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generate_control generate_control

Description

Uses the weights generated from generate_weights() to weight control units from the donor pool
to generate a synthetic version of the treated unit time series.

Usage

generate_control(data)

Arguments

data nested data of type tbl_df generated from synthetic_control(). See synthetic_control()
documentation for more information. In addition, .unit_weights must be gen-
erate using generate_weights(). See documentation for more information on
how to generate weights.

Value

tbl_df with nested fields containing the following:

• .id: unit id for the intervention case (this will differ when a placebo unit).

• .placebo: indicator field taking on the value of 1 if a unit is a placebo unit, 0 if it’s the
specified treated unit.

• .type: type of the nested data construct: treated or controls. Keeps tract of which data
construct is located in .outcome field.

• .outcome: nested data construct containing the outcome variable configured for the sythnetic
control method. Data is configured into a wide format for the optimization task.

• .predictors: nested data construct containing the covariate matrices for the treated and con-
trol (donor) units. Data is configured into a wide format for the optimization task.
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• .synthetic_control: nested data construct containing the synthetic control version of the
outcome variable generated from the unit weights.

• .unit_weights: Nested column of unit weights (i.e. how each unit from the donor pool
contributes to the synthetic control). Weights should sum to 1.

• .predictor_weights: Nested column of predictor variable weights (i.e. the significance of
each predictor in optimizing the weights that generate the synthetic control). Weights should
sum to 1. If variable weights are provided, those variable weights are provided.

• .original_data: original impute data filtered by treated or control units. This allows for
easy processing down stream when generating predictors.

• .meta: stores information regarding the unit and time index, the treated unit and time and the
name of the outcome variable. Used downstream in subsequent functions.

• .loss: the RMPE loss for both sets of weights.

Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos= FALSE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%
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# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# Plot the observed and synthetic trend
smoking_out %>% plot_trends(time_window = 1970:2000)

generate_predictor generate_predictor

Description

Create one or more scalar variables summarizing covariate data across a specified time window.
These predictor variables are used to fit the synthetic control.

Usage

generate_predictor(data, time_window = NULL, ...)

Arguments

data nested data of type tbl_df generated from synthetic_control(). See synthetic_control()
documentation for more information.

time_window set time window from the pre-intervention period that the data should be ag-
gregated across to generate the specific predictor. Default is to use the entire
pre-intervention period.

... Name-value pairs of summary functions. The name will be the name of the vari-
able in the result. The value should be an expression that returns a single value
like min(x), n(), or sum(is.na(y)). Note that for all summary functions na.rm
= TRUE argument should be specified as aggregating across units with missing
values is a common occurrence.

Details

matrices of aggregate-level covariates to be used in the following minimization task.

W ∗(V ) = min

M∑
m=1

vm(X1m −
J+1∑
j=2

wjXjm)2

The importance of the generate predictors are determine by vector V , and the weights that determine
unit-level importance are determined by vector W . The nested optimation task seeks to find optimal
values of V and W . Note also that V can be provided by the user. See ?generate_weights().
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Value

tbl_df with nested fields containing the following:

• .id: unit id for the intervention case (this will differ when a placebo unit).

• .placebo: indicator field taking on the value of 1 if a unit is a placebo unit, 0 if it’s the
specified treated unit.

• .type: type of the nested data construct: treated or controls. Keeps tract of which data
construct is located in .outcome field.

• .outcome: nested data construct containing the outcome variable configured for the sythnetic
control method. Data is configured into a wide format for the optimization task.

• .predictors: nested data construct containing the covariate matrices for the treated and con-
trol (donor) units. Data is configured into a wide format for the optimization task.

• .original_data: original impute data filtered by treated or control units. This allows for
easy processing down stream when generating predictors.

• .meta: stores information regarding the unit and time index, the treated unit and time and the
name of the outcome variable. Used downstream in subsequent functions.

Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos= FALSE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE))

# Extract respective predictor matrices
smoking_out %>% grab_predictors(type = "treated")
smoking_out %>% grab_predictors(type = "controls")
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generate_weights generate_weights

Description

Generates weights from the the aggregate-level predictors to generate the synthetic control. These
weights determine which variable and which unit from the donor pool is important in generating
the synthetic control.

