document}, \end{document} and a LATEX preamble. The preview package is also used in files
produced by standAlone to crop the pages in the resulting document to the bounding boxes of the plots. Stand-alone
output may be produced in the following manner:

library(tikzDevice)

tikz('standAloneExample.tex',standAlone=TRUE)

plot(sin,-pi,2*pi,main="A Stand Alone TikZ Plot")

dev.off()

Note that files produced using the standAlone option should not be included in LATEX documents using the \input

command! Use \includegraphics or load the pdfpages package and use \includepdf.

console output Mode

Version 0.5.0 of tikzDevice introduced the console option. With this option, tikz will send output to stdout instead
of a file. This kind of output can be redirected to a file with sink or spit out directly into a TEX document from a
Sweave file so that the TEX file is self contained and does not include other files via \input. (Including the chunk
option strip.white=FALSE was necessary for some versions of tikzDevice prior to 0.7.2.)

\documentclass{article}

\usepackage{tikz}

\begin{document}

\begin{figure}[ht]

\centering

<<inline,echo=FALSE,results='tex'>>=

require(tikzDevice)

tikz(console=TRUE,width=5,height=5)

x <- rnorm(100)

plot(x)

dummy <- dev.off()

Catching tikz output inside Sweave

TikZDevice LATEX Graphics for R

The tikz Function 14

Longview

Coos Bay

Humboldt Bay

Oakland

Figure 5: A TikZ drawing with embedded output from tikz(bareBones=TRUE).

TikZDevice LATEX Graphics for R

The tikz Function 15

@

\caption{caption}

\label{fig:inline}

\end{figure}

\end{document}

Using X ELATEX

It is also possible to use other typesetting engines like X ELATEX by using the global options provided by tikzDevice.
The following example was inspired by Dario Taraborelli and his article The Beauty of LaTeX.

Set options for using XeLaTeX font variants.

options(tikzXelatexPackages = c(

getOption('tikzXelatexPackages'),

"\\usepackage[colorlinks, breaklinks]{hyperref}",

"\\usepackage{color}",

"\\definecolor{Gray}{rgb}{.7,.7,.7}",

"\\definecolor{lightblue}{rgb}{.2,.5,1}",

"\\definecolor{myred}{rgb}{1,0,0}",

"\\newcommand{\\red}[1]{\\color{myred} #1}",

"\\newcommand{\\reda}[1]{\\color{myred}\\fontspec[Variant=2]{Zapfino}#1}",

"\\newcommand{\\redb}[1]{\\color{myred}\\fontspec[Variant=3]{Zapfino}#1}",

"\\newcommand{\\redc}[1]{\\color{myred}\\fontspec[Variant=4]{Zapfino}#1}",

"\\newcommand{\\redd}[1]{\\color{myred}\\fontspec[Variant=5]{Zapfino}#1}",

"\\newcommand{\\rede}[1]{\\color{myred}\\fontspec[Variant=6]{Zapfino}#1}",

"\\newcommand{\\redf}[1]{\\color{myred}\\fontspec[Variant=7]{Zapfino}#1}",

"\\newcommand{\\redg}[1]{\\color{myred}\\fontspec[Variant=8]{Zapfino}#1}",

"\\newcommand{\\lbl}[1]{\\color{lightblue} #1}",

"\\newcommand{\\lbla}[1]{\\color{lightblue}\\fontspec[Variant=2]{Zapfino}#1}",

"\\newcommand{\\lblb}[1]{\\color{lightblue}\\fontspec[Variant=3]{Zapfino}#1}",

"\\newcommand{\\lblc}[1]{\\color{lightblue}\\fontspec[Variant=4]{Zapfino}#1}",

"\\newcommand{\\lbld}[1]{\\color{lightblue}\\fontspec[Variant=5]{Zapfino}#1}",

"\\newcommand{\\lble}[1]{\\color{lightblue}\\fontspec[Variant=6]{Zapfino}#1}",

"\\newcommand{\\lblf}[1]{\\color{lightblue}\\fontspec[Variant=7]{Zapfino}#1}",

"\\newcommand{\\lblg}[1]{\\color{lightblue}\\fontspec[Variant=8]{Zapfino}#1}",

"\\newcommand{\\old}[1]{",

"\\fontspec[Ligatures={Common, Rare},Variant=1,Swashes={LineInitial, LineFinal}]{Zapfino}",

"\\fontsize{25pt}{30pt}\\selectfont #1}%",

"\\newcommand{\\smallprint}[1]{\\fontspec{Hoefler Text}

\\fontsize{10pt}{13pt}\\color{Gray}\\selectfont #1}"

))

Set the content using custom defined commands

label <- c(

"\\noindent{\\red d}roo{\\lbl g}",

"\\noindent{\\reda d}roo{\\lbla g}",

"\\noindent{\\redb d}roo{\\lblb g}",

"\\noindent{\\redf d}roo{\\lblf g}\\\\[.3cm]",

"\\noindent{\\redc d}roo{\\lblc g}",

"\\noindent{\\redd d}roo{\\lbld g}",

"\\noindent{\\rede d}roo{\\lble g}",

"\\noindent{\\redg d}roo{\\lblg g}\\\\[.2cm]"

TikZDevice LATEX Graphics for R

http://nitens.org/taraborelli/latex

The tikz Function 16

)

Set the titles using custom defined commands, and hyperlinks

title <- c(

paste(

"\\smallprint{D. Taraborelli (2008),",

"\\href{http://nitens.org/taraborelli/latex}",

"{The Beauty of \\LaTeX}}"

), paste(

"\\smallprint{\\\\\\emph{Some rights reserved}.",

"\\href{http://creativecommons.org/licenses/by-sa/3.0/}",

"{\\textsc{cc-by-sa}}}"

))

Draw the graphic

tikz('xelatexEx.tex',

standAlone=TRUE,width=5,height=5,

engine = 'xetex')

lim <- 0:(length(label)+1)

plot(lim,lim,cex=0,pch='.',xlab = title[2],ylab='', main = title[1])

for(i in 1:length(label))

text(i,i,label[i])

dev.off()

Compiling the resulting file with X ELATEX will produce the output in Figure 6. Please note some of the fonts used
in the example may not be available on every system.

