## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(sprtt) ## ---- echo=TRUE--------------------------------------------------------------- d <- 0.2 ## ---- echo=TRUE--------------------------------------------------------------- alpha <- 0.05 power <- 0.95 ## ---- echo=TRUE--------------------------------------------------------------- paired <- TRUE ## ---- echo=TRUE--------------------------------------------------------------- alternative <- "greater" ## ---- echo=TRUE--------------------------------------------------------------- # first data from the Human Resources department --- # current sample size n_person <- 2 # get data df <- df_stress[1:n_person,] # print data df # sequential t-test results <- seq_ttest(df$one_year_stress, df$baseline_stress, alpha = alpha, power = power, d = d, paired = paired, alternative = alternative, verbose = FALSE) # print results: console output results ## ---- echo=TRUE--------------------------------------------------------------- results@decision ## ---- echo=TRUE--------------------------------------------------------------- # new data from the Human Resources department --- # get one more person n_person <- n_person + 1 df <- df_stress[1:n_person,] # print new data df # sequential t-test results <- seq_ttest(df$one_year_stress, df$baseline_stress, alpha = alpha, power = power, d = d, paired = paired, alternative = alternative, verbose = FALSE) # print results results@decision ## ---- echo=TRUE--------------------------------------------------------------- # define the starting point decision <- "continue sampling" n_person <- 3 # simulation of the sequential procedure while(decision == "continue sampling") { # get the current data df <- df_stress[1:n_person,] # run the sequential test and save the results results <- seq_ttest(df$one_year_stress, df$baseline_stress, alpha = alpha, power = power, d = d, paired = paired, alternative = alternative) # save the current desicion decision <- results@decision # add a new person n_person <- n_person + 1 # break if the maximum of the data is reached if (n_person > nrow(df_stress)) { break } } # console output results ## ---- echo=TRUE--------------------------------------------------------------- # Required results for the report # likelihood ratio (LR) LR <- round(results@likelihood_ratio, digits = 2) LR # sample size (N) = degrees of freedom +2 (two-samples) or +1 (one-sample & paired) N <- results@df + 1 N # baseline stress (M and SD) mean_t1 <- round(mean(df$baseline_stress), digits = 2) mean_t1 sd_t1 <- round(sd(df$baseline_stress), digits = 2) sd_t1 # after one year stress (M and SD) mean_t2 <- round(mean(df$one_year_stress), digits = 2) mean_t2 sd_t2 <- round(sd(df$one_year_stress), digits = 2) sd_t2 # NOT INCLUDED IN THE PACKAGE # calculate effect size: Cohen´s d d_results <- effsize::cohen.d(df$one_year_stress, df$baseline_stress, paired = TRUE) d <- round(d_results$estimate, digits = 2) d # confidence intervall d_lower <- round(d_results$conf.int[[1]], digits = 2) d_lower d_upper <- round(d_results$conf.int[[2]], digits = 2) d_upper