Package 'stressaddition'

July 23, 2025

Type Package

```
Title Modelling Tri-Phasic Concentration-Response Relationships
Version 3.1.0
Date 2020-10-19
Description The stress addition approach is an alternative to the traditional
      concentration addition or effect addition models. It allows the modelling
      of tri-phasic concentration-response relationships either as single toxicant
      experiments, in combination with an environmental stressor or as mixtures of
      two toxicants. See Liess et al. (2019) <doi:10.1038/s41598-019-51645-4>
      and Liess et al. (2020) <doi:10.1186/s12302-020-00394-7>.
License GPL-3
Copyright file inst/COPYRIGHTS
URL https://git.ufz.de/oekotox/stressaddition
Encoding UTF-8
LazyData true
Depends R (>= 3.5)
Imports drc (>= 3.0), plotrix
Suggests testthat (>= 2.1.0)
RoxygenNote 7.1.1
NeedsCompilation no
Author Sebastian Henz [aut, cre] (ORCID:
       <https://orcid.org/0000-0001-8299-8852>),
      Matthias Liess [aut] (ORCID: <a href="https://orcid.org/0000-0002-3321-8909">https://orcid.org/0000-0002-3321-8909</a>),
      Naeem Shahid [ctb] (ORCID: <a href="https://orcid.org/0000-0001-6581-1654">https://orcid.org/0000-0001-6581-1654</a>),
      Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ [cph, fnd]
Maintainer Sebastian Henz <bastihz.dev@posteo.de>
Repository CRAN
Date/Publication 2020-11-03 21:50:03 UTC
```

14

Contents

stressaddition-package																		
ecxsys																		3
lc																		5
log10_ticks																		6
multiple_stress																		7
multi_tox																		8
plot_ecxsys																		10
predict_ecxsys																		11
Stressconversion																		12

stressaddition-package

stressaddition: Modelling Tri-Phasic Concentration-Response Relationships

Description

Index

The stress addition approach is an alternative to the traditional concentration addition or effect addition models. It allows the modelling of tri-phasic concentration-response relationships either as single toxicant experiments, in combination with an environmental stressor or as mixtures of two toxicants. See Liess et al. (2019) <doi:10.1038/s41598-019-51645-4> and Liess et al. (2020) <doi:10.1186/s12302-020-00394-7>.

Details

This R package contains the definitions of the ECx-SyS model and the Multi-TOX model. See the publications linked below for more information including equations.

Author contributions: M. Liess conceived the ECx-SyS and Multi-TOX models. S. Henz developed this R package. N. Shahid contributed to the optimization of the Multi-TOX model and provided the multiple_stress data set.

Author(s)

Maintainer: Sebastian Henz <bastihz.dev@posteo.de>(ORCID)

Authors:

• Matthias Liess (ORCID)

Other contributors:

- Naeem Shahid (ORCID) [contributor]
- Helmholtz-Zentrum fuer Umweltforschung GmbH UFZ [copyright holder, funder]

ecxsys 3

References

Liess, M., Henz, S. & Knillmann, S. Predicting low-concentration effects of pesticides. Sci Rep 9, 15248 (2019).

Liess, M., Henz, S. & Shahid, N. Modeling the synergistic effects of toxicant mixtures. Environ Sci Eur 32, 119 (2020).

See Also

Useful links:

• https://git.ufz.de/oekotox/stressaddition

ecxsys

ECx-SyS

Description

ECx-SyS is a model for tri-phasic concentration-response relationships where hormetic and sub-hormetic effects are observed at low concentrations. It expands the Stress Addition Model (SAM) by introducing system stress (SyS) which is negatively correlated with toxicant stress. A constant environmental stress can be included. See the publication for details.

Usage

```
ecxsys(
  concentration,
  hormesis_concentration,
  survival_tox_observed,
  survival_tox_env_observed = NULL,
  survival_max = 100,
  curves_concentration_max = NULL,
  p = 3.2,
  q = 3.2
)
```

Arguments

concentration A vector of concentrations. Must be sorted in ascending order and the first element must be 0 to indicate the control.

hormesis_concentration

The concentration where the hormesis occurs. This is usually the concentration of the highest survival after the control.

```
survival_tox_observed
```

A vector of survival values observed at the given concentrations and in absence of environmental stress. Values must be between 0 and survival_max.