Annotating Graphics with TikZ Commands

The function tikzAnnotate provides the ability to annotate you graphics with TikZ commands. There are a lot of
exciting possibilities with this feature—it basically opens up the door for you to draw anything on your plot that can
be drawn with TikZ. Check out the results in Figure 7.

library(tikzDevice)

Load some additional TikZ libraries

tikz("figs/annotation.tex",width=4,height=4,

packages = c(getOption('tikzLatexPackages'),

"\\usetikzlibrary{decorations.pathreplacing}",

"\\usetikzlibrary{positioning}",

"\\usetikzlibrary{shapes.arrows,shapes.symbols}")

)

p <- rgamma (300 ,1)

outliers <- which(p > quantile(p,.75)+1.5*IQR(p))

boxplot(p)

Add named coordinates that other TikZ commands can hook onto

tikzCoord(1, min(p[outliers]), 'min outlier')

tikzCoord(1, max(p[outliers]), 'max outlier')

Use tikzAnnotate to insert arbitrary code, such as drawing a

fancy path between min outlier and max outlier.

TikZDevice LATEX Graphics for R

The tikz Function 17

..

0

.

2

.

4

.

6

.

8

.

0

.

2

.

4

.

6

.

8

.

D. Taraborelli (2008), The Beauty of LATEX

.
Some rights reserved. cc-by-sa

.

droog

.

droog

.

droog

.

droog

.

droog

.

droog

.

droog

.

droog

Figure 6: Result of X ELATEX example

tikzAnnotate(c("\\draw[very thick,red,",

Turn the path into a brace.

'decorate,decoration={brace,amplitude=12pt},',

Shift it 1em to the left of the coordinates

'transform canvas={xshift=-1em}]',

'(min outlier) --',

Add a node with some text in the middle of the path

'node[single arrow,anchor=tip,fill=white,draw=green,',

'left=14pt,text width=0.70in,align=center]',

'{Holy Outliers Batman!}', '(max outlier);'))

tikzNode can be used to place nodes with customized options and content

tikzNode(

opts='starburst,fill=green,draw=blue,very thick,right=of max outlier',

content='Wow!'

)

dev.off()

TikZDevice LATEX Graphics for R

The tikz Function 18

0
2

4
6

8

Holy
Outliers
Batman!

Wow!

Figure 7: An example using TikZ annotation.

TikZDevice LATEX Graphics for R

T
h
e
t
i
k
z

F
u
n
ction

19

tikz vs. pdf for plotmath symbols and Unicode characters

This is a side-by-side example showing how tikz(..., engine = ’xetex’) handles UTF-8 characters and plotmath symbols compared to the standard R pdf

device.

