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steadyICA-package ICA via distance covariance, tests of mutual independence, and other
ICA functions
Description
Functions related to multivariate measures of independence and ICA:
-estimate independent components by minimizing distance covariance;
-conduct a test of mutual independence based on distance covariance;
-estimate independent components via infomax (a popular method but generally performs poorer
than steadyICA or ProDenICA but is useful for comparisons);
-order independent components by skewness;
-match independent components from multiple estimates;
-other functions useful in ICA.
Details
Package:  steadyICA
Type: Package
Version: 1.0
Date: 2015-11-08
License: GPL (>=2)
Depends:  Rcpp (>=0.9.13), MASS
Suggests: irlba, JADE, ProDenlICA, fastICA
Author(s)

Benjamin B. Risk and Nicholas A. James and David S. Matteson.
Maintainer: Benjamin Risk <bbr28 @cornell.edu>
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References

Bernaards, C. & Jennrich, R. (2005) Gradient projection algorithms and software for arbitrary rota-
tion criteria in factor analysis. Educational and Psychological Measurement 65, 676-696

Matteson, D. S. & Tsay, R. Independent component analysis via U-Statistics. <http://www.stat.cornell.edu/~matteson/#ICA>

Szekely, G., Rizzo, M. & Bakirov, N. Measuring and testing dependence by correlation of distances.
(2007) The Annals of Statistics, 35, 2769-2794.

Tichavsky, P. & Koldovsky, Z. Optimal pairing of signal components separated by blind techniques.
(2004) Signal Processing Letters 11, 119-122.

See Also

fastICA ProDenICA: :ProDenICA

Examples

#see steadyICA

compInd Complete Measure of Mutual Multivariate Independence

Description
Calculates a complete empirical measure of mutual multivariate independence. Makes use of the
utils::combn function.

Usage

compInd(S, group=1:ncol(S),alpha=1)

Arguments
S The n x d matrix for which you wish to calculate the dependence between d
columns from n samples.
group A length d vector which indicates group membership for each component.
alpha The index used in calculating the distance between sample observations.
Value

Returns a scalar equal to the empirical multivariate distance between the observed samples, and
their grouped counterpart.

Note

Suppose that the each component belongs to exactly one of C groups. This method makes use of
the utils::combn and combinat::permn functions. As a result it will be both computationally and
memory intensive, even for small to moderate n and small C.
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Author(s)

Nicholas James

References

Chasalow, Scott (2012) combinat: Combinatorics Utilities <http://CRAN.R-project.org/package=combinat

See Also

dcovustat, energy: :dcov

Examples

library(steadyICA)
library(combinat)
set.seed(100)

S = matrix(rnorm(40),ncol=4)
group = ¢(1,2,3,3)
compInd(S,group,1)

dcovICA ICA via distance covariance for 2 components

Description

This algorithm finds the rotation which minimizes the distance covariance between two orthog-
onal components via the angular parameterization of a 2x2 orthogonal matrix with the function
stats::optimize. The results will be (approximately) equivalent to steadyICA but this function is
much faster (but does not extend to higher dimensions).

Usage
dcovICA(Z, theta.0 = 0)

Arguments
z The whitened n x d data matrix, where n is the number of observations and d the
number of components.
theta.o Determines the interval to be searched by the optimizer: lower bound = theta.0,
upper bound = pi/2. Changing theta.0 affects the initial value, where the initial
value = theta.0+(1/2+sqrt(5)/2)*pi/2, see optimize.
Value
theta.hat Estimated minimum.
W W = t(theta2W(theta.hat))
S Estimated independent components.

obj The distance covariance of S.
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Author(s)

David Matteson and Benjamin Risk

References

Matteson, D. S. & Tsay, R. Independent component analysis via U-Statistics. <http://www.stat.cornell.edu/~matteson/#ICA>

See Also

steadyICA, optimize

Examples

library(JADE)

library(ProDenICA)

set.seed(123)

simS = cbind(rjordan(letter="j',n=1024),rjordan(letter="m',n=1024))
simM = mixmat(p=2)

xData = simS%*%simM

xWhitened = whitener(xData)