Usage

generate_weights(
data,
optimization_window = NULL,
custom_variable_weights = NULL,
include_fit = FALSE,
optimization_method = c("Nelder-Mead", "BFGS"),
genoud = FALSE,
quadopt = "ipop",
margin_ipop = 5e-04,
sigf_ipop = 5,
bound_ipop = 10,
verbose = FALSE,
...

)

Arguments

data nested data of type tbl_df generated from sythetic_control(). See synthetic_control()
documentation for more information. In addition, a matrix of predictors must
be prespecified using the generate_predictor() function. See documentation
for more information on how to generate a predictor function.

optimization_window

the temporal window of the pre-intervention outcome time series to be used in
the optimization task. Default behavior uses the entire pre-intervention time
period.

custom_variable_weights

a vector of provided weights that define a variable’s importance in the opti-
mization task. The weights are intended to reflect the users prior regarding the
relative significance of each variable. Vector must sum to one. Note that the
method is significantly faster when a custom variable weights are provided. De-
fault behavior assumes no wieghts are provided and thus must be learned from
the data.

include_fit Boolean flag, if TRUE, then the optimization output is included in the outputted
tbl_df.
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optimization_method

string vector that specifies the optimization algorithms to be used. Permiss-
able values are all optimization algorithms that are currently implemented in
the optimx function (see this function for details). This list currently includes
c(’Nelder-Mead’, ’BFGS’, ’CG’, ’L-BFGS-B’, ’nlm’, ’nlminb’, ’spg’, and ’ucminf").
If multiple algorithms are specified, synth will run the optimization with all cho-
sen algorithms and then return the result for the best performing method. De-
fault is c(’Nelder-Mead’,’BFGS’). As an additional possibility, the user can also
specify ’All’ which means that synth will run the results over all algorithms in
optimx.

genoud Logical flag. If true, synth embarks on a two step optimization. In the first step,
genoud, an optimization function that combines evolutionary algorithm methods
with a derivative-based (quasi-Newton) method to solve difficult optimization
problems, is used to obtain a solution. See genoud for details. In the second
step, the genoud results are passed to the optimization algorithm(s) chosen in
optimxmethod for a local optimization within the neighborhood of the genoud
solution. This two step optimization procedure will require much more com-
puting time, but may yield lower loss in cases where the search space is highly
irregular.

quadopt string vector that specifies the routine for quadratic optimization over w weights.
possible values are "ipop" and "LowRankQP" (see ipop and LowRankQP for
details). default is ’ipop’

margin_ipop setting for ipop optimization routine: how close we get to the constrains (see
ipop for details)

sigf_ipop setting for ipop optimization routine: Precision (default: 7 significant figures
(see ipop for details)

bound_ipop setting for ipop optimization routine: Clipping bound for the variables (see ipop
for details)

verbose Logical flag. If TRUE then intermediate results will be shown.

... Additional arguments to be passed to optimx and or genoud to adjust optimiza-
tion.

Details

Optimization

The method completes the following nested minimization task:

W ∗(V ) = min

M∑
m=1

vm(X1m −
J+1∑
j=2

wjXjm)2

Where X1 and X0, which are matrices of aggregate-level covariates, are generated using the generate_predictor()
function. V denotes the variable weights with M reflecting the total number of predictor variables.
Thus, the optimal weights are a function of V .

The weights themselves are optimized via the following:
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T0∑
t=1

(Y1t −
J=1∑
j=2

w∗
j (V )Yjt)

2

where T0 denotes the pre-intervention period (or a specific optimization window supplied by the
argument time_window); J denotes the number of control units from the donor pool, where j = 1
reflects the treated unit.

Thus, the weights are selected in a manner that produces a synthetic Ŷ that approximates the ob-
served Y as closely as possible.