2 4 6 8 10

2
4

6
8

1
0

text(...) examples

~~~~~~~~~~~~~~

R is GNU ©, but not ® ...

1:10

1
:1
0

«Latin-1 accented chars»: éè øØ å<Å æ<Æ

the text is CENTERED around (x,y) = (6,2) by default

or Left/Bottom - JUSTIFIED at (2,1) by 'adj = c(0,0)'

β^ = (XtX)−1Xty

expression(hat(beta) == (X^t * X)^{-1} * X^t * y)

x =∑
i=1

n xi

n

Le français, c'est façile: Règles, Liberté, Egalité, Fraternité...

Jetz no chli züritüütsch: (noch ein bißchen Zürcher deutsch)

Figure 8: example(text) using the standard pdf() device.

..

2

.

4

.

6

.

8

.

10

.

2

.

4

.

6

.

8

.

10

.

text(...) examples

.. R is GNU ©, but not ® ....
1:10

.
1:

10
.

«Latin-1 accented chars»: éè øØ å<Å æ<Æ

.

the text is CENTERED around (x,y) = (6,2) by default

.

or Left/Bottom - JUSTIFIED at (2,1) by ’adj = c(0,0)’

.

β̂ = (XtX)−1Xty

.

\displaystyle\hat{\beta} = (XˆtX)ˆ{-1}Xˆty

.

x̄ =
n∑

i=1

xi

n

.

Le français, c’est façile: Règles, Liberté, Egalité, Fraternité...

.

Jetz no chli züritüütsch: (noch ein bißchen Zürcher deutsch)

Figure 9: example(text) using tikz(..., engine = ’xetex’).

T
ik

Z
D

ev
ice

L
AT

E
X

G
rap

h
ics

for
R



The getLatexCharMetrics and getLatexStrWidth Functions 20

The getLatexCharMetrics and getLatexStrWidth Functions

Chapter 4

4.1 Description

These two functions may be used to retrieve font metrics through the interface provided by the tikzDevice package.
Cached values of the metrics are returned if they have been calculated by the tikzDevice before. If no cached values
exist, a LATEX compiler will be invoked to generate them.

4.2 Usage

The font metric functions are called as follows:

getLatexStrWidth( texString, cex = 1, face= 1)

getLatexCharMetrics( charCode, cex = 1, face = 1 )

texString A string for which to compute the width. LATEX commands may be used in the string, however all
backslashes will need to be doubled.

charCode An integer between 32 and 126 which indicates a printable character in the ASCII symbol table using
the T1 font encoding.

cex The character expansion factor to be used when determining metrics.

face An integer specifying the R font face to use during metric calculations. The accepted values are as
follows:

1: Text should be set in normal font face.

2: Text should be set in bold font face.

3: Text should be set in italic font face.

4: Text should be set in bold italic font face.

5: Text should be interpreted as plotmath symbol characters. Requests for font face 5 are currently ignored.

4.3 Examples

The getLatexStrWidth function may be used to calculate the width of strings containing fairly arbitrary LATEX commands.
For example, consider the following calculations:

getLatexStrWidth( "The symbol: alpha" )

[1] 82.5354

getLatexStrWidth( "The symbol: $\\alpha$" )

[1] 65.08636

TikZDevice LATEX Graphics for R



The getLatexCharMetrics and getLatexStrWidth Functions 21

For the first calculation, the word “alpha” was interpreted as just a word and the widths of the characters ‘a’, ‘l’,
‘p’, ‘h’ and ‘a’ were included in the string width. For the second string, \alpha was interpreted as a mathematical
symbol and only the width of the symbol ‘α’ was included in the string width.

The getLatexCharWidth function must be passed an integer corresponding to an ASCII character code and returns
three values:

• The ascent of the character. This is the distance between the baseline and the highest point of the character’s
glyph.

• The descent of the character. This is the distance between the baseline and the lowest point of the character’s
glyph.

• The width of the character.

The character ‘y’ has an ASCII symbol code of 121 and possesses a tail that descends below the text line. Therefore
a non-zero value will be returned for the descent of ‘y’. The character ‘x’, ASCII code 120, has no descenders, so its
descent will be returned as zero.

# Get metrics for 'y'

getLatexCharMetrics(121)

[1] 4.30450 1.94397 5.27649

# Get metrics for 'x' - the second value is the descent

# and should be zero or very close to zero.

getLatexCharMetrics(120)

[1] 4.30450 0.00000 5.27649

Note that characters, along with numbers outside the range of [32–126], may not be passed to the getLatexCharMetrics

function. If for some reason a floating point number is passed, it will be floored through conversion by as.integer.

getLatexCharMetrics('y')

Warning in getLatexCharMetrics("y"): getLatexCharMetrics only accepts integers!

NULL

getLatexCharMetrics(20)

Warning in getLatexCharMetrics(20): pdftex can only generate metrics for character codes between 32

and 126! See the Unicode section of ?tikzDevice for more information.

NULL

TikZDevice LATEX Graphics for R



The getLatexCharMetrics and getLatexStrWidth Functions 22

# Will return metrics for 'y'

getLatexCharMetrics(121.99)

[1] 4.30450 1.94397 5.27649

TikZDevice LATEX Graphics for R



P
a
r
t

II
Installation Guide



Obtaining a LATEX Distribution 24

Obtaining a LATEX Distribution

Chapter 5

This section offers pointers on how to obtain a LATEX distribution if there is not one already installed on your system.
The distributions detailed in this section are favorites of the tikzDevice developers as they provide integrated
package managers which greatly simplify the process of installing additional LATEX packages. Currently this section is
not, and may never be, a troubleshooting guide for LATEX installation. For those unfortunate situations we refer the
user to the documentation of each distribution.

A LATEX distribution provides the packages and support programs required by the tikzDevice and the documents
that use its output. In addition to a LATEX compiler, a few extension packages are required. Section 5.4 describes
how to obtain and install these packages.

5.1 Windows

Windows users will probably prefer the MiKTeX distribution available at http://www.miktex.org. An amazing feature
of the MiKTeX distribution is that it contains a package manager that will attempt to install missing packages
on-the-fly. Normally when LATEX is compiling a document that tries to load a missing package it will wipe out with a
warning message. When the MiKTeX compilers are used compilation will be suspended while the new package is
downloaded.

5.2 UNIX/Linux

For users running a Linux or UNIX operating system, we recommend the TeX Live distribution which is available
at http://www.tug.org/texlive/acquire.html. TeX Live is maintained by the TeX Users Group and a new version is
released every year. We recommend using TeX Live 2008 or higher as the tlmgr package manager was introduced in
the 2008 distribution. Using tlmgr greatly simplifies the adding and removing packages from the distribution. The
website offers an installation package, called install-tl.tar.gz or something similar, that contains a shell script that
can be used to install an up-to-date version of the TeX Live distribution. Note that the version of TeX Live provided
by many Linux package management systems sometimes lags behind the version provided directly by the TeX Users