#Define true unmixing matrix as true M multiplied by the estimated whitener:
#Call this the target matrix:
W.true <- solve(simM%*%xWhitened$whitener)

a=Sys.time()
est.dCovICA = dcovICA(Z = xWhitened$Z,theta.0=0)
Sys.time()-a

#See the example with steadyICA for an explanation
#of the parameterization used in amari.error:
amari.error(t(est.dCovICASW),W.true)

##NOTE: also try theta.@ = pi/4 since there may be local minima
## Not run: est.dcovICA = dcovICA(Z = xWhitened$Z,theta.0=pi/4)
amari.error(t(est.dcovICA$W),W. true)

## End(Not run)

a=Sys.time()

est.steadyICA = steadyICA(X=xWhitened$Z,verbose=TRUE)
Sys.time()-a

amari.error(t(est.steadyICA$W),W. true)

##theta parameterization with optimize is much faster

dcovustat Calculate distance covariance via U-statistics
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Description

Calculates the square of the U-statistic formulation of distance covariance. This is faster than the
function ’dcov’ in the R package ’energy’ and requires less memory. Note that negative values are
possible in this version.

Usage

dcovustat(x,y,alpha=1)

Arguments
X A vector or matrix.
y A vector or matrix with the same number of observations as x, though the num-
ber of columns of x and y may differ
alpha A scaling parameter in the interval (0,2] used for calculating distances.
Value

Returns the distance covariance U-statistic.

Note

The value returned by dcovustat is equal to the square of the value returned by energy::dcov in the
limit.

In dcovustat, a vector of length n is stored; in energy::dcov, an n x n matrix is stored. Thus, dcovustat
requires far less memory and works for very large datasets.

Even though dcovustat converges to the square of the distance covariance of the random variables
x and y, it can be negative.

Author(s)

David Matteson

References

Matteson, D. S. & Tsay, R. Independent component analysis via U-Statistics. <http://www.stat.cornell.edu/~matteson/#ICA>

Szekely, G., Rizzo, M. & Bakirov, N. Measuring and testing dependence by correlation of distances.
(2007) The Annals of Statistics, 35, 2769-2794.

See Also

multidcov, energy: :dcov
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Examples
x = rnorm(5000)
y = rbinom(5000,1,0.5)
y =y - 1x(y==0)
z = y*exp(-x) #some non-linear dependence

dcovustat(x[1:1000],y[1:1000]) #close to zero

a = Sys.time()
dcovustat(x[1:1000],z[1:1000]) #greater than zero
a = Sys.time() - a

#measures of linear dependence close to zero:
cov(x,z)
cor(rank(x),rank(z))

## Not run:

#dcovustat differs from energy::dcov but are equal in the limit
library(energy)

b = Sys.time()

(dcov(x[1:1000],z[1:1000]1))*2

b = Sys.time() - b

as.double(b)/as.double(a) #dcovustat is much faster

## energy::dcov and dcovustat become approximately equal as n increases:
c = Sys.time()

dcovustat(x,z)

c = difftime(Sys.time(), c, sec)

d = Sys.time()

(dcov(x,z)*2)

d = difftime(Sys.time(), d, sec)

as.double(d)/as.double(c)

## End(Not run)

frobICA match mixing matrices or ICs and calculate their Frobenius distance

Description

The ICA model is only identifiable up to signed permutations of the ICs. This function provides a
similarity measure between two mixing matrices for the model X =S M + E, where X isn x p, S
isn x d, and M is d x p. The input is either two mixing matrices M1 and M2 or two matrices of
independent components S1 and S2. For M1 and M2, frobICA() finds the signed row permutation
of M2 that minimizes the Frobenius norm between M1 and M2 using the Hungarian method. For S1
and S2, frobICA() finds the signed column permutation of S2 that minimizes the Frobenius norm
between S1 and S2. This function allows the mixing matrices (or independent components) to have
differing numbers of rows (respectively, columns) such that the similarity measure is defined by the
matching rows (resp., columns), and the non-matching rows (resp., columns) are discarded.
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Usage

frobICA(M1 = NULL, M2 = NULL, S1 = NULL, S2 = NULL, standardize = FALSE)

Arguments
M1 A d X p mixing matrix
M2 A d x q mixing matrix
S1 An n x d matrix of independent components
S2 An n x q matrix of independent components
standardize Logical. See Note.