4 ecxsys

survival_tox_env_observed

Survival values observed in the presence of environmental stress. Must be between 0 and survival_max.

survival_max The maximum value the survival could possibly reach. For survival data in percent this should be 100 (the default).

curves_concentration_max

The maximum concentration of the predicted curves. This might be useful if for example your highest observed concentration is 30 but you would like to know the predicted values on a scale between 0 and 100.

p, q The shape parameters of the beta distribution. Default is p = q = 3.2.

Details

It is advised to complete the curve down to zero for optimal prediction. Therefore survival_tox_observed in the highest concentration should be at or close to zero. If the model does not fit properly try adding a survival of 0 at ten times the maximum observed concentration.

The vectors concentration, survival_tox_observed and survival_tox_env_observed (if provided) must be of equal length and sorted by increasing concentration.

Value

A list (of class ecxsys) containing many different objects of which the most important are listed below. The survival and stress vectors correspond to the provided concentrations.

survival_tox Modeled survival resulting from toxicant stress.

survival tox sys Modeled survival resulting from toxicant and system stress.

survival_tox_env Modeled survival resulting from toxicant and environmental stress.

survival_tox_env_sys Modeled survival resulting from toxicant, environmental and system stress.

survival_tox_LL5 The survival predicted by the five-parameter log-logistic model derived from the observations under toxicant stress but without environmental stress.

survival_tox_env_LL5 The survival predicted by the five-parameter log-logistic model derived from the observations under toxicant stress with environmental stress.

curves A data frame containing survival and stress values as returned by predict_ecxsys. The concentrations are regularly spaced on a logarithmic scale in the given concentration range. The control is approximated by the lowest non-control concentration times 1e-7. The additional column concentration_for_plots is used by the plotting functions of this package to approximate the control and generate a nice concentration axis.

References

Liess, M., Henz, S. & Knillmann, S. Predicting low-concentration effects of pesticides. Sci Rep 9, 15248 (2019).

lc 5

Examples

```
model <- ecxsys(
    concentration = c(0, 0.05, 0.5, 5, 30),
    hormesis_concentration = 0.5,
    survival_tox_observed = c(90, 81, 92, 28, 0),
    survival_tox_env_observed = c(29, 27, 33, 5, 0)
)

# Use survival_max if for example the survival is given as the average number
# of surviving animals and the initial number of animals is 21:
model <- ecxsys(
    concentration = c(0, 0.03, 0.3, 3, 30),
    hormesis_concentration = 0.3,
    survival_tox_observed = c(17, 15.2, 18.8, 7, 0),
    survival_tox_env_observed = c(4.8, 4.6, 6.4, 0, 0),
    survival_max = 21
)</pre>
```

1c

Lethal Concentrations

Description

Estimate the concentration to reach a certain mortality relative to the control.

Usage

```
lc(model, response_name, response_level, reference, warn = TRUE)
```

Arguments

mode1

This can be one of three types of objects: Either the output of ecxsys or the output of predict_ecxsys or a data frame with a "concentration" column and a response_name column. In the case of the data frame the first row is assumed to be the control. See the examples.

response_name

The name of the survival or stress for which you want to calculate the LC.

response_level

The desired response level as a percentage between 0 and 100. For example with the value 10 the function will return the LC10, i.e. the concentration where the response falls below 90 % of the control response. In other words: where a mortality of 10 % relative to the control is reached.

reference

The reference value of the response, usually the control at concentration 0. This argument is optional. If it is missing, the first value of the response is used as control. This value determines what number response_level actually corresponds to. For example if response_level is 10 and reference is 45, then the function returns the concentration where the curve is reduced by 10% relative to 45 = 40.5.

warn

Logical. Should the function emit a warning if the calculation of the lethal concentration is not possible?