Variable Weights
As proposed in Abadie and Gardeazabal (2003) and Abadie, Diamond, Hainmueller (2010), the
synth function routinely searches for the set of weights that generate the best fitting convex combina-
tion of the control units. In other words, the predictor weight matrix V (custom_variable_weights)
is chosen among all positive definite diagonal matrices such that MSPE is minimized for the pre-
intervention period. Instead of using this data-driven procedures to search for the best fitting syn-
thetic control group, the user may supply their own weights using the custom_variable_weights
argument. These weights reflect the user’s subjective assessment of the predictive power of the
variables generated by generate_predictor().

When generating weights for the placebo cases, the variable weights used for the fit of the treated
unit optimization. This ensures comparability between the placebo and treated fits. In addition, it
greatly decreases processing time as the variable weights do not be learned for every placebo entry.

Value

tbl_df with nested fields containing the following:

• .id: unit id for the intervention case (this will differ when a placebo unit).

• .placebo: indicator field taking on the value of 1 if a unit is a placebo unit, 0 if it’s the
specified treated unit.

• .type: type of the nested data construct: treated or controls. Keeps tract of which data
construct is located in .outcome field.

• .outcome: nested data construct containing the outcome variable configured for the sythnetic
control method. Data is configured into a wide format for the optimization task.

• .predictors: nested data construct containing the covariate matrices for the treated and con-
trol (donor) units. Data is configured into a wide format for the optimization task.

• .unit_weights: Nested column of unit weights (i.e. how each unit from the donor pool
contributes to the synthetic control). Weights should sum to 1.

• .predictor_weights: Nested column of predictor variable weights (i.e. the significance of
each predictor in optimizing the weights that generate the synthetic control). Weights should
sum to 1. If variable weights are provided, those variable weights are provided.

• .original_data: original impute data filtered by treated or control units. This allows for
easy processing down stream when generating predictors.

• .meta: stores information regarding the unit and time index, the treated unit and time and the
name of the outcome variable. Used downstream in subsequent functions.

• .loss: the RMPE loss for both sets of weights.
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Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos= TRUE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6)

# Retrieve weights
smoking_out %>% grab_predictor_weights()
smoking_out %>% grab_unit_weights()

# Retrieve the placebo weights as well.
smoking_out %>% grab_predictor_weights(placebo= TRUE)
smoking_out %>% grab_unit_weights(placebo= TRUE)

# Plot the unit weights
smoking_out %>% plot_weights()
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grab_balance_table grab_balance_table

Description

Compare the distributions of the aggregate-level predictors for the observed intervention unit, the
synthetic control, and the donor pool average. Table helps user compare the the level of balance
produced by the synthetic control.

Usage

grab_balance_table(data)

Arguments

data nested data of type tbl_df

Value

tibble data frame containing balance statistics between the observed/synthetic unit and the donor
pool for each variable used to fit the synthetic control.

Examples

data(smoking)
smoking_out <-
smoking %>%
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=FALSE) %>%

generate_predictor(time_window=1980:1988,
lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

generate_weights(optimization_window =1970:1988,
Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

generate_control()
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smoking_out %>% grab_balance_table()

grab_loss grab_loss

Description

Extract the RMSE loss of the optimized weights from the synth pipeline.

Usage

grab_loss(data)

Arguments

data nested data of type tbl_df

Value

tibble data frame

Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=TRUE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
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beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# grab the MSPE loss from the optimization of the weights.
smoking_out %>% grab_loss()

grab_outcome grab_outcome

Description

Extract a data frame containing the outcome variable from the synth pipline.

Usage

grab_outcome(data, type = "treated", placebo = FALSE)

Arguments

data nested data of type tbl_df

type string specifying which version of the data to extract: "treated" or "control".
Default is "treated".

placebo boolean flag; if TRUE placebo values are returned as well (if available). Default
is FALSE.

Value

tibble data frame
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Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=FALSE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# Grab outcome data frame for the treated unit
smoking_out %>% grab_outcome()

# Grab outcome data frame for control units
smoking_out %>% grab_outcome(type="controls")
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grab_predictors grab_predictors

Description

Extract the aggregate-level covariates generated by generate_predictor() from the synth pipeline.

Usage

grab_predictors(data, type = "treated", placebo = FALSE)

Arguments

data nested data of type tbl_df

type string specifying which version of the data to extract: "treated" or "control".
Default is "treated".

placebo boolean flag; if TRUE placebo values are returned as well (if available). Default
is FALSE.