Group.

5.3 Mac OS X

For users running Apple’s OS X, we recommend the Mac TeX package available at http://www.tug.org/mactex/. Mac
TeX is basically TeX Live packaged inside a convenient OS X installer along with a few add-on packages. One striking
difference between the Mac TeX and TeX Live installers is that the installer for Mac TeX includes the whole TeX
Live distribution in the initial download- for TeX Live 2013 this amounts to approximately 2.3 GB. This is quite a
large download that contains several packages that the average or even advanced user will never ever use. To conserve
time and space we recommend installing from the basic installer at http://www.tug.org/mactex/morepackages.html and
using the tlmgr utility to add desired add-on packages.

Adam R. Maxwell has created a very nice graphical interface to tlmgr for OS X called the TeX Live Utility. It
may be obtained from http://code.google.com/p/mactlmgr/ and we highly recommend it.

5.4 Installing TikZ and Other Packages

Unsurprisingly, tikzDevice requires the TikZ package to be installed and available in order to function properly.
TikZ is an abstraction of a lower-level graphics language called PGF and both are distributed as the the pgf package.
Users who do no have a full TEX installation will also need to install a few more required packages:

pgf As mentioned, provides TikZ.

TikZDevice LATEX Graphics for R

http://www.miktex.org
http://www.tug.org/texlive/acquire.html
http://www.tug.org/mactex/
http://www.tug.org/mactex/morepackages.html
http://code.google.com/p/mactlmgr/


Obtaining a LATEX Distribution 25

preview Used to crop documents in order to produce standalone figures.

ms Martin Schröder’s LaTeX packages. everyshi.sty lets us run commands at every shipped page.

graphics LATEX’s general-purpose graphics inclusion functionality.

pdftex-def Device-specific colour and graphics definitions when running pdfTEX/pdfLATEX.

oberdiek infwarerr.sty provides info/error/warning messages

ec (Font metrics for) the default font, European Computer Modern.

xcolor Used by TikZ to specify colors.

fontspec Used by LuaTEX and X ETEX to select fonts.

xunicode Assists LuaTEX and X ETEX with UTF-8 characters.

Using a LATEX Package Manager

The easiest way to install LATEX packages is by using a distribution that includes a package manager such as MiKTeX
or TeX Live/Mac TeX. For Windows users, the MiKTeX package manager usually handles package installation
automagically during compilation of a document that is requesting a missing package. The MiKTeX package manager,
mpm, can also be run manually from the command prompt:

mpm --install packagename

Using mpm to install packages

For versions of TeX Live and Mac TeX dated 2008 or newer, the tlmgr package manager is used in an almost
identical manner:

tlmgr install packagename

Using tlmgr to install packages

Manual Installation

Sometimes an automated package manager cannot be used. Common reasons may be that one is not available, as is
the case with the TeX Live 2007 distribution, or that when running the package manager you do not have write
access to the location where LATEX packages are stored, as is the case with accounts on shared computers. If this is
the case, a manual install may be the best option for making a LATEX package available.

Generally, the best place to find LATEX packages is the Comprehensive TeX Archive Network, or CTAN located
at http://www.ctan.org. In the case of the PGF/TikZ package, the project homepage at http://www.sourceforge.net/

projects/pgf is also a good place to obtain the package—especially if you would like to play with the bleeding-edge
development version.

Generally speaking, all LATEX packages are stored in a specially directory called a texmf folder. Most TEX
distributions allow for each user to have their own personal texmf folder somewhere in their home path. The most
usual locations, and here usual is an unfortunately loose term, are as follows:

~/texmf

For UNIX/Linux

~/Library/texmf

For Mac OS X

TikZDevice LATEX Graphics for R

http://www.ctan.org
http://www.sourceforge.net/projects/pgf
http://www.sourceforge.net/projects/pgf


Obtaining a LATEX Distribution 26

# None predefined. However the following command will open

# the MiKTeX options panel and a new texmf folder may be assigned

# under the "Roots" tab.

mo

For Windows, using MiKTeX

The location of files and subfolders in the texmf directory should follow a standard pattern called the TEX Directory
Structure or TDS which is documented here: http://tug.org/tds/tds.pdf. Fortunately, most packages available on
CTAN are archived in such a way that they will unpack into a TDS-compliant configuration. TDS-compliant archives
usually have the phrase tds somewhere in their filename and may be installed from a UNIX shell1 like so:

# For zip files.

unzip package.tds.zip -d /path/to/texmf

# For tarballs.

tar -xzf -C /path/to/texmf package.tar.gz

Installing LATEX package archives

For packages that aren’t provided in TDS-compliant form look for installation notes—usually provided in the
form of an INSTALL file. If all else fails LATEX packages can usually be installed by copying the files ending in .sty to
texmf/tex/latex/.

After package files have been unpacked to a texmf folder, the database of installed packages needs to be updated
for the LATEX compiler to take notice of the additions. This is done with the mktexlsr command:

mktexlsr

# Successful package installation can be checked by running the

# kpsewhich command. For a package accessed in a document

# by \usepackage{package}, kpsewhich should return a path to

# package.sty

kpsewhich tikz.sty

/Users/Smithe/Library/texmf/tex/latex/pgf/frontendlayer/tikz.sty

Registering new LATEX packages

1Sorry Windows users, we enjoy using command prompt about as much as a poke in the eye with a sharp stick. Hence we don’t use it

enough to offer advice. May we suggest Cygwin?

TikZDevice LATEX Graphics for R

http://tug.org/tds/tds.pdf
http://www.cygwin.com


P
a
r
t

II
I Package Internals

tikz('Rplot.tex')

plot(1)

dev.off()

R User Types

static void TikZ_Circle( double x, double y, double r,

const pGEcontext plotParams, pDevDesc deviceInfo){

...

printOutput(tikzInfo,"\n\\path[");

TikZ_WriteDrawOptions(plotParams, deviceInfo, ops);

/* End options, print coordinates. */

printOutput(tikzInfo, "]␣(%6.2f,%6.2f)␣circle␣(%6.2f);\n",

x,y,r);

}

TikZ Device Translates

% Created by tikzDevice

% !TEX encoding = UTF-8 Unicode

\begin{tikzpicture}[x=1pt,y=1pt]

...

\path[draw=drawColor,line width= 0.4pt,

line join=round,line cap=round]

(264.94,258.95) circle ( 2.25);

...

\end{tikzpicture}

LATEX Output is Produced



Introduction and Background 28

We will encourage you to develop

the three great virtues of a

programmer: laziness, impatience,

and hubris.

Programming Perl

–Larry Wall

Introduction and Background

Chapter 6

We learn best through working with examples. When it comes to programming languages this involves taking working