6 log10_ticks

Details

If the response level occurs multiple times because of hormesis, which may happen for low values of response_level, then the occurrence with the smallest concentration is returned.

This function only makes sense for curves which generally go down with increasing concentration, i.e. all survival_* curves and also sys_tox and sys_tox_env. Others are untested and may give unexpected results, if any.

Value

A list containing the lethal concentration and the corresponding survival. The survival will be NA if its calculation is impossible using the supplied data.

Examples

```
# Calculate the LC10, the concentration where the survival falls
# below 90% of the survival in the control.
model <- ecxsys(</pre>
    concentration = c(0, 0.05, 0.5, 5, 30),
   hormesis_concentration = 0.5,
    survival\_tox\_observed = c(90, 81, 92, 28, 0)
)
# using the ecxsys() output or the curves therein directly:
lc(model, "survival_tox_sys", 10)
lc(model$curves, "survival_tox_sys", 10)
# using the output of predict_ecxsys() with custom concentrations:
conc <- 10^seq(-9, 1, length.out = 1000)</pre>
curves <- predict_ecxsys(model, conc)</pre>
lc(curves, "survival_tox_sys", 10)
# using a custom data frame:
df_custom <- data.frame(</pre>
    concentration = curves$concentration,
    foo = curves$survival_tox_sys
lc(df_custom, "foo", 10)
# Calculate the LC50 relative to an survival of 100
# instead of relative to the control:
lc(model, "survival_tox_sys", 50, reference = 100)
```

log10_ticks

Logarithmic axis tick marks

Description

Calculate the positions and labels of major and minor tick marks for a base 10 logarithmic axis.

multiple_stress 7

Usage

```
log10_ticks(x, label_zero = TRUE)
```

Arguments

x A vector of axis values. Can be arbitrarily long but only the minimum and

maximum are necessary.

label_zero Whether or not to replace the smallest major label with "0". This defaults to

TRUE and is useful for some types of plots used to display concentration-response

data where the leftmost data point represents the control.

Value

A list with the positions and labels of the major and minor tick marks. The labels are formatted without trailing zeros using formatC(labels, format = "fg").

Examples

```
x <- c(0.01, 0.2, 3, 10, 50)
plot(x, c(5, 4, 2.5, 1, 0), xaxt = "n", log = "x")
ticks <- log10_ticks(x)
axis(1, at = ticks$major, labels = ticks$major_labels)
axis(1, at = ticks$minor, labels = FALSE, tcl = -0.25)</pre>
```

multiple_stress

Survival of Daphnia magna exposed to multiple stressors

Description

A data set of mixture toxicity experiments. Individuals of Daphnia magna were exposed to combinations of food stress and multiple concentrations of the pesticides esfenvalerate and prochloraz. The survival was recorded at 21 days after contamination.

Usage

```
multiple_stress
```

Format

A data frame with 58 rows and 4 variables:

food The amount of food in percent.

esfenvalerate The concentration of esfenvalerate in µg/L.

prochloraz The concentration of prochloraz in μg/L.

survival The mean survival in percent.

8 multi_tox

Source

Shahid, N., Liess, M., Knillmann, S., 2019. Environmental Stress Increases Synergistic Effects of Pesticide Mixtures on Daphnia magna. Environ. Sci. Technol. 53, 12586–12593.

Liess, M., Henz, S. & Shahid, N. Modeling the synergistic effects of toxicant mixtures. Environ Sci Eur 32, 119 (2020).

multi_tox

Predict the survival of binary toxicant mixtures

Description

The Multi-TOX model predicts the effects of binary toxicant mixtures based on three-phasic concentration-response relationships. See the publication for details.

Usage

```
multi_tox(
  model_a,
  model_b,
  concentration_a,
  concentration_b,
  sa_contribution = 0.5,
  survival_max = 100
)
```

Arguments

model_a, model_b

The ecxsys models of the toxicants.

concentration_a, concentration_b

The concentrations of the toxicants in the mixture. Both vectors must either be the same length or the longer length must be a multiple of the shorter length. That's because the shorter concentration vector gets recycled to the length of the longer one.

sa_contribution

The proportion of stress addition contributing to the calculation of the toxicant stress in the mixture. Must be between 0 and 1 where 1 stands for 100 % stress addition.

survival_max

Controls the scaling of the result. This represents the maximum value the survival could possibly reach. For survival data in percent this should be 100 (the default).