Details

frobICAM1,M2) = 0 if there exists a signed permutation of the rows of M2 such that M1 =
P%*%M2, where P is a d x q signed permutation matrix, i.e., composed of 0, 1, and -1, with d
<= q; the function also allows d > q, in which case frobICA(M1,M2) = 0 if there exists a P such
that P%*% M1 = M2. Unlike other ICA performance measures, this function can accomodate
non-square mixing matrices.

Value
returns the Frobenius norm divided by p*min(d,q) (or n*min(d,q)) of the matched mixing matrices
(resp., matched independent components).

Note

If standardize=TRUE, then scales the rows of M1 and M2 to have unit norm or the columns of S1
and S2 to have zero mean and sample variance equal to one. The user can supply either M1 and M2
or S1 and S2 but not both.

Author(s)

Benjamin Risk

References

Kuhn, H. The Hungarian Method for the assignment problem Naval Research Logistics Quarterly,
1955,2,83-97

Risk, B.B., D.S. Matteson, D. Ruppert, A. Eloyan, B.S. Caffo. In review, 2013. Evaluating ICA
methods with an application to resting state fMRI.

See Also

JADE: :MD clue: :solve_LSAP matchICA
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Examples

matl <- matrix(rnorm(4x6),nrow=4)

perm <- matrix(c(-1,0,90,0,0,0,1,0,0,1,0,0,0,0,0,1),4,4)
mat2 <- perm¥%*%mat1l

sqgrt(sum((mat1-mat2)*2))

frobICA(M1=mat1,M2=mat2)

#Another example showing invariance to permutations:
covMat <- t(mat1)%x%matl

mvsample <- matrix(rnorm(400),100,4)%x%mat1
frobICA(M1=cov(mvsample),M2=covMat)
frobICA(M1=cov(mvsample),M2=covMat[sample(1:6),])

#Example using independent components:
nObs=300

simS<-cbind(rgamma(nObs, shape = 1, scale = 2),

1
rgamma(nObs, shape = 3, scale = 2),
rgamma(nObs, shape = 3, scale = 2),
rgamma(nObs, shape = 9, scale = 0.5))

#not necessary in this example, but this should be done when used with ICA:
simS <- apply(simS,2,scale)

frobICA(S1=simS, S2=simS%*%perm)

## Not run:

#returns an error if S1 and S2 are not explicitly defined:

frobICA(simS, simS%x%perm)

## End(Not run)

gmultidcov Symmetric multivariate distance covariance for grouped components

Description
Calculate either the symmetric or asymmetric multivariate distance covariance statistic for a given
grouping of the components.

Usage
gmultidcov (S, group=1:ncol(S),alpha=1,symmetric=TRUE)

Arguments
S The n x d matrix for which you wish to calculate the dependence between d
columns from n samples
group A length d vector which indicates group membership for each component
alpha A scaling parameter in the interval (0,2] used for calculating distances.
symmetric logical; if TRUE (the default), calculates the symmetric version of the multivari-

ate distance covariance. See details.
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Details

Suppose that the groups are numbered 1,2,...,C and that group is a vector indicating group member-
ship for each component. If symmetric==TRUE, calculates: sum_i=1"C dcovustat(S[,group==i],S[,group!=i])
If symmetric==FALSE, calculates: sum_i=1"C-1 dcovustat(S[,group==i],S[,group>i])

Value

Returns a scalar equal to the multivariate distance covariance statistic for grouped components of S.

Author(s)

Nicholas James

See Also

dcovustat, energy: :dcov

Examples

library(steadyICA)

S = matrix(rnorm(300),ncol=3)

group = c(1,2,2)

gmultidcov(S,group,TRUE) # close to zero
gmultidcov(S,group,FALSE) # sill close to zero

Sigma = matrix(c(1,0.7,0,0.7,1,-0.2,0,-0.2,1),ncol=3)
X = MASS::mvrnorm(100,rep(0,3),Sigma)
gmultidcov(X,group,TRUE) # further from zero
gmultidcov(X,group,FALSE) # further from zero

infomaxICA Estimates independent components via infomax

Description

Estimate independent components using the infomax criteria, which is equivalent to maximum
likelihood using the logistic density, exp(-S)/(1+exp(-S))"2.