Value

tibble data frame

Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=FALSE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%
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generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# Grab predictors data frame for the treated unit
smoking_out %>% grab_predictors()

# Grab predictors data frame for control units
smoking_out %>% grab_predictors(type="controls")

grab_predictor_weights

grab_predictor_weights

Description

Extract the predictor variable weights generated by generate_weights() from the synth pipeline.

Usage

grab_predictor_weights(data, placebo = FALSE)

Arguments

data nested data of type tbl_df

placebo boolean flag; if TRUE placebo values are returned as well (if available). Default
is FALSE.

Value

tibble data frame
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Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=TRUE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# Grab the predictor weights data frame for the treated unit.
smoking_out %>% grab_predictor_weights()

# Grab the predictor weights data frame for the placebo units as well.
smoking_out %>% grab_predictor_weights(placebo=TRUE)
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grab_significance grab_significance

Description

Generate inferential statistics comparing the rarety of the unit that actually received the intervention
to the placebo units in the donor pool.

Usage

grab_significance(data, time_window = NULL)

Arguments

data nested data of type tbl_df

time_window time window that the significance values should be computed.

Details

Inferential statitics are generated by comparing the observed difference between the actual treated
unit and its synthetic control to each placebo unit and its synthetic control. The rarity of the actual
to the placebo is used to infer the likelihood of observing the effect.

Inference in this framework leverages the mean squared predictive error (MSPE) of the fit in the
pre-period to the fit in the post-period as a ratio.

RMSEPost

RMSEPre

The ratio captures the differences between the pre-intervention fit and the post-intervention diver-
gence of the trend (i.e. the causal quantity). A good fit in the pre-period denotes that the observed
and synthetic case tracked well together. Divergence in the post-period captures the difference
brought about by the intervention in the two trends. Thus, when the ratio is high, we observe
more of a difference between the two trends. If, however, the pre-period fit is poor, or there is not
substantial divergence in the post-period, then this ratio amount will be smaller.

The Fisher’s Exact P-Value is generated by ranking the ratios for the treated and placebo units. The
P-Value is then calculated by dividing the rank of the case over the total (rank/total). The case with
the highest RMSE ratio is rare given the distribution of cases as generated by the placebo. A more
detailed outline of inference within the synthetic control framework can be found in Adabie et al.
2010.

Note that conventional significance levels are not achievable if there is an insufficient number of
control cases. One needs at least 20 control case to use the conventional .05 level. With fewer
cases, significance levels need to be adjusted to accommodate the low total rank. This is a bug of
rank based significance metrics.

In addition to the Fisher’s Precise P-Value, a Z-score is also included, which is just the standardized
RMSE ratios for all the cases. The Z-Score captures the degree to which a particular case’s RMSE
ratio deviates from the distribution of the placebo cases.
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Value

tibble data frame containing the following fields:

• unit_name: name of the unit

• type: treated or donor unit (placebo)

• pre_mspe: pre-intervention period means squared predictive error

• post_mspe: post-intervention period means squared predictive error

• mspe_ratio: post_mspe/pre_mspe; captures the difference in fit in the pre and post period. A
good fit in the pre-period and a poor fit in the post-period reflects a meaningful effect when
comparing the difference between the observed outcome and the synthetic control.

• rank: rank order of the mspe_ratio.

• fishers_exact_pvalue: rank/total to generate a p-value. Conventional levels aren’t achiev-
able if there isn’t a sufficient number of controls to generate a large enough ranking. Need at
least 20 control units to use the conventional .05 level.

• z_score: (mspe_ratio-mean(mspe_ratio))/sd(mspe_ratio); captures the degree to which the
mspe_ratio of the treated unit deviates from the mean of the placebo units. Provinding an
alternative significance determination.

Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=FALSE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
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cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# Plot the observed and synthetic trend
smoking_out %>% grab_significance(time_window = 1970:2000)

grab_synthetic_control

grab_synthetic_control

Description

Extract the synthetic control as a data frame generated using generate_control() from the synth
pipeline.