Details

The predictions are symmetric, i.e. it does not matter which of the toxicant models is a or b as long as the concentration arguments are supplied in the same order.

This method is only suitable for experiments without or with low environmental stress. Any environmental stress supplied as arguments to ecxsys in model_a or model_b is ignored.

multi_tox 9

Value

A data frame with columns of the supplied concentrations and the corresponding mixture survival and stresses.

References

Liess, M., Henz, S. & Shahid, N. Modeling the synergistic effects of toxicant mixtures. Environ Sci Eur 32, 119 (2020).

Examples

```
# Using a data set which is included in this package. See ?multiple_stress
ms <- multiple_stress</pre>
esfen <- ms[ms$food == 1 & ms$prochloraz == 0, ]</pre>
proch <- ms[ms$food == 1 & ms$esfenvalerate == 0, ]</pre>
model_esfen <- ecxsys(</pre>
    concentration = esfen$esfenvalerate,
    survival_tox_observed = esfen$survival,
    hormesis\_concentration = 0.1
)
model_proch <- ecxsys(</pre>
    concentration = proch$prochloraz,
    survival_tox_observed = proch$survival,
    hormesis_concentration = 100
)
# Predict the survival at 8 different esfenvalerate concentrations
# but keep the prochloraz concentration constant at 32:
mt <- multi_tox(</pre>
    model_esfen,
    model_proch,
    c(0, 0.0001, 0.001, 0.01, 0.1, 0.316, 1, 3.16),
    32,
    sa\_contribution = 0.8
)
mt[1:3] # The concentrations and survival of the 8 mixtures.
# Predict the survival at 4 different combinations
# of esfenvalerate and prochloraz:
mt <- multi_tox(</pre>
    model_esfen,
    model_proch,
    c(0.1, 0.2, 0.3, 0.4),
    c(0, 1, 32, 100),
    sa\_contribution = 0.8
\mathsf{mt}[1:3] # The concentrations and survival of the 4 mixtures.
```

10 plot_ecxsys

plot_ecxsys

Plot the results of the ECx-SyS model

Description

Plot the observed and modeled survivals and stresses.

Usage

```
plot_stress(
 model,
 which = c("sys_tox", "sys_tox_observed", "sys_tox_env", "sys_tox_env_observed"),
  show_legend = FALSE,
 xlab = "concentration",
 ylab = "stress",
 main = NULL
)
plot_survival(
 model,
 which = c("survival_tox", "survival_tox_sys", "survival_tox_observed",
    "survival_tox_env", "survival_tox_env_sys", "survival_tox_env_observed"),
  show_legend = FALSE,
  xlab = "concentration",
 ylab = "survival",
 main = NULL
)
```

Arguments

model The model object returned from ecxsys.

which A vector of curve names to plot. Allowed are all values of names (model\$curves)

except "concentration". See the *Value* section of predict_ecxsys for descriptions of these names. Additionally, you can use "survival_tox_observed"

and "survival_tox_env_observed" for the observed survival and "sys_tox_observed"

and "sys_tox_env_observed" for the observed Sys. Use "all" to plot everything or NA to only draw the axis and labels. Invalid names will be silently

ignored.

show_legend Should the plot include a legend? Defaults to FALSE because it may cover some

parts of the plot depending on the plot size and the number of elements shown.

xlab, ylab, main Axis labels and title.