Usage

infomaxICA(X, n.comp, W.list = NULL, whiten = FALSE, maxit = 500, eps = 1e-08,
alpha.eps = 1e-08, verbose = FALSE, restarts=0)
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Arguments

X
n.comp
W.list

whiten

maxit
eps

alpha.eps

verbose

restarts

Details

11

the n X p data matrix
number of components to be estimated
list of orthogonal matrices for initialization

Whitens the data before applying ICA, i.e., X%*%whitener = Z, where Z has
mean zero and empirical covariance equal to the identity matrix, and Z is then
used as the input.

maximum number of iterations
algorithm terminates when the norm of the gradient is less than eps

tolerance controlling the level of annealing: algorithm terminates with a warning
if the learning parameter is less than alpha.eps

if TRUE, prints (1) the value of the infomax objective function at each iteration,
(2) the norm of the gradient, and (3) current value of the learning parameter
alpha.

An integer determining the number of initial matrices to use in estimating the
ICA model. The objective function has local optima, so multiple starting values
are recommended. If whiten=TRUE, then generates random orthogonal matri-
ces. If whiten=FALSE, generate random matrices from rnorm(). See code for
details.

This is an R version of ICA using the infomax criteria that provides an alternative to Matlab code
(ftp://ftp.cnl.salk.edu/pub/tony/sep96.public), but with a few modifications. First, we
use the full data (the so-called offline algorithm) in each iteration rather than an online algorithm
with batches. Secondly, we use an adaptive method to choose the step size (based upon Bernaards
and Jennrich 2005), which speeds up convergence. We also omitted the bias term (intercept) in-
cluded in the original formulation because we centered our data.

Value

S
W

.F
Table

convergence

Note

the estimated independent components

if whiten=TRUE, returns the orthogonal unmixing matrix; no value is returned
when whiten=FALSE

Returns the estimated mixing matrix for the model X = S M, where X is not
pre-whitened (although X is centered)

the value of the objective function at the estimated S
summarizes algorithm status at each iteration

1 if norm of the gradient is less than eps, 2 if the learning parameter was smaller
than alpha.eps, which usually means the gradient is sufficiently small, O other-
wise

In contrast to most other ICA methods, W is not contrained to be orthogonal.


ftp://ftp.cnl.salk.edu/pub/tony/sep96.public
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Author(s)

Benjamin Risk

References

Bell, A. & Sejnowski, T. An information-maximization approach to blind separation and blind
deconvolution Neural computation, Neural computation, 1995, 7, 1129-1159.

Bernaards, C. A. and Jennrich, R. I. (2005) Gradient Projection Algorithms and Software for Ar-
bitrary Rotation Criteria in Factor Analysis, Educational and Psychological Measurement 65, 676-
696. <http://www.stat.ucla.edu/research/gpa>

Examples

## Example when p > d. The MD function and amari measures
# are not defined for M. We can compare the

# "true W inverse”, which is the mixing matrix multiplied
# by the whitening matrix; alternatively, we can use

# multidcov::frobICA. These two approaches are

# demonstrated below:

set.seed(999)
nObs <- 1024
nComp <- 3

# simulate from gamma distributions with

# varying amounts of skewness:

simS<-cbind(rgamma(nObs, shape = 1, scale = 2),
rgamma(nObs, shape = 3, scale = 2),
rgamma(nObs, shape = 9, scale = 0.5))

#standardize by expected value and variance:
simS[,1] = (simS[,1] - 1x2)/sqrt(1x2*2)
simS[,2] = (simS[,2] - 3*2)/sqrt(3*2*2)
simS[, 3] (simS[,3] - 9%0.5)/sqrt(9*0.5%2)

# slightly revised 'mixmat' function (from ProDenICA)
# for p>=d: uses fastICA and ProDenICA parameterization:
myMixmat <- function (p = 2, d = NULL) {

if(is.null(d)) d = p

a <- matrix(rnorm(d * p), d, p)

sa <- La.svd(a)

dL <- sort(runif(d) + 1)

mat <- sa$u%x%(sa$vtxdL)

attr(mat, "condition") <- dL[d]/dL[1]

mat

simM <- myMixmat(p = 6, d = nComp)

xData <- simS%x%simM

xWhitened <- whitener(xData, n.comp = nComp)

#Define a 'true' W (uses the estimated whitening matrix):
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W.true <- solve(simM%*%xWhitened$whitener)
estInfomax <- infomaxICA(X = xData, n.comp = nComp, whiten = TRUE, verbose = TRUE)

frobICA(estInfomax$M, simM)

library(JADE)
MD(t(estInfomax$W),t(solve(W.true)))
amari.error(t(estInfomax$W),t(solve(W.true)))

matchICA match independent components using the Hungarian method

Description

The ICA model is only identifiable up to signed permutations of the ICs. This function finds the
signed permutation of a matrix S such that lIS%*%P - templatell is minimized. Optionally also
matches the mixing matrix M.