Usage

grab_synthetic_control(data, placebo = FALSE)

Arguments

data nested data of type tbl_df

placebo boolean flag; if TRUE placebo values are returned as well (if available). Default
is FALSE.

Value

tibble data frame

Examples

# Smoking example data
data(smoking)
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smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=TRUE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# Grab a data frame containing the observed outcome and the synthetic control outcome
smoking_out %>% grab_synthetic_control()

# Grab the data frame with the placebos.
smoking_out %>% grab_synthetic_control(placebo=TRUE)

grab_unit_weights grab_unit_weights
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Description

Extract the unit weights generated by generate_weights() from the synth pipeline.

Usage

grab_unit_weights(data, placebo = FALSE)

Arguments

data nested data of type tbl_df

placebo boolean flag; if TRUE placebo values are returned as well (if available). Default
is FALSE.

Value

tibble data frame

Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=TRUE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
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cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6)

# Grab the unit weights for the treated unit.
smoking_out %>% grab_unit_weights()

# Grab the unit weights for the placebo units as well.
smoking_out %>% grab_unit_weights(placebo=TRUE)

plot_differences plot_difference

Description

Plot the difference between the observed and synthetic control unit. The difference captures the
causal quantity (i.e. the magnitude of the difference between the observed and counter-factual
case).

Usage

plot_differences(data, time_window = NULL)

Arguments

data nested data of type tbl_df.

time_window time window of the trend plot.

Value

ggplot object of the difference between the observed and synthetic trends.

ggplot object of difference between the observed and synthetic control unit.

Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%
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# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=TRUE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# Plot the observed and synthetic trend
smoking_out %>% plot_differences(time_window = 1970:2000)

plot_mspe_ratio plot_mspe_ratio

Description

Plot the MSPE ratios for each case (observed and placebos). The ratio is used for inference in the
synthetic control setup. The following plot ranks the RMSE ratio’s in descending order.
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Usage

plot_mspe_ratio(data, time_window = NULL)

Arguments

data nested data of type tbl_df.

time_window time window that the pre- and post-period values should be used to compute the
MSPE ratio.

Details

Inferential statitics are generated by comparing the observed difference between the actual treated
unit and its synthetic control to each placebo unit and its synthetic control. The rarity of the actual
to the placebo is used to infer the likelihood of observing the effect.

Inference in this framework leverages the mean squared predictive error (MSPE) of the fit in the
pre-period to the fit in the post-period as a ratio.

RMSEPost

RMSEPre

The ratio captures the differences between the pre-intervention fit and the post-intervention diver-
gence of the trend (i.e. the causal quantity). A good fit in the pre-period denotes that the observed
and synthetic case tracked well together. Divergence in the post-period captures the difference
brought about by the intervention in the two trends. Thus, when the ratio is high, we observe more
of a difference between the two trends. If, however, the pre-period fit is poor, or there is not substan-
tial divergence in the post-period, then this ratio amount will be smaller. A more detailed outline of
inference within the synthetic control framework can be found in Adabie et al. 2010.

Value

ggplot object plotting the MSPE ratios by case.

Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=TRUE) %>%
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# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# Plot the observed and synthetic trend
smoking_out %>% plot_mspe_ratio(time_window = 1970:2000)

plot_placebos plot_placebos

Description

Plot the difference between the observed and sythetic control unit for the treated and the placebo
units. The difference captures the causal quantity (i.e. the magnitude of the difference between
the observed and counterfactual case). Plotting the actual treated observation against the placebos
captures the likelihood (or rarity) of the observed differenced trend.

Usage

plot_placebos(data, time_window = NULL, prune = TRUE)

Arguments

data nested data of type tbl_df.
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time_window time window of the tbl_df plot.

prune boolean flag; if TRUE, then all placebo cases with a pre-period RMSPE exceed-
ing two times the treated unit pre-period RMSPE are pruned; Default is TRUE.

Details

The function provides a pruning rule where all placebo cases with a pre-period root mean squared
predictive error (RMSPE) exceeding two times the treated unit pre-period RMSPE are pruned. This
helps overcome scale issues when a particular placebo case has poor fit in the pre-period.

