Package 'spduration'

February 8, 2024

Title Split-Population Duration (Cure) Regression

Version 0.17.2

Description An implementation of split-population duration regression models. Unlike regular duration models, split-population duration models are mixture models that accommodate the presence of a sub-population that is not at risk for failure, e.g. cancer patients who have been cured by treatment. This package implements Weibull and Loglogistic forms for the duration component, and focuses on data with time-varying covariates. These models were originally formulated in Boag (1949) and Berkson and Gage (1952), and extended in Schmidt and Witte (1989).

Encoding UTF-8

Depends R (>= 3.1.2)

License GPL-3

LazyData true

Imports corpcor, graphics, forecast, MASS, stats, Rcpp (>= 0.11.0), separationplot, xtable

Suggests covr, devtools, testthat, knitr, rmarkdown, tibble

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.3.1

VignetteBuilder knitr

URL https://github.com/andybega/spduration,

https://www.andybeger.com/spduration/

BugReports https://github.com/andybega/spduration/issues

NeedsCompilation yes

```
      Author
      Andreas Beger [aut, cre] (<https://orcid.org/0000-0003-1883-3169>),

      Daina Chiba [aut] (<https://orcid.org/0000-0002-9208-4373>),

      Daniel W. Hill, Jr. [aut],

      Nils W. Metternich [aut] (<https://orcid.org/0000-0001-8757-0409>),

      Shahryar Minhas [aut],

      Michael D. Ward [aut, cph] (<https://orcid.org/0000-0002-6561-6186>)
```

Maintainer Andreas Beger <adbeger@gmail.com> Repository CRAN Date/Publication 2024-02-08 10:10:02 UTC

R topics documented:

accessors	2
add_duration	3
AIC.spdur	5
as.data.frame.spdur	6
BIC.spdur	7
bscoup	7
coups	8
forecast.spdur	9
model.coups	10
*	11
plot.spdur	12
plot_hazard	
plot_hazard1	13
plot_hazard2	14
predict.spdur	14
print.summary.spdur	16
sepplot	17
spdur	18
spduration	20
summary.spdur	21
xtable.spdur	22
	23

Index

accessors

Accessor methods for spdur Objects

Description

Several standard accessor methods for a spdur class object.

Usage

```
## S3 method for class 'spdur'
logLik(object, ...)
## S3 method for class 'spdur'
nobs(object, ...)
## S3 method for class 'spdur'
```

add_duration

```
coef(object, model = c("full", "duration", "risk", "distr"), ...)
## S3 method for class 'spdur'
vcov(object, model = c("full", "duration", "risk", "distr"), ...)
## S3 method for class 'spdur'
model.matrix(object, model = c("duration", "risk"), ...)
## S3 method for class 'spdur'
terms(x, model = c("duration", "risk"), ...)
```

Arguments

object	an object inheriting from class spdur.
	not used
model	return full model, or only duration or risk equations, or distribution parameters.
x	spdur class object for terms

See Also

AIC.spdur, BIC.spdur

Examples

```
data(model.coups)
logLik(model.coups)
nobs(model.coups)
coef(model.coups)
vcov(model.coups)
head(model.matrix(model.coups))
terms(model.coups)
```

add_duration

Add duration variables to panel data

Description

Builds a duration version of a data frame representing panel data.

Usage

```
add_duration(
   data,
   y,
   unitID,
   tID,
   freq = "month",
   sort = FALSE,
   ongoing = TRUE,
   slice.last = FALSE
)
```

Arguments

data	Data frame representing panel data.
У	A binary indicator of the incidence of some event, e.g. a coup.
unitID	Name of the variable in the data frame identifying the cross-sectional units, e.g. "country".
tID	Name of the variable in the data frame identifying the time unit, preferably as class Date. E.g. "year".
freq	Frequency at which units are measured in tID. Currently yearly, monthly, and daily data are supported, i.e. "year", "month", or "day".
sort	Sort data by unit and time? Default is FALSE, i.e. return data in original order.
ongoing	If TRUE, successive 1's are considered ongoing events and treated as NA after the first 1. If FALSE, successive 1's are all treated as failures.
slice.last	Set to TRUE to create a slice of the last time period; used with forecast.spdur. For compatibility with CRISP and ICEWS projects.