Usage

matchICA(S, template, M = NULL)

Arguments
S the n x d matrix of ICs to be matched
template the n x d matrix that S is matched to.
M an optional d x p mixing matrix corresponding to S that will also be matched to
the template
Value

Returns the signed permutation of S that is matched to the template. If the optional argument M is
provided, returns a list with the permuted S and M matrices.
Author(s)

Benjamin Risk

References

Kuhn, H. The Hungarian Method for the assignment problem Naval Research Logistics Quarterly,
1955, 2,83 -97

Risk, B.B., D.S. Matteson, D. Ruppert, A. Eloyan, B.S. Caffo. In review, 2013. Evaluating ICA
methods with an application to resting state fMRI.

See Also

frobICA clue::solve_LSAP
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Examples

set.seed(999)

nObs <- 1024

nComp <- 3

# simulate from some gamma distributions:

simS<-cbind(rgamma(nObs, shape = 1, scale = 2),
rgamma(nObs, shape = 3, scale = 2),
rgamma(nObs, shape = 9, scale = 0.5))

simM <- matrix(rnorm(9),3)

pMat <- matrix(c(o,-1,0,1,0,0,0,0,-1),3)
permS <- simS%x%pMat

permM <- t(pMat)%*%simM

matchedS <- matchICA(S = permS, template = simS, M = permM)
sum(abs(matchedS$S - simS))
sum(abs(simM - matchedS$M))

multidcov Symmetric multivariate distance covariance

Description

Calculate either the symmetric or asymmetric multivariate distance covariance statistic.

Usage
multidcov (S, symmetric=TRUE, alpha=1)

Arguments
S the n x d matrix for which you wish to calculate the dependence between d
columns from n samples
alpha A scaling parameter in the interval (0,2] used for calculating distances.
symmetric logical; if TRUE (the default), calculates the symmetric version of the multivari-
ate distance covariance. See details.
Details

If symmetric==TRUE, calculates: sum_i=1"d dcovustat(S[,i],S[,-i]) If symmetric==FALSE, calcu-
lates: sum_i=1"d-1 dcovustat(S[,i],S[,(i+1):d])

Value

returns a scalar equal to the multivariate distance covariance statistic for the columns of S

Author(s)

David Matteson
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See Also

dcovustat, energy: :dcov

Examples
nObs <- 1024
nComp <- 3

simM <- matrix(rnorm(nComp*nComp),nComp)

# simulate some data:

simS<-cbind(rgamma(nObs, shape = 1, scale = 2),
rgamma(nObs, shape = 3, scale = 2),
rgamma(nObs, shape = 9, scale = 0.5))

simS <- scale(simS) #Standardize variance for identifiability

#mix the sources:
xData <- simS %*% simM

multidcov(simS) #close to zero
multidcov(whitener(xData)$z) #should be larger than simS
multidcov(xData) #greater than zero

permTest Permutation test for mutual independence.

Description

Calculates an approximate p-values based upon a permutation test for mutual independence.

Usage
permTest(S, group=1:ncol(S), R=199, FUN=c('gmultidcov', 'compInd'), ...)
Arguments
S The n x d matrix for which you wish to test the dependence between d columns
from n samples
group A length d vector which indicates group membership for each component
R The number of permutations to perform in order to obtain the approximate p-
value.
FUN The function used to determine mutual independence. This is one of either gmul-

tidcov or complnd.

Additionl arguments passed to FUN. See details.
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Details

Suppose that the groups are numbered 1,2,...,C and that group is a vector indicating group member-
ship for each component. If symmetric==TRUE, calculates: sum_i=1"C dcovustat(S[,group==i],S[,group!=i])
If symmetric==FALSE, calculates: sum_i=1"C-1 dcovustat(S[,group==i],S[,group>i])

If no additional arguments are supplied for FUN then the default values are used. In the case of
gmultidcov, values for alpha and symmetric can be supplied. While for compInd only the value of
alpha is needed.