See documentation on ?synthetic_control on how to generate placebo cases. When initializing
a synth pipeline, set the generate_placebos argument to TRUE. The processing pipeline remains
the same.

Value

ggplot object of the difference between the observed and synthetic trends for the treated and
placebo units.

Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=TRUE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%
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generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# Plot the observed and synthetic trend
smoking_out %>% plot_placebos(time_window = 1970:2000)

plot_trends plot_trends

Description

Plot the observed and synthetic trends for the treated units.

Usage

plot_trends(data, time_window = NULL)

Arguments

data nested data of type tbl_df.

time_window time window of the trend plot.

Details

Synthetic control is a visual-based method, like Regression Discontinuity, so inspection of the pre-
intervention period fits is key assessing the sythetic control’s fit. A poor fit in the pre-period reduces
confidence in the post-period trend capturing the counterfactual.

See ?generate_control() for information on how to generate a synthetic control unit.

Value

ggplot object of the observed and synthetic trends.
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Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=TRUE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# Plot the observed and synthetic trend
smoking_out %>% plot_trends(time_window = 1970:2000)
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plot_weights plot_weights

Description

Plot the unit and predictor variable weights generated using generate_weights()

Usage

plot_weights(data)

Arguments

data nested data of type tbl_df.

Details

See grab_unit_weights() and grab_predictor_weights()

Value

a ggplot object that plots the unit and variable weights.

Examples

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=TRUE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%
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generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# Plot the observed and synthetic trend
smoking_out %>% plot_weights()

smoking smoking dataset

Description

A dataset on the implementation of Proposition 99 in California in 1988. Data contains information
on California and 38 other (control/donor) states used in Abadie et al. 2010’s paper walking through
the synthetic control method. Covers the time range 1970 to 2000

Usage

data(smoking)

Format

A data frame with 1209 rows and 7 variables:

state name of U.S. state

year year

cigsale cigarette sales pack per 100,000 people

lnincome log mean income

beer beer sales per 100,000 people

age15to24 Proportion of the population between 15 and 24

retprice Retail price of a box of cigarettes
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Source

https://economics.mit.edu/files/11859

References

Abadie, A., Diamond, A. and Hainmueller, J., 2010. Synthetic control methods for comparative
case studies: Estimating the effect of California’s tobacco control program. Journal of the American
statistical Association, 105(490), pp.493-505.

synthetic_control synthetic_control

Description

synthetic_control() declares the input data frame for use in the synthetic control method. Al-
lows for the specification of the panel units along with the intervention unit and time (treated). All
units that are not the designated treated units are entered into the donor pool from which the syn-
thetic control is generated. All time points prior and equal to the intervention time are designated
as the pre-intervention period; and all time periods after are the post-intervention period.

Usage

synthetic_control(
data = NULL,
outcome = NULL,
unit = NULL,
time = NULL,
i_unit = NULL,
i_time = NULL,
generate_placebos = TRUE

)

Arguments

data panel data frame in long format (i.e. unit of analysis is unit-time period, such as
country-year) containing both treated and control donor pool units. All units/time
periods that are not desired to be in the donor should be excluded prior to passing
to synthetic_control().

outcome Name of the outcome variable. Outcome variable should be a continuous mea-
sure that is observed across multiple time points.

unit Name of the case unit variable in the panel data.

time Name of the time unit variable in the panel data.

i_unit Name of the treated case unit where the intervention occurred.

i_time Name of the treated time period when the intervention occurred.
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generate_placebos

logical flag requesting that placebo versions of the data be generated for down-
stream inferential methods. Generates a version of the nested data where each
control unit is the intervention unit. Default is TRUE.

Details

Note that synthetic_control() also allows for the simultaneous generation of placebo units (i.e.
units where the treated unit is one of the controls). The addition of the placebo units increases
computation time (as a synthetic control needs to be generated for each placebo unit) but it allows
for inference as outlined in Abadie et al. 2010.

Value

tbl_df with nested fields containing the following:

• .id: unit id for the intervention case (this will differ when a placebo unit).

• .placebo: indicator field taking on the value of 1 if a unit is a placebo unit, 0 if it’s the
specified treated unit.