Details

This function processes a panel data frame by creating a failure variable from y and corresponding duration counter, as well as risk/immunity indicators. Supported time resolutions are year, month, and day, and input data should be (dis-)aggregated to one of these levels.

The returned data frame should have the same number of rows at the original. If y is an indicator of the incidence of some event, rather than an onset indicator, then ongoing spells of failure beyond the initial event are coded as NA (e.g. 000111 becomes a spell of 0001 NA NA). This is to preserve compatibility with the base dataset. Note that the order of rows may be different though.

There cannot be missing values ("NA") in any of the key variables y, unitID, or tID; they will stop the function.

Furthermore, series that start with an event, e.g. (100), are treated as experiencing failure in the first time period. If those events are in fact ongoing, e.g. the last year of a war that started before the start time of the dataset, they should be dropped manually before using buildDuration().

t.0 is the starting time of the period of observation at tID. It is by default set as duration - 1 and currently only serves as a placeholder to allow future expansion for varying observation times.

4

AIC.spdur

Value

Returns the original data frame with 8 duration-specific additional variables:

failure	Binary indicator of an event.
ongoing	Binary indicator for ongoing events, not counting the initial failure time.
end.spell	Binary indicator for the last observation in a spell, either due to censoring or failure.
cured	Binary indicator for spells that are coded as cured, or immune from failure. Equal to 1 - atrisk.
atrisk	Binary indicator for spells that are coded as at risk for failure. Equal to 1 - cured.
censor	Binary indicator for right-censored spells.
duration	t, counter for how long a spell has survived without failure.
t.0	Starting time for period observed during t, by default equals duration - 1.

See Also

panel_lag for lagging variables in a panel data frame before building duration data.

Examples

```
AIC.spdur
```

AIC method for spdur

Description

Computes the Akaike Information Criterion for an spdur class object.

Usage

S3 method for class 'spdur'
AIC(object, ..., k = 2)

Arguments

object	An object of class spdur.
	Optional arguments.
k	The penalty parameter, by default 2. For BIC.spdur, the penalty parameter equals $\log(N)$.

See Also

link{AIC}, link{BIC.spdur}

Examples

```
data(model.coups)
AIC(model.coups)
```

as.data.frame.spdur Convert spdur results to summary data frame

Description

table-like function for class "spdur".

Usage

```
## S3 method for class 'spdur'
as.data.frame(x, row.names = TRUE, optional = FALSE, ...)
```

Arguments

Х	An object with class spdur.
row.names	Indicates whether parameter names should be added as row names to the data frame returned, or as a separate column with blank row row names.
optional	Not used
	Not used.

Details

This will create a data frame containing the estimated coefficients and standard errors for the risk and duration equations of a split-population duration model. It's intended purpose is to help create larger tables combining several model results.

Value

An data frame with model coefficients and p-values.

See Also

xtable.spdur for formatting a single model to Latex output.

Examples

```
data(model.coups)
data.frame(model.coups)
```

6

BIC.spdur

Description

Computes the Bayesian Information Criterion for an spdur class object.

Usage

S3 method for class 'spdur'
BIC(object, ...)

Arguments

object	An object of class spdur.
	Optional arguments.

Details

Computed as AIC(object, k = log(nobs(object))).

See Also

BIC, AIC.spdur

Examples

data(model.coups)
BIC(model.coups)

bscoup

B&S 2003 coup data

Description

Replication data from Belkin and Schofer's 2003 paper on coups.

