## ----german------------------------------------------------------------------- data("german", package = "rchallenge") ## ----germansample------------------------------------------------------------- set.seed(2409) dat <- droplevels(german[sample(seq_len(NROW(german)), size = 500), ]) ## ----germanstr2, eval = FALSE------------------------------------------------- # str(dat) ## ----germanstr3, echo = FALSE------------------------------------------------- str(dat, width = 80, strict.width = "cut") ## ----ctree-------------------------------------------------------------------- set.seed(2906) ct_partykit <- partykit::ctree(credit_risk ~ ., data = dat, control = partykit::ctree_control(mtry = 5, teststat = "quadratic", testtype = "Univariate", mincriterion = 0, saveinfo = FALSE)) ## ----stablelearner_cforest---------------------------------------------------- set.seed(2907) cf_stablelearner <- stablelearner::stabletree(ct_partykit, sampler = stablelearner::subsampling, savetrees = TRUE, B = 100, v = 0.632) ## ----stablelearner_methods---------------------------------------------------- summary(cf_stablelearner, original = FALSE) ## ----stablelearner_barplot, fig.height = 4, fig.width = 8--------------------- barplot(cf_stablelearner, original = FALSE, cex.names = 0.6) ## ----stablelearner_image, fig.height = 4, fig.width = 8----------------------- image(cf_stablelearner, original = FALSE, cex.names = 0.6) ## ----stablelearner_plot, fig.height = 12, fig.width = 8----------------------- plot(cf_stablelearner, original = FALSE, select = c("status", "present_residence", "duration")) ## ----stablelearner_trees, eval = FALSE---------------------------------------- # cf_stablelearner$tree[[1]] ## ----partykit_cforest--------------------------------------------------------- set.seed(2908) cf_partykit <- partykit::cforest(credit_risk ~ ., data = dat, ntree = 100, mtry = 5) ## ----as.stabletree_partykit, eval = FALSE------------------------------------- # cf_partykit_st <- stablelearner::as.stabletree(cf_partykit) # summary(cf_partykit_st, original = FALSE) # barplot(cf_partykit_st) # image(cf_partykit_st) # plot(cf_partykit_st, select = c("status", "present_residence", "duration")) ## ----partykit_varimp---------------------------------------------------------- partykit::varimp(cf_partykit) ## ----party_cforest, eval = FALSE---------------------------------------------- # set.seed(2909) # cf_party <- party::cforest(credit_risk ~ ., data = dat, # control = party::cforest_unbiased(ntree = 100, mtry = 5)) ## ----as.stabletree_party, eval = FALSE---------------------------------------- # cf_party_st <- stablelearner::as.stabletree(cf_party) # summary(cf_party_st, original = FALSE) # barplot(cf_party_st) # image(cf_party_st) # plot(cf_party_st, select = c("status", "present_residence", "duration")) ## ----randomForest------------------------------------------------------------- set.seed(2910) rf <- randomForest::randomForest(credit_risk ~ ., data = dat, ntree = 100, mtry = 5) ## ----as.stabletree_randomForest----------------------------------------------- rf_st <- stablelearner::as.stabletree(rf) summary(rf_st, original = FALSE) ## ----rf_barplot, fig.height = 4, fig.width = 8-------------------------------- barplot(rf_st, cex.names = 0.6) ## ----rf_image, fig.height = 4, fig.width = 8---------------------------------- image(rf_st, cex.names = 0.6) ## ----rf_plot, fig.height = 12, fig.width = 8---------------------------------- plot(rf_st, select = c("status", "present_residence", "duration")) ## ----ranger, eval = FALSE----------------------------------------------------- # set.seed(2911) # rf_ranger <- ranger::ranger(credit_risk ~ ., data = dat, # num.trees = 100, mtry = 5) ## ----as.stabletree_ranger, eval = FALSE--------------------------------------- # rf_ranger_st <- stablelearner::as.stabletree(rf_ranger) # summary(rf_ranger_st, original = FALSE) # barplot(rf_ranger_st) # image(rf_ranger_st) # plot(rf_ranger_st, select = c("status", "present_residence", "duration"))