• .type: type of the nested data construct: treated or controls. Keeps tract of which data
construct is located in .outcome field.

• .outcome: nested data construct containing the outcome variable configured for the sythnetic
control method. Data is configured into a wide formate for the optimization task.

• .original_data: original impute data filtered by treated or control units. This allows for
easy processing down stream when generating predictors.

• .meta: stores information regarding the unit and time index, the treated unit and time and the
name of the outcome variable. Used downstream in subsequent functions.

Examples

############################
###### Basic Example #######
############################

# Smoking example data
data(smoking)

# initial the synthetic control object
smoking_out <-
smoking %>%
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos= FALSE)

# data configuration
dplyr::glimpse(smoking_out)
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# Grap the organized outcome variables
smoking_out %>% grab_outcome(type = "treated")
smoking_out %>% grab_outcome(type = "controls")

###################################
####### Full implementation #######
###################################

# Smoking example data
data(smoking)

smoking_out <-
smoking %>%

# initial the synthetic control object
synthetic_control(outcome = cigsale,

unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos= FALSE) %>%

# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,

lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%

generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%

generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%

generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%

generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%

# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,

Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%

# Generate the synthetic control
generate_control()

# Plot the observed and synthetic trend
smoking_out %>% plot_trends(time_window = 1970:2000)
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synth_method synth_method

Description

AUX Function: Original synthetic control method proposed by (Abadie et al. 2003, 2010, 2015)
and implemented in synth package. Method has been commandeered for internal use here.

Usage

synth_method(
treatment_unit_covariates = NULL,
control_units_covariates = NULL,
control_units_outcome = NULL,
treatment_unit_outcome = NULL,
custom.v = NULL,
optimxmethod = c("Nelder-Mead", "BFGS"),
genoud = FALSE,
Margin.ipop = 5e-04,
Sigf.ipop = 5,
Bound.ipop = 10,
verbose = FALSE,
...

)

Arguments

treatment_unit_covariates

matrix of treated predictor data

control_units_covariates

matrix of controls’ predictor data.

control_units_outcome

matrix of controls’ outcome data for the pre-treatment periods over which MSPE
is to be minimized.

treatment_unit_outcome

matrix of treated outcome data for the pre-treatment periods over which MSPE
is to be minimized.

custom.v vector of weights for predictors supplied by the user. uses synth to bypass opti-
mization for solution.V. See details.
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optimxmethod string vector that specifies the optimization algorithms to be used. Permissi-
ble values are all optimization algorithms that are currently implemented in
the optimx function (see this function for details). This list currently includes
c("Nelder-Mead’, ’BFGS’, ’CG’, ’L-BFGS-B’, ’nlm’, ’nlminb’, ’spg’, and ’ucminf").
If multiple algorithms are specified, synth will run the optimization with all cho-
sen algorithms and then return the result for the best performing method. De-
fault is c("Nelder-Mead", "BFGS"). As an additional possibility, the user can
also specify ’All’ which means that synth will run the results over all algorithms
in optimx.

genoud Logical flag. If true, synth embarks on a two step optimization. In the first step,
genoud, an optimization function that combines evolutionary algorithm methods
with a derivative-based (quasi-Newton) method to solve difficult optimization
problems, is used to obtain a solution. See genoud for details. In the second
step, the genoud results are passed to the optimization algorithm(s) chosen in
optimxmethod for a local optimization within the neighborhood of the genoud
solution. This two step optimization procedure will require much more com-
puting time, but may yield lower loss in cases where the search space is highly
irregular.

Margin.ipop setting for ipop optimization routine: how close we get to the constrains (see
ipop for details)

Sigf.ipop setting for ipop optimization routine: Precision (default: 7 significant figures
(see ipop for details)

Bound.ipop setting for ipop optimization routine: Clipping bound for the variables (see ipop
for details)

verbose Logical flag. If TRUE then intermediate results will be shown.

... Additional arguments to be passed to optimx and or genoud to adjust optimiza-
tion.

Details

Synth works as the main engine of the tidysynth package. More on the method and estimation
procedures can be found in (Abadie et al. 2010).