Usage

bscoup

Format

A data frame with 5463 observations of 14 variables:

countryid Gleditsch and Ward country codes.

year Year

couprisk Structural coup risk index, see paper for details.

recentcoups Alternative coup risk measure, running count of coups in past 10 years.

rwar Country participated in war in past 10 years.

milreg 1=Military regime, 0=other

wealth log of GDP per capita

instab Domestic instability and violence.

coup Indicator for successful coup.

africa Indicator for countries in Africa.

eurnam Indicator for countries in Europe and N. America.

samerica Indicator for countries in South America.

camerica Indicator for countries in Central America.

regconf Regional conflict.

Source

Belkin, Aaron and Evan Schofer. 2003. "Toward a structural understanding of coup risk." Journal of Conflict Resolution Vol. 47 No. 5.

Examples

```
data(bscoup)
table(bscoup$coup)
range(bscoup$year)
```

coups

Global coups, 1979 to 2010

Description

Data on global coups from 1979 to 2010 from Powell & Thyne

Usage

coups

forecast.spdur

Format

A data frame with 5828 observations of 9 variables:

gwcode Gleditsch and Ward country codes.

year Year, in date format.

coup1

succ.coup Successful coup, 0/1.

democ Polity democracy score (0-10).

autoc Polity autocracy score (0-10).

polity Polity score (democ-autoc).

polity2 Polity score with correction for regime transitions.

regtrans Regime transitions.

Source

Powell, Jonathan M. and Clayton L. Thyne. "Global instances of coups from 1950 to 2010: A new dataset." Journal of Peace Research Vol. 48 No. 2.

Gleditsch, Kristian S. and Michael D. Ward. 1999. "Interstate System Membership: A Revised List of the Independent States since 1816." International Interactions 25.

Examples

data(coups)
table(coups\$succ.coup)

forecast.spdur Forecast from a spdur model

Description

forecast method for spdur class objects.

Usage

```
## S3 method for class 'spdur'
forecast(
   object,
   ...,
   pred.data = NULL,
   stat = "conditional hazard",
   n.ahead = 6
)
```

Arguments

object	A spdur class model object.
	Optional arguments, not used.
pred.data	Data on which to base forecasts, i.e. slice of last time unit's observations for all cross-sectional units.
stat	Which statistic to forecast, see predict.spdur for possible options
n.ahead	How many time periods to predict ahead. Default is 6.

Details

This function will create out-of-sample predictions of "stat" using model estimates and the prediction data provided. It is assumed that prediction data consist of a slice of the last time period observed for the data used to estimate the model in object. For each row, forecast.spdur will estimate the model predictions for that time point and then extrapolate the resulting probability to n.ahead time periods using appropriate probability theory.

For situations in which the covariate values are known for future time periods, e.g. in a test sample use predict.spdur instead.

Examples

```
library(forecast)
data(coups)
data(model.coups)
coups.dur <- add_duration(coups, "succ.coup", "gwcode", "year", freq="year")
pred.data <- coups.dur[coups.dur$year==max(coups.dur$year), ]
pred.data <- pred.data[complete.cases(pred.data), ]
fcast <- forecast(model.coups, pred.data=pred.data)</pre>
```

model.coups

Model of global coups from 1979 to 2010

Description

This is a model object for a split-duration model of the Powell & Thyne coups. It is used in several example code sections to speed up package testing by eliminating the need to re-estimate a model each time.

Usage

model.coups

Format

An object of class spdur.

panel_lag

Source

For information on the data used in this model, see the data documentation, coups.

Examples

data(model.coups)
str(model.coups)

panel_lag

Lag panel data

Description

A function that correctly lags panel data where units are identified by id and time periods are identified with t. Results are in same order as data and are padded with NA as needed.

Usage

panel_lag(x, id, t, lag = 1, data = NULL)

Arguments

х	String identifying the vectors to be lagged in data.
id	String identifying the unit (e.g. country) identifier in data.
t	String identifying the time identifier in data.
lag	Lag order, i.e. by how many time periods should x be lagged? Unlike the default lag, positive values indicate that past data is used for the current time period.
data	A data frame. If not provided, a new one will be constructed with the vectors supplied for the other parameters.