code that someone else has written, breaking it in as many places at it can possibly be broken, and then trying to
build something out of the wreckage. Open source software facilitates this process wonderfully by ensuring the source
code of a project is always available for inspection and experimentation. The tikzDevice its self was created by
disassembling and then rebuilding Valerio Aimale’s PicTEX device driver which is a part of the R core codebase.

This section is our attempt to help anyone who may be experimenting with our code, and by extension the
internals of the R graphics system. There may also be useful, or useless, tidbits concerning building R packages and
interacting with the core R language. The R language can be extended in so many interesting and useful ways and it
is our hope that the following documentation may provide a case study for anyone attempting such an extension.

We will make an attempt to assume no special expertise with any of the systems or programming languages
leveraged by this package and described by this documentation. Therefore, if you are an experienced developer and
find yourself thinking “My god, are they really about to launch into a description of how C header files work?”, please
feel free to skip ahead a few paragraphs. We received our formal introduction to computer programming in a college
engineering program—therefore our programming background is rooted in Fortran (or, if you prefer, fortran). We
are attempting to write the sort of documentation that we would have found invaluable at the start of this project

Therefore, this section is for all the budding developers like ourselves out there—people who have done some
programming and who are starting to take a close look at the nuts and bolts of the R programming environment. If
you feel like you are wandering through a vast forest getting smacked in the face by every branch then maybe this
section will help pull some of those branches out of the way...

...then again we have a lot of material to cover: R, C, LATEX, TikZ , typography and the details of computerized
font systems. Our grip may fail and send those branches flying back with increased velocity.

We wish you luck!
-The tikzDevice Team

Anatomy of an R Graphics Device

Chapter 7

The core of an R graphics device is a collection of functions, written in C, that perform various specialized tasks. A
description of some of these functions can be found in the R Internals manual while the main documentation is in the C

header file GraphicsDevice.h. For most R installations this header file can be found in the directory R_HOME/include/R_ext.
For copies of R distributed in source code form, GraphicsDevice.h is located inside R-version/src/include/R_ext. The
following is a description of the functions each graphics device is expected to provide:

7.1 Drawing Routines

circle This function is required to draw a circle cen-
tered at a given location with a given radius.

clip This function specifies a rectangular area to
be used a a clipping boundary for any device
output that follows.

TikZDevice LATEX Graphics for R



Calculating Font Metrics 29

line This function draws a line between two points.

polygon This function draws lines between a list of points
and then connects the first point to the last
point.

polyline This function draws lines between a list of
points.

rect This function is given a lower left corner and
an upper right corner and draws a rectangle
between the two.

text This function inserts text at a given location.

7.2 Font Metric Routines

metricInfo This function is given the name of a single char-
acter and reports the ascent, descent and width
of that character.

strWidth This function is given a text string and reports
the width of that string.

7.3 Utility Routines

activate This function is called when the device is desig-
nated as the active output device—i.e. by using
dev.set() in R

close This function is called when the device is shut
down—i.e. by using dev.off() in R

deactivate This function is called when another device is
designated as the active output device.

locator This function is mainly used by devices with
a GUI window and reports the location of a
mouseclick.

mode This function is called when a device begins
drawing output and again when the device fin-
ishes drawing output.

newPage This function initiates the creation of a new
page of output.

size This function reports the size of the canvas the
device is drawing on.

Calculating Font Metrics

Chapter 8

Font metrics are measurements associated with the glyphs, or printed characters, of a particular font. R requires
three of these metrics in order to produce correctly aligned output. The three metrics graphics devices are required
to supply are:

Ascent

g
Ascent is the distance between the baseline and the tallest point on
a character’s glyph. For the “g” printed to the left, the ascent has
been calculated as: 24.99963pt

Descent

g
Descent is the distance between the baseline and the lowest point on
a character’s glyph. For the “g” printed to the left, the descent has
been calculated as: 7.77771pt

Width

g
Width is the distance between the left and right sides of a charac-
ter’s glyph. For the “g” printed to the left, the width has been calcu-
lated as: 20.0pt

Providing font metrics and string widths is without a doubt the most difficult task a R graphics device must
undertake. The calculation of string widths is made even more difficult for the tikzDevice as we attempt to process
arbitrary LATEX strings. Inside R the string “$\alpha$” literally has 8 characters, but when it is typeset it only has
one: α.

Calculating font metrics is a tricky business to begin with and the fact that the typeset representation of a LATEX
string is different from its representation in source code compounds the difficulty of the task immensely. Therefore, we
took the path of laziness and started looking for an easy way out (remember the three great virtues of a programmer?).
The solution we came up with seemed easy enough—make LATEX calculate these metrics for us, after all that is what
a LATEX compiler does for a living.

TikZDevice LATEX Graphics for R



Calculating Font Metrics 30

Now, how to do that?

Character Metrics

As a starting point, let’s examine the interface of the C function that R calls in order to determine character metrics:

void (metricInfo)(int c, const pGEcontext gc,

double* ascent, double* descent, double* width,

pDevDesc dd);

Function declaration for metricInfo

The most important variables involved in the function are c, ascent, descent and width. The incoming variable is
c, which contains the character for which R is requesting font metrics. Interestingly, c is passed as an integer, not
a character as one might expect. What’s up with that? Well, the short answer is that R passes the ASCII or UTF8

symbol code of a character and not the character itself. How to use that character code to recover a character will be