As proposed in Abadie and Gardeazabal (2003) and Abadie, Diamond, Hainmueller (2010), the
synth function routinely searches for the set of weights that generate the best fitting convex com-
bination of the control units. In other words, the predictor weight matrix V is chosen among all
positive definite diagonal matrices such that MSPE is minimized for the pre-intervention period.
Instead of using this data-driven procedures to search for the best fitting synthetic control group, the
user may supply his own vector of V weights, based on his subjective assessment of the predictive
power of the variables in treatment_unit_covariates and control_units_covariates. In this case, the
vector of V weights for each variable should be supplied via the custom.V option in synth and the
optimization over the V matrices is bypassed.

Value

solution.v = vector of predictor weights; solution.w = vector of weights across the controls; loss.v
= MSPE from optimization over v and w weights; loss.w = Loss from optimization over w weights;
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custom.v =if this argument was specified in the call to synth, this outputs the weight vector specified;
rgV.optim = Results from optimx() minimization. Could be used for diagnostics.

synth_weights synth_weights

Description

Auxiliary Function for generating individual weights for each unit-specific data entry. The method
allows of opimtizing weights for all placebo and treated data configurations (assuming there are
placebo configurations to generate)

Usage

synth_weights(
data,
time_window = NULL,
custom_variable_weights = NULL,
include_fit = FALSE,
optimization_method = c("Nelder-Mead", "BFGS"),
genoud = FALSE,
quadopt = "ipop",
Margin.ipop = 5e-04,
Sigf.ipop = 5,
Bound.ipop = 10,
verbose = verbose,
...

)

Arguments

data nested data of type synth_tbl generated from sythetic_control(). See synthetic_control()
documentation for more information. In addition, a matrix of predictors must be
pre-specified using the generate_predictor() function. See documentation
for more information on how to generate a predictor function.

time_window the temporal window of the pre-intervention outcome time series to be used in
the optimization task. Default behavior uses the entire pre-intervention time
period.

custom_variable_weights

a vector of provided weights that define a variable’s importance in the opti-
mization task. The weights are intended to reflect the users prior regarding the
relative significance of each variable. Vector must sum to one. Note that the
method is significantly faster when a custom variable weights are provided. De-
fault behavior assumes no wieghts are provided and thus must be learned from
the data.

include_fit Boolean flag, if TRUE, then the optimization output is included in the outputted
tbl_df.
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optimization_method

string vector that specifies the optimization algorithms to be used. Permiss-
able values are all optimization algorithms that are currently implemented in
the optimx function (see this function for details). This list currently includes
c("Nelder-Mead’, ’BFGS’, ’CG’, ’L-BFGS-B’, ’nlm’, ’nlminb’, ’spg’, and ’ucminf").
If multiple algorithms are specified, synth will run the optimization with all cho-
sen algorithms and then return the result for the best performing method. Default
is "BFGS". As an additional possibility, the user can also specify ’All’ which
means that synth will run the results over all algorithms in optimx.

genoud Logical flag. If true, synth embarks on a two step optimization. In the first step,
genoud, an optimization function that combines evolutionary algorithm methods
with a derivative-based (quasi-Newton) method to solve difficult optimization
problems, is used to obtain a solution. See genoud for details. In the second
step, the genoud results are passed to the optimization algorithm(s) chosen in
optimxmethod for a local optimization within the neighborhood of the genoud
solution. This two step optimization procedure will require much more com-
puting time, but may yield lower loss in cases where the search space is highly
irregular.

quadopt string vector that specifies the routine for quadratic optimization over w weights.
possible values are "ipop" and "LowRankQP" (see ipop and LowRankQP for
details). default is ’ipop’

Margin.ipop setting for ipop optimization routine: how close we get to the constraints (see
ipop for details)

Sigf.ipop setting for ipop optimization routine: Precision (default: 7 significant figures
(see ipop for details)

Bound.ipop setting for ipop optimization routine: Clipping bound for the variables (see ipop
for details)

verbose Logical flag. If TRUE then intermediate results will be shown.

... Additional arguments to be passed to optimx and or genoud to adjust optimiza-
tion.

Value

tibble data frame with optimized weights attached.
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