Value

Returns an approximate p-values based upon a permutation test.

Author(s)

Nicholas James

See Also

dcovustat, energy: :dcov

rightskew force ICs to have positive skewness and order by skewness

Description

The ICA model is only identifiable up to signed permutations. This function provides a canonical
ordering for ICA that is useful for fMRI or studies where signals are skewed. Multiplies columns of

S that are left-skewed by -1 to force right skewness. Optionally orders the columns by descending
skewness.

Usage

rightskew(S, M = NULL, order.skew = TRUE)

Arguments
S n x d matrix
M d x p mixing matrix
order.skew Option to return the permutation of columns of S from largest to smallest skew-
ness. Also returns a permuted version of M that corresponds with the permuted
S.
Value

Returns the matrix S such that all columns have positive skewness. If optional argument M is
supplied, returns a list with the new S and corresponding M.
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Author(s)

Benjamin Risk

References

Eloyan, A. & Ghosh, S. A Semiparametric Approach to Source Separation using Independent Com-
ponent Analysis Computational Statistics and Data Analysis, 2013, 58, 383 - 396.

Examples

nObs = 1024

simS<-cbind(rgamma(nObs, shape = 1, scale = 2),
rgamma(nObs, shape = 9, scale = 0.5),
-1*rgamma(nObs, shape = 3, scale = 2))

apply(simS, 2, function(x){
(sum((x - mean(x))*3)/length(x))/(sum((x - mean(x))*2)/length(x))*(3/2)3})

canonicalS <- rightskew(simS)

apply(canonicalS, 2, function(x){
(sum((x - mean(x))”*3)/length(x))/(sum((x - mean(x))"2)/length(x))*(3/2)})

steadyICA Estimate independent components by minimizing distance covariance

Description

The model is: X =S M + E, where X is n x p and has mean zero, Sisnx d, Mis d x p, and E is
measurement error. For whitened data, we have Z = S t(W), where W is orthogonal. We find the
matrix M such that S minimizes the distance covariance dependency measure.

Usage
steadyICA(X, n.comp = ncol(X), w.init = NULL, PIT = FALSE, bw = 'SJ', adjust =1,

whiten = FALSE, irlba = FALSE, symmetric = FALSE, eps = 1e-08, alpha.eps = 1e-08,
maxit = 100, method = c('Cpp','R'), verbose = FALSE)

Arguments
X The n x p data matrix, where n is the number of observations.
n.comp number of components to be estimated
w.init a p x d initial unmixing matrix
PIT logical; if TRUE, the distribution and density of the independent components

are estimated using gaussian kernel density estimates.

bw Argument for bandwidth selection method; defaults to *SJ’; see stats::density
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adjust adjust bandwidth selection; e.g., if observations are correlated, consider using
adjust > 1; see stats::density

whiten logical; if TRUE, whitens the data before applying ICA, i.e., X%*%whitener =
Z, where Z has mean zero and empirical covariance equal to the identity matrix,
and Z is then used as the input.

irlba logical; when whiten=TRUE, irlbA=TRUE uses the R-package ’irlba’ in the
whitening, which is generally faster than base::svd though sometimes less accu-
rate

symmetric logical; if TRUE, implements the symmetric version of the ICA algorithm,
which is invariant to the ordering of the columns of X but is slower

eps algorithm terminates when the norm of the gradient of multidcov is less than eps

maxit maximum number of iterations

alpha.eps tolerance controlling the level of annealing: algorithm terminates with a warning

if the learning parameter is less than alpha.eps

method options *Cpp’ (default), which requires the package Rcpp’, or 'R’, which is
solely written in R but is much slower

verbose logical; if TRUE, prints the value of multidcov, norm of the gradient, and current
value of the learning parameter.