Value

A vector of same length as x representing lagged values with leading NA's.

```
data(coups)
# No need to order before using panelLag, just do it here so we can compare results below.
coups <- coups[order(coups$gwcode, coups$year), ]
test <- panel_lag("polity2", "gwcode", "year", data=coups)
# Compare output</pre>
```

```
head(coups$polity2)
head(test)
```

plot.spdur

Description

Plot results from a spduration model. Two types are currently implemented: a separation plot for evaluating model predictions ("sepplot"), and a plot of the conditional hazard rate ("hazard"), with or without simulation-based confidence intervals.

Usage

S3 method for class 'spdur'
plot(x, type = "sepplot", ci = TRUE, ...)

Arguments

х	An object of class "spdur".
type	What kind of plot? "sepplot" or "hazard".
ci	For plots of the hazard rate, should a confidence interval be included?
	Optional parameters passed to sepplot or plot_hazard.

See Also

sepplot, plot_hazard

Examples

```
# get model estimates
data(model.coups)
# plot
plot(model.coups, type = "hazard")
plot(model.coups)
```

plot_hazard

Plot hazard function

Description

plot_hazard plots the shape of estimated hazard function in respect to duration, given a set of values for the duration and risk equations covariates. Confidence intervals are provided through simulation.

plot_hazard1

Usage

plot_hazard(x, t = NULL, ci = TRUE, n = 1000, xvals = NULL, zvals = NULL, ...)

Arguments

х	An object of class spdur
t	Time values at which to evaluate hazard function, e.g. $c(1:50)$. Defaults to 1 through 1.2 * maximum duration value in data.
ci	Compute simulation-based confidence interval?
n	Number of simulations to use for CI, defaults to 1,000.
xvals	A vector of values for the duration equation variables, in the same order as the duration equation in x. Defaults to means.
zvals	A vector of values for the risk equation variables, in the same order as the risk equation in x. Defaults to means.
	Additional parameters passed to plot.

See Also

sepplot

Examples

```
# Get model estimates
data(model.coups)
# Plot
plot_hazard(model.coups, ci = FALSE)
plot_hazard(model.coups, ci = TRUE)
```

plot_hazard1 Plot conditional hazard rate

Description

Plot hazard function without simulated confidence intervals. See plot_hazard instead.

Usage

plot_hazard1(x, ...)

Arguments

х	class "spdur" object
	passed to plot_hazard

Value

NULL, plots.

plot_hazard2 Simulate and plot hazard function

Description

Plot hazard function with simulated confidence intervals. See plot_hazard instead.

Usage

plot_hazard2(x, ...)

Arguments

х	class "spdur" object
	passed to plot_hazard

Value

NULL, plots.

predict.spdur Predict methods for spdur Objects

Description

predict and related methods for class "spdur".

Usage

```
## S3 method for class 'spdur'
predict(
   object,
   newdata = NULL,
   type = "response",
   truncate = TRUE,
   na.action = na.exclude,
   ...
)
## S3 method for class 'spdur'
fitted(object, ...)
## S3 method for class 'spdur'
residuals(object, type = c("response"), ...)
```

predict.spdur

Arguments

object	Object of class "spdur".
newdata	Optional data for which to calculate fitted values, defaults to training data.
type	Quantity of interest to calculate. Default conditional hazard, i.e. conditioned on observed survival up to time t. See below for list of values. For residuals, the type of residual to calculate
truncate	For conditional hazard, truncate values greater than 1.
na.action	Function determining what should be done with missing values in newdata. The default is to predict NA (na.exclude).
	not used, for compatibility with generic function.