explained later.

The outgoing variables are ascent, descent and width. The asterisks, ‘*’, in their definitions mean these variables
are passed as pointers as opposed to values. A complete discussion of the differences between pointers and values
could, and has, filled up several chapters of several programming books. The important distinction in context of the
metricInfo function is that when a number is assigned to a pointer variable, that number is available elsewhere after
the function terminates. In contrast, when a number is assigned to a value variable, that number disappears when
the function ends unless it is explicitly sent back out to the wide world through the return statement. So, the main
task of the metricInfo function is to assign values to ascent, descent and width.

The other two variables present in the function are the pGEcontext variable gc and the pDevDesc variable dd. gc

contains information such as the font face, foreground color, background color, character expansion factor, ect.
currently in use by the graphics system. dd is the object which contains R’s representation of the graphics device. For
the sake of simplifying the following discussion, we will ignore these variables.

So, to recap—we have an integer c coming in that represents a code for a character in the ASCII or UTF8 symbol
tables (for the sake of the following discussion, we will assume ASCII characters only). Our overall task is to somehow
turn that integer into three numbers which can be assigned to the pointer variables ascent, descent and width. And,
since we’re being lazy, we’ve decided that the best way to do that is to ask the LATEX compiler to compute the
numbers for us.

Recovering these numbers from the LATEX compiler involves the execution of three additional tasks:

1. We must write a LATEX input file that contains instructions for calculating the metrics.

2. We call the LATEX compiler to process that input file.

3. We must read the compiler’s output in order to recover the metrics.

Each of these tasks could be executed from inside our C function, metricInfo. However, we will run into some
difficulties—namely with step 2, which involves calling out to the operating system with orders to run LATEX. Each
operating system handles these calls a little differently and our package must attempt to get this job done whether it
is running on Windows, UNIX, Linux or Mac OS X.

Portable C code could be written to handle each of these situations, but that is starting to sound like work and
we’re trying to be lazy here. What we need is to be able to work at a higher level of abstraction. That is—instead of
using C, we need to be working inside a language that shields us from such details as what operating system is being
used. R may have called this C function to calculate font metrics, but we really want to do the actual computations
back inside R.

Calling R Functions from C Functions

The “Ritual of the Calling of the R Function” is easy enough to perform as long as you don’t have burning need to
know all the details of the objects you are handling. The C level representation of a R object such as a variable or

TikZDevice LATEX Graphics for R



Calculating Font Metrics 31

function is an object known as a SEXP. For the exact details on what a SEXP is and how it works, we refer the interested
user to chapter one of the R Internals manual.

The R function we will be calling is declared in the R environment as follows:

getLatexCharMetrics <- function( charCode ){

# System call to LaTeX

}

Definition of target R function

In order to call this function for C, we need a vector composed of two C-level R objects—one containing the name
of the function we are calling and another one containing the value we are passing for charCode. This is set up in C as
follows:

void (metricInfo)(int c, const pGEcontext gc, double* ascent, double* descent,

double* width, pDevDesc dd){

SEXP RCallBack;

PROTECT( RCallBack = allocVector(LANGSXP, 2) );

SEXP metricFun = findFun( install("getLatexCharMetrics"), R_Global_Env );

SETCAR( RCallBack, metricFun );

SETCADR( RCallBack, ScalarInteger( c ) );

SET_TAG( CDR( RCallBack ), install("charCode") );

\\ To be continued...

}

Preparing a R function call inside C

The first thing that happens in the code chunk above is that a new SEXP variable named RCallBack is created. This
variable will be the agent through which we will communicate with the R environment. The next action is to allocate
our callback variable as a vector of length 2– we need one slot for the R function name and one slot for the value
that is being passed into the function. This allocation happens inside the R environment, so it is executed inside the
PROTECT statement. The reason for using PROTECT is that the R garbage collector is constantly on the prowl for unused
objects in the R environment. An object is considered “unused” if it is not attached to any variable name in the R

environment. Since the object is only attached to the variable RCallBack in our C function, the R garbage collector
will see it a valid candidate for deletion. The purpose of PROTECT is to keep our new vector from being trashed.

The next portion of the C function retrieves the R function object for getLatexCharMetrics. The function is searched
for in R global namespace, so it must be one that is available to the user from the R command prompt when the
package is loaded. The function is stored in the SEXP variable metricFun. We do not have to involve PROTECT in the
assignment since getLatexCharMetrics exists as a variable name in the R environment.

The last portion of the code chunk is responsible for loading the function name and call value into RCallBack. The
CAR statement is used to retrieve the value of a SEXP variable and the SETCAR statement is used to set the value of a
SEXP. In this case we use SETCAR to designate the R function stored in metricFun as the first value of RCallBack.

When dealing with a vector SEXP such as RCallBack, which has 2 slots, we need to use a different function to access
the second slot. The CDR function will allow us to move to the second slot in RCallBack where we may perform a SETCAR

to specify a value. In the example code, these operations were combined by using the SETCADR function which has the
same effect as:

TikZDevice LATEX Graphics for R



Calculating Font Metrics 32

SETCAR( CDR(RCallBack), ScalarInteger( c ) );

After assigning the value of the C variable c as the second value of RCallBack, we need to “tag” it as the value that
corresponds to the charCode argument of getLatexCharMetrics. This is done by using the SET_TAG function. Once again,
we use CDR to shift our area of operation to the second slot of RCallBack. Now that the RCallBack object is set up, we
are ready to actually call the getLatexCharMetrics function.

SEXP LatexMetrics;

PROTECT( LatexMetrics = eval( RCallBack, R_GlobalEnv) );

Executing a R function call inside C