Value

None

predict_ecxsys 11

Examples

```
model <- ecxsys(</pre>
   concentration = c(0, 0.05, 0.5, 5, 30),
   hormesis\_concentration = 0.5,
   survival\_tox\_observed = c(90, 81, 92, 28, 0),
    survival_tox_env_observed = c(29, 27, 33, 5, 0)
)
plot_survival(model, show_legend = TRUE)
plot_stress(model, show_legend = TRUE)
# Plot all curves:
plot_survival(model, which = "all")
plot_stress(model, which = "all")
# Plot only some selected curves:
plot_survival(model, which = c("survival_tox_sys", "survival_tox_env_sys"))
plot_stress(model, which = c("sys_tox", "sys_tox_env"))
# Plot only the observed values:
plot_survival(model, which = c("survival_tox_observed", "survival_tox_env_observed"))
plot_stress(model, which = c("sys_tox_observed", "sys_tox_env_observed"))
```

predict_ecxsys

Predict survival and stress

Description

Calculate the survivals and stresses of an ECx-SyS model at arbitrary concentrations.

Usage

```
predict_ecxsys(model, concentration)
```

Arguments

model An ECx-SyS model as returned by ecxsys. concentration A numeric vector of concentrations.

Value

A data frame (of class "ecxsys_predicted") with the following columns:

concentration The supplied concentrations.

survival_tox_LL5 The survival predicted by the five-parameter log-logistic model derived from the observations under toxicant stress but without environmental stress.

survival_tox Modeled survival resulting from toxicant stress.

survival_tox_sys Modeled survival resulting from toxicant and system stress.

12 Stressconversion

```
stress_tox The toxicant stress.
```

sys_tox System stress under toxicant stress conditions without environmental stress.

```
stress_tox_sys The sum of stress_tox and sys_tox.
```

survival_tox_env_LL5 The survival predicted by the five-parameter log-logistic model derived from the observations under toxicant stress with environmental stress.

survival_tox_env Modeled survival resulting from toxicant and environmental stress.

survival_tox_env_sys Modeled survival resulting from toxicant, environmental and system stress.

stress_env Environmental stress.

stress_tox_env The sum of toxicant and environmental stress.

sys_tox_env System stress under toxicant and environmental stress conditions.

stress_tox_env_sys The sum of stress_tox_env and sys_tox_env.

Examples

```
model <- ecxsys(
    concentration = c(0, 0.05, 0.5, 5, 30),
    hormesis_concentration = 0.5,
    survival_tox_observed = c(90, 81, 92, 28, 0),
    survival_tox_env_observed = c(29, 27, 33, 5, 0)
)
p <- predict_ecxsys(model, c(0.001, 0.01, 0.1, 1, 10))</pre>
```

Stressconversion

Convert Between Stress and Survival

Description

Functions to convert survival to general stress or vice versa using the beta distribution.

Usage

```
survival_to_stress(survival, p = 3.2, q = 3.2)
stress_to_survival(stress, p = 3.2, q = 3.2)
```

Arguments

survival	One or more survival values to convert to general stress. Should be a value
	between 0 and 1. Smaller or bigger values are treated as 0 or 1 respectively.
p, q	The shape parameters of the beta distribution. Default is 3.2.
stress	One or more stress values to convert to survival.

Stressconversion 13

Details

These are simple wrappers around the beta distribution function pbeta and the beta quantile function qbeta.

Value

stress_to_survival returns a vector the same length as stress giving the survival caused by each amount of stress.

survival_to_stress returns a vector the same length as survival containing the stress values associated with each survival.

Examples

```
stress <- 0.3
survival <- stress_to_survival(stress)
survival_to_stress(survival)</pre>
```

Index

```
* datasets
    \verb|multiple_stress|, 7
beta, 12
ECx-SyS, 2
ecxsys, 3, 5, 8, 10, 11
1c, 5
log10_ticks, 6
Multi-TOX, 2
multi_tox, 8
\verb|multiple_stress|, 2, 7
pbeta, 13
plot_ecxsys, 10
plot_stress (plot_ecxsys), 10
plot_survival (plot_ecxsys), 10
predict_ecxsys, 4, 5, 10, 11
qbeta, 13
stress_to_survival (Stressconversion),
         12
stressaddition
        (stressaddition-package), 2
stressaddition-package, 2
Stressconversion, 12
survival_to_stress (Stressconversion),
```