Value
S the estimated independent components
W the estimated unmixing matrix: if whiten=TRUE, W is orthogonal and corre-
sponds to Z W = S; if whiten=FALSE, corresponds to X ginv(M) = S
M Returns the estimated mixing matrix for the model X = S M, where X is not
pre-whitened (although X is centered)
f the value of the objective function at the estimated S
Table summarizes algorithm status at each iteration
convergence 1 if norm of the gradient is less than eps, 2 if the learning parameter was smaller
than alpha.eps, which usually means the gradient is sufficiently small, O other-
wise
Author(s)

Benjamin Risk

References

Matteson, D. S. & Tsay, R. Independent component analysis via U-Statistics. <http://www.stat.cornell.edu/~matteson/#ICA>

See Also

multidcov



steadyICA 19

Examples

set.seed(999)

nObs <- 1024

nComp <- 3

# simulate from some gamma distributions:

simS<-cbind(rgamma(nObs, shape = 1, scale = 2),
rgamma(nObs, shape = 3, scale = 2),
rgamma(nObs, shape = 9, scale = 0.5))

#standardize by expected value and variance:
simS[,1] = (simS[,1] - 1x2)/sqrt(1x22)
simS[, 2] (simS[,2] - 3%2)/sqrt(3*2*2)
simS[,3] = (simS[,3] - 9%0.5)/sqrt(9%0.5%2)

# slightly revised 'mixmat' function (from ProDenICA)
# for p>=d: uses fastICA and ProDenICA parameterization:
myMixmat <- function (p = 2, d = NULL) {

if(is.null(d)) d = p

a <- matrix(rnorm(d * p), d, p)

sa <- La.svd(a)

dL <- sort(runif(d) + 1)

mat <- sa$u%*x%(sa$vt*dL)

attr(mat, "condition”) <- dL[d]/dL[1]

mat

}

simM <- myMixmat(p = 6, d = nComp)
xData <- simS%*%simM
xWhitened <- whitener(xData, n.comp = nComp)

#testimate mixing matrix:
est.steadyICA.v1 = steadyICA(X = xData,whiten=TRUE,n.comp=nComp,verbose = TRUE)

#Define the 'true' W:
W.true <- solve(simM%*%xWhitened$whitener)

frobICA(M1=est.steadyICA.v1$M,M2=simM)
frobICA(S1=est.steadyICA.v1$S,S2=simS)

## Not run:
#now initiate from target:
est.steadyICA.v2 = steadyICA(X = xData, w.init=W.true, n.comp = nComp, whiten=TRUE, verbose=TRUE)

#estimate using PIT steadyICA such that dimension reduction is via ICA:
est.steadyICA.v3 = steadyICA(X = xData, w.init=ginv(est.steadyICA.v2$M),
PIT=TRUE, n.comp = nComp, whiten=FALSE, verbose=TRUE)

frobICA(M1=est.steadyICA.v2$M,M2=simM)
frobICA(M1=est.steadyICA.v3$M,M2=simM)
frobICA(S1=est.steadyICA.v2$S,S2=simS)

#tends to be lower than PCA-based (i.e., whitening) methods:
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theta2W

frobICA(S1=est.steadyICA.v3$S,S2=simS)

# JADE uses a different parameterization and different notation.
# Using our parameterization and notation, the arguments for

# JADE::amari.error correspond to:

amari.error(t(W.hat), W.true)

library(JADE)

amari.error(t(est.steadyICA.v1$W), W.true)
amari.error(t(est.steadyICA.v2$W), W.true)
##note that a square W is not estimated if PIT=TRUE and whiten=FALSE

#Compare performance to fastICA:

library(fastICA)

est.fastICA = fastICA(X = xData, n.comp = 3, tol=1e-07)
amari.error(t(est.fastICA$W), W.true)

##steadyICA usually outperforms fastICA

##Compare performance to ProDenICA:

library(ProDenICA)

est.ProDenICA = ProDenICA(x = xWhitened$Z, k = 3, maxit=40,trace=TRUE)
amari.error(t(est.ProDenICA$W), W.true)

##ProDenICA and steadyICA tend to be similar when sources

#i#are continuously differentiable

## End(Not run)

theta2w Convert angles to an orthogonal matrix.

Description

Convert d*(d-1)/2 angles from a sequence of Givens rotations to a d x d orthogonal matrix.

Usage
theta2W(theta)
Arguments
theta A scalar or vector of length d*(d-1)/2 of values from which the d x d orthogonal
matrix is calculated.
Value

A d x d orthogonal matrix resulting from the sequence of d*(d-1)/2 Givens rotation matrices.