And that’s it! We create a new SEXP to hold the return values of getLatexCharMetrics and execute the eval function
to cause getLatexCharMetrics to be executed inside the R environment. The details of the R function will be explained
in the next section, for now let’s assume that it returns the three values we’re interested in as a vector of three
numbers. How do we extract these values and assign then to ascent, descent and width?

*ascent = REAL(RMetrics)[0];

*descent = REAL(RMetrics)[1];

*width = REAL(RMetrics)[2];

UNPROTECT(2);

return;

Recovering return values from a R function call

Here the REAL function is used to coerce the SEXP variable RMetrics to a vector of real numbers. These numbers are
then extracted and assigned to the return values of metricInfo. In C we must specify the ‘first’ value in a vector using
the index 0 rather than the index 1. 2 The last thing to do is release the restrictions we placed on the R garbage
collector. Since we used the PROTECT function twice, we must call UNPROTECT and pass 2 as the argument.

Implementing a System Call to LATEX

Now we may turn to the actual guts of the R function getLatexCharMetrics. The first thing we need to do is set up a
file for LATEX input:

getLatexCharMetrics <- function( charCode ){

texDir <- tempdir()

texLog <- file.path( texDir,'tikzStringWidthCalc.log' )

texFile <- file.path( texDir,'tikzStringWidthCalc.tex' )

texIn <- file( texFile, 'w')

# To be continued...

Creating a LATEX input file

2There are good logical reasons for this from the point of view of a computer scientist—but if your background in arrays is rooted in

linear algebra it will be a bit disorienting.

TikZDevice LATEX Graphics for R



Calculating Font Metrics 33

The first thing we do is choose a place to create this input file. Now, when the LATEX compiler is run on a .tex file,
a lot of additional files get created—the whole process is a bit messy. Since the user probably wouldn’t appreciate
having to clean up our mess, we use the tempdir() function to retrieve a path to a temporary directory on the system.
Here is the first place we benefit from the added level of abstraction granted by R. Each operating system has different
locations for temporary directories. If we were still working in C, we would have to worry about such details. R takes
care of those details for us.

Now that we have a place to work, we set up a couple of filenames—one for the input file, which ends in .tex and
one for the LATEX log file, which ends in .log. We then open the .tex file for writing. The next step is to setup the
preamble of the LATEX file.

writeLines("\\documentclass{article}", texIn)

writeLines("\\usepackage[T1]{fontenc}", texIn)

writeLines("\\usepackage{tikz}", texIn)

writeLines("\\usetikzlibrary{calc}", texIn)

writeLines("\\batchmode", texIn)

Setting up the preamble of a LATEX input file

Here we have started a standard LATEX input file by specifying article as the document class. We also add the
fontenc package and specify T1 as its option. This ensures we are using the Type 1 font encoding—by default TEX and
LATEX use an encoding called OT1. Why do we need to worry about font encodings? Well, a font encoding specifies
which ASCII symbol codes map to which characters and by default, R expects us to be using the Type 1 encoding (R
does support other encodings—but we’re ignoring that for now). For example, in the Type 1 encoding, the character
that corresponds to the ASCII code 60 is the less-than sign: ‘<’. If we were to allow TEX to retain its default OT1

encoding, that same character code would instead map to an upside-down exclamation point: ‘¡’.
The other two packages we load are the tikz package and its calc library. Essentially we will have TikZ drop the

character into a box and report some measurements concerning the size of that box. The last command, batchmode

tells LATEX that there isn’t any user available to interact with—so it should not bother to stop and ask any questions
while processing this file.

The next step is to set up the part of the LATEX file that will actually calculate and report the widths we are looking
for. As mentioned before, this is done by setting the character inside a TikZ node and extracting the dimensions of
the box that surrounds it. In an attempt to improve clarity, the following code will be presented as straight LATEX –
getLatexCharMetrics inserts it into the texIn file by means of writeLines as we have been doing all along. The string
highlighted in red should be replaced with the value of the variable charCode that was passed in to the function
getLatexCharMetrics.

\begin{tikzpicture}

\node[inner sep=0pt,outer sep=0pt] (char) {\charcharCode};

\path let \p1 = ($(char.east) - (char.west)$),

\n1 = {veclen(\x1,\y1)} in (char.east) -- (char.west)

node{ \typeout{tikzTeXWidth=\n1} };

\path let \p1 = ($(char.north) - (char.base)$),

\n1 = {veclen(\x1,\y1)} in (char.north) -- (char.base)

node{ \typeout{tikzTeXAscent=\n1} };

\path let \p1 = ($(char.base) - (char.south)$),

Extracting character dimensions using TikZ

TikZDevice LATEX Graphics for R



Calculating Font Metrics 34

\n1 = {veclen(\x1,\y1)} in (char.base) -- (char.south)

node{ \typeout{tikzTeXDescent=\n1} };

What the heck just happened? Well, first we instructed LATEX to enter the TikZ picture environment using
\begin{tikzpicture}. Then we ordered TikZ to create a node named “char” containing the command \char followed by
the value of charCode. For example, if we were passed ‘103’ as the character code, which corresponds to the character
‘g’, the node line should be:

\node[inner sep=0pt,outer sep=0pt] (char) {\char103};

The inner sep and outer sep options are set to 0pt in order to ensure the boundaries of the node ‘hug’ the contents
tightly. Now the whole point of setting the character inside a node is that TikZ defines ‘anchors’ along the bounding
box of the node. All anchors are referred using a node name.posistion notation. Since we named the node char, all the
anchors start with char. The anchor posistions relevant to our problem are shown below:

g(char.north)
(char.south)

(char.base)

(char.east)(char.west)

Node Bounding Box

The ‘base’ anchor sits on the baseline of the text—therefore to calculate the ascent of the character ‘g’, all we
have to do is figure out the difference in height between the positions char.north and char.base. Similarly, for the
descent we would calculate the difference in height between char.base and char.south and width can be obtained using
char.west and char.east. This is the purpose of the admittedly cryptic \path commands that are inserted in the LATEX
input file. Let’s examine one of them:

\path let \p1 = ($(char.north) - (char.base)$),

\n1 = {veclen(\x1,\y1)} in node{ \typeout{tikzTeXAscent=\n1} };

So, what exactly is going on here? Normally, the \path command is used to draw lines between points and add
additional coordinates or nodes along those lines. For example, the command:

\path[draw] (0,0) -- (1,1) node {Hi!};

