
Package ‘super’
April 25, 2025

Title Interpreted String Literals

Version 0.1.1

Description An implementation of interpreted string literals. Based on the
'glue' package by Hester & Bryan (2024) <doi:10.32614/CRAN.package.glue> but
with a focus on efficiency and simplicity at a cost of flexibility.

License MIT + file LICENSE

URL https://timtaylor.codeberg.page/super/

BugReports https://codeberg.org/TimTaylor/super/issues

Depends R (>= 3.6)

Suggests glue, litedown, microbenchmark, tinytest

VignetteBuilder litedown

Encoding UTF-8

RoxygenNote 7.3.2

Config/build/compilation-database true

NeedsCompilation yes

Author Tim Taylor [aut, cre] (<https://orcid.org/0000-0002-8587-7113>),
Jim Hester [aut] (<https://orcid.org/0000-0002-2739-7082>),
Jennifer Bryan [aut] (<https://orcid.org/0000-0002-6983-2759>),
Posit Software, PBC [cph, fnd]

Maintainer Tim Taylor <tim.taylor@hiddenelephants.co.uk>

Repository CRAN

Date/Publication 2025-04-25 20:40:02 UTC

Contents
glue . 2
trim . 3

Index 5

1

https://doi.org/10.32614/CRAN.package.glue
https://timtaylor.codeberg.page/super/
https://codeberg.org/TimTaylor/super/issues
https://orcid.org/0000-0002-8587-7113
https://orcid.org/0000-0002-2739-7082
https://orcid.org/0000-0002-6983-2759

2 glue

glue Format and interpolate a string

Description

Inputs enclosed by braces (e.g. {name}) are looked up in the provided environment (akin to calling
get()). Single braces can be escaped by doubling them up. Variables are recycled to the length of
the largest one.

glue() operates on the string as is.

glut() will trim the input prior to glueing.

Usage

glue(x, env = parent.frame())

glut(x, env = parent.frame())

Arguments

x [character string]

env [environment]

Where to look up the embraced input.
Can be an environment or a list-like object that will be converted in the under-
lying function via list2env().

Value

A character object.

See Also

glue::glue_safe() and glue::glue_data_safe() on which which this function is an evolution.

Examples

name <- "Fred"
age <- 50
cat(glue("My name is {name} and my age next year is {age}"))

glut first trims the output
anniversary <- as.Date("1991-10-12")
cat(glut("

My name is {name},
my age next year is {age},
my anniversary is {anniversary}.

"))

single braces can be inserted by doubling them

trim 3

glue("My name is {name}, not {{name}}.")

List like objects can be used in place of an environment
dat <- cbind(car = rownames(mtcars), mtcars)
glue("{car} does {mpg} mpg.", dat)

trim Trim a character vector

Description

Almost identical to glue::trim() save a slight difference in error handling for non-character input.
This function trims a character vector according to the trimming rules used by glue. These follow
similar rules to Python Docstrings, with the following features:

• Leading and trailing whitespace from the first and last lines is removed.

• A uniform amount of indentation is stripped from the second line on, equal to the minimum
indentation of all non-blank lines after the first.

• Lines can be continued across newlines by using \\.

Usage

trim(x)

Arguments

x [character].

Value

A character vector.

See Also

glue::trim().

Examples

cat(trim("
A formatted string
Can have multiple lines

with additional indentation preserved
"))

cat(trim("
\ntrailing or leading newlines can be added explicitly\n
"))

https://www.python.org/dev/peps/pep-0257/

4 trim

cat(trim("
A formatted string \\
can also be on a \\
single line
"))

Index

get(), 2
glue, 2
glue::glue_data_safe(), 2
glue::glue_safe(), 2
glue::trim(), 3
glut (glue), 2

trim, 2, 3

5

	glue
	trim
	Index