Author(s)

David S. Matteson
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References

Golub, G. & Van Loan, C. 1996. Matrix computations. Johns Hopkins University Press.

See Also

W2theta

Examples

#Generate orthogonal matrix:
mat <- matrix(rnorm(9),3,3)
W = svd(mat)$u

theta <- W2theta(W)

#Recovers W:
theta2W(theta)

W2theta Convert an orthogonal matrix to its angular parameterization.

Description

Convert a d x d orthogonal matrix to a sequence of d*(d-1)/2 Givens rotations.

Usage

W2theta(W)

Arguments

W A d x d orthogonal matrix.

Details

A d x d orthogonal matrix can be decomposed into a series of d*(d-1)/2 Givens rotation matrices,
where each matrix is parameterized by a single angle.

Value

A vector of length d*(d-1)/2 comprised of the angles.

Author(s)

David S. Matteson

References

Golub, G. & Van Loan, C. 1996. Matrix computations. Johns Hopkins University Press.
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See Also

theta2W

Examples

theta = c(pi/6,pi/4,pi/2)
(W = theta2W(theta))

#Recover theta:
W2theta(W)

whitener

whitener Whitening function

Description

Subtract column means and transform columns such that the empirical covariance is equal to the

identity matrix. Uses the SVD.

Usage

whitener (X, n.comp = ncol(X), center.row

= FALSE, irlba = FALSE)

Arguments
X n X p matrix
n.comp number of components to retain, i.e., first n.comp left eigenvectors from svd are
retained
center.row center both rows and columns prior to applying SVD (the resulting whitened
data does not have zero-mean rows)
irlba if TRUE, uses irlba to approximate the first n.comp left eigenvectors. See Note.
Value
whitener the matrix such that X%*%whitener has zero mean and covariance equal to the
identity matrix
z the whitened data, i.e., X%*%whitener = Z
Note

The use of the option ’irlba = TRUE’ requires the package irlba and is very useful for large p.
The function irlba only calculates the first n.comp eigenvectors and is much faster than svd for p »

n.comp, for e.g., in groupICA of fMRI data.



whitener

Author(s)

Benjamin Risk

See Also

svd, irlba::irlba

Examples

simData <- cbind(rnorm(1000,1,2),rnorm(1000,-1,3),rnorm(1000,4,1))
simMVN <- simData%*%matrix(rnorm(12),3,4)

simWhiten <- whitener(simMVN,n.comp = 3)

colMeans(simWhiten$Z)

cov(simWhiten$Z)
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* Givens * ica
theta2w, 20 steadyICA-package, 2
W2theta, 21 + independent
* ICA steadyICA, 17
dcoVvICA, 4 * infomax
frobICA, 7 steadyICA-package, 2
matchICA, 13 + matching
steadyICA, 17 steadyICA-package, 2
* covariance * orthogonal
compInd, 3 theta2w, 20
dcovICA, 4 W2theta, 21
dcovustat, 5 * prewhiten
gmultidcov, 9 whitener, 22
multidcov, 14 x standardize
permTest, 15 whitener, 22
steadyICA, 17 * whiten
steadyICA-package, 2 steadyICA-package, 2
% dcovICA whitener, 22
steadyICA-package, 2 clue::solve_LSAP, 8, I3
* deov compInd, 3
compInd, 3 >
dcovustat, 5 dcovICA, 4
gnultidcov, 9 dcovustat, 4, 5, 10, 15, 16
multidcov, 14
permTest, 15 energy: :dcov, 4, 6, 10, 15, 16
x distance
compInd, 3 fastICA, 3
dcovICA, 4 frobICA, 7, 13
dcovustat, 5
frobICA, 7 gmultidcov, 9

gmultidcov, 9
multidcov, 14
permTest, 15

steadyICA, 17

infomaxICA, 10
irlba::irlba, 23

JADE: :MD, 8
steadyICA-package, 2
x givens matchICA, 8, 13
dcovICA, 4 multidcov, 6, 14, 18
+ hungarian
matchICA, 13 optimize, 4, 5
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permTest, 15
ProDenICA: :ProDenICA, 3

rightskew, 16

steadyICA, 5, 17
steadyICA-package, 2
svd, 23

theta2Ww, 20, 22

W2theta, 217, 21
whiten (whitener), 22
whitener, 22
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