Draws a line from (0,0) to (1,1) and places a node at (1,1) containing the word ‘Hi!’. In the TikZ code produced
by getLatexCharMetrics, the let operation is specified. Basically, let postpones the actual drawing of a path and
performs calculations until the in keyword is encountered. The result of these calculations are stored in a set of
special variables which must start with \n, \p, \x or \y. The first let operation executed is:

\p1 = ( $(char.north) - (char.base)$ )

TikZDevice LATEX Graphics for R



Calculating Font Metrics 35

This performs a vector subtraction between the coordinates of char.north and char.base. The resulting x and y
components are stored in the ‘point’ variable \p1. The second operation executed is:

\n1 = {veclen(\x1,\y1)}

This let operation treats the coordinates stored in \p1 as a vector and calculates its magnitude. The ‘1’ appended
to the \x and \y variables specifies that we are accessing the x and y components of \p1. This result is stored in the
‘number’ variable \n1. Now, that our metric is stored in \n1, our final task is to ensure it makes it into the LATEX .log

file—this is done by adding a node containing the \typeout command. The contents of the node:

\typeout{tikzTexAscent=\n1}

cause the phrase ‘tikzTexAscent=’ to appear in the .log file—followed by the ascent calculated using the node anchors.
After the ascent, descent and width have been calculated the LATEX compiler may be shut down, this is done by
adding the final two lines to the input file:

writeLines("\\makeatother", texIn)

writeLines("\\@@end", texIn)

close(texIn)

Terminating a LATEX compilation

Now that the input file has been prepped, we must process it using the LATEX compiler and load the contents of
the resulting .log so that we may search for the metrics we dumped using \typeout.

latexCmd <- getOption('tikzLatex')

latexCmd <- paste( latexCmd, '-interaction=batchmode',

'-output-directory', texDir, texFile)

silence <- system( latexCmd, intern=T, ignore.stderr=T)

texOut <- file( texLog, 'r' )

logContents <- readLines( texOut )

close( texOut )

Terminating a LATEX compilation

The LATEX compiler is executed through the system function which handles the details of implementing a system
call on whatever operating system we happen to be using. We assign the return value of the system function to a
dummy variable called silence so that no output floods the user’s screen. The last task is to extract our metrics from
the text of the .log we loaded.

match <- logContents[ grep('tikzTeXWidth=', logContents) ]

width <- gsub('[=A-Za-z]','',match)

Parsing the .log file text

TikZDevice LATEX Graphics for R



On the Importance of Font and Style Consistency in Reports 36

match <- logContents[ grep('tikzTeXAscent=', logContents) ]

ascent <- gsub('[=A-Za-z]','',match)

match <- logContents[ grep('tikzTeXDescent=', logContents) ]

descent <- gsub('[=A-Za-z]','',match)

return( as.double( c(ascent,descent,width) ) )

Here we use the grep function to search through the log output for the tags ‘tikzTeXWidth=’, ‘tikzTeXAscent=’
and ‘tikzTeXDescent=’ that we specified when we used \typeout. After we recover a line containing one of these tags,
we use the gsub command to remove the letters and the equals sign from the text line—leaving just the number we’re
interested in. These values are then coerced using as.double and set as the return value of getLatexCharMetrics.

On the Importance of Font and

Style Consistency in Reports

Chapter 9

If you haven’t figured it out by now, we are quite picky about the way our graphics and reports look. We are especially
picky about the consistency in fonts (both sizes and shapes). Without launching into a diatribe about this, we just
want to say with tools like tikzDevice you no longer have to settle for what is “just okay.” So go nuts, be picky
about how your text and graphics look. Don’t be afraid to snub your nose at reports which pay no attention to detail.
Be that person who says “NO! I wont settle for half rate graphics, I want the best!”

9.1 The pgfSweave Package and Automatic Report Generation

Now for a little shameless self promotion. The authors of tikzDevice have another package called pgfSweave which
provides a driver for Sweave. pgfSweave started as an interface to eps2pgf and its ability to interpret strings in eps
files as LATEX. This was used to much the same effect as tikzDevice. The problem was the conversion from eps to
pgf was SLOW. Long story short, by combining this functionality with the externalization feature of pgf and the
cacheSweave we were able to achieve bearable compilation speed and nice looking graphics. pgfSweave is in the
process of getting pumped up by interfacing with the tikzDevice package. We hope that the combination will be a
self-caching, consistency-inducing, user-empowering tool for high quality reports.

TikZDevice LATEX Graphics for R

http://sourceforge.net/projects/eps2pgf/


Bibliography 37

Bibliography

Murrell, P. (2005), Using Computer Modern Fonts in R Graphics, http://www.stat.auckland.ac.nz/~paul/R/CM/CMR.html.

Peng, R. D. (2006), Interacting with data using the filehash package, R News, 6 (4), 19–24.

R Development Core Team (2009), R Internals: Version 2.9.1.

Tantau, T. (2008), The TikZ and PGF Packages: Manual for version 2.00.

Urbanek, S. (2013), png: Read and write PNG images, r package version 0.1-7.

TikZDevice LATEX Graphics for R

http://www.stat.auckland.ac.nz/~paul/R/CM/CMR.html

	Introduction
	Acknowledgements

	Usage and Examples
	Loading the Package
	Options That Affect Package Behavior
	The redtikzDefaultEngine Option
	The redtikzLatex, redtikzXelatex and redtikzLualatex Options
	The redtikzMetricsDictionary Option
	The redtikzDocumentDeclaration Option
	The redtikzLatexPackages, redtikzXelatexPackages and redtikzLualatexPackages Options
	The redtikzMetricPackages and redtikzUnicodeMetricPackages Options
	The redtikzFooter Option
	The redtikzSanitizeCharacters and redtikzReplacementCharacters Options
	The redtikzLwdUnit Option
	The deprecated redtikzRasterResolution Option
	The redtikzPdftexWarnUTF Option


	The tikz Function
	Description
	Usage
	Font Size Calculations
	UTF-8 Output

	Examples
	Default Mode
	redbareBones Mode
	redstandAlone Mode
	redconsole output Mode
	Using XeLaTeX
	Annotating Graphics with TikZ Commands
	redtikz vs. redpdf for redplotmath symbols and Unicode characters


	The getLatexCharMetrics and getLatexStrWidth Functions
	Description
	Usage
	Examples


	Installation Guide
	Obtaining a LaTeX Distribution
	Windows
	UNIX/Linux
	Mac OS X
	Installing TikZ and Other Packages
	Using a LaTeX Package Manager
	Manual Installation



	Package Internals
	Introduction and Background
	Anatomy of an R Graphics Device
	Drawing Routines
	Font Metric Routines
	Utility Routines

	Calculating Font Metrics
	Character Metrics
	Calling R Functions from C Functions
	Implementing a System Call to LaTeX


	On the Importance of Font and Style Consistency in Reports
	The pgfSweave Package and Automatic Report Generation

	Bibliography