Details

Calculates various types of probabilities, where "conditional" is used in reference to conditioning on the observed survival time of a spell up to time t, in addition to conditioning on any variables included in the model (which is always done). Valid values for the type option include:

- "conditional risk": $Pr(Cure = 0 | Z\gamma, T > t)$
- "conditional cure": $Pr(Cure = 1 | Z\gamma, T > t)$
- "hazard": $Pr(T = t | T > t, C = 0, X\beta) * Pr(Cure = 0 | Z\gamma)$
- "failure": $Pr(T = t | T > t 1, C = 0, X\beta) * Pr(Cure = 0 | Z\gamma)$
- "unconditional risk": $Pr(Cure = 0|Z\gamma)$
- "unconditional cure": $Pr(Cure = 1|Z\gamma)$
- "conditional hazard" or "response": $Pr(T = t | T > t, C = 0, X\beta) * Pr(Cure = 0 | Z\gamma, T > t)$
- "conditional failure": $Pr(T = t | T > t 1, C = 0, X\beta) * Pr(Cure = 0 | Z\gamma, T > t)$

The vector $Z\gamma$ indicates the cure/at risk equation covariate vector, while $X\beta$ indicates the duration equation covariate vector.

Value

Returns a data frame with 1 column corresponding to type, in the same order as the data frame used to estimate object.

Note

See forecast.spdur for producing forecasts when future covariate values are unknown.

```
# get model estimates
data(model.coups)
ch <- predict(model.coups)</pre>
```

head(residuals(model.coups))

print.summary.spdur Print a split-population duration model results summary

Description

print method for class "summary.spdur".

Usage

S3 method for class 'summary.spdur'
print(x, ...)

Arguments

х	An object with class spdur.
	Further arguments passed to or from other methods.

Details

Formats spdur summaries for printing.

See Also

The model fitting function is spdur, and see summary.spdur for associated summary method.

```
data(model.coups)
s <- summary(model.coups)
class(s)
print(s)</pre>
```

sepplot

Description

A separationplot wrapper for class "spdur".

Usage

```
sepplot(
    x,
    pred_type = "conditional hazard",
    obs = NULL,
    endSpellOnly = FALSE,
    lwd1 = 5,
    lwd2 = 2,
    shuffle = TRUE,
    heading = "",
    show.expected = TRUE,
    newplot = FALSE,
    type = "line",
    ....
)
```

Arguments

х	An object of class "spdur".
pred_type	Which statistic to plot, i.e. "conditional hazard" or "conditional risk".
obs	Variable that captures observed outcomes. If NULL (default), it is chosen based on pred_type: "fail" for (conditional) hazard, and "atrisk" for (conditional) risk.
endSpellOnly	Should only the last observation in each spell be kept? FALSE by default.
lwd1	See separationplot.
lwd2	See separationplot.
shuffle	See separationplot.
heading	See separationplot.
show.expected	See separationplot.
newplot	See separationplot
type	See separationplot.
	Optional parameters passed to separationplot, e.g. type of statistic to calculate.

Details

Creates a separation plot of fitted values from split-duration model results using predict.spdur.

spdur

See Also

separationplot, predict.spdur

Examples

```
# get model estimates
library(separationplot)
data(model.coups)
# plot
```

p <- plot(model.coups)
p</pre>

spdur

Split-population duration (cure) regression

Description

This function estimates a split-population duration model and returns a object of class spdur.

Usage

```
spdur(
  duration,
  atrisk,
  data = NULL,
  last = "end.spell",
  t.0 = "t.0",
  fail = "failure",
  distr = c("weibull", "loglog"),
  max.iter = 300,
  na.action,
  silent = FALSE,
  ...
)
```

Arguments

duration	A formula of the form $Y \sim X1 + X2 \dots$, where Y is duration until failure or censoring.
atrisk	A formula of the form C ~ Z1 + Z2, where C is a binary indicator of risk (1 - cure).
data	A data frame containing the variables in formula and formula2.
last	A string identifying the vector in data that indicates when a spell ends due to failure or right-censoring.

18

spdur

t.0	The starting point for time-varying covariate intervals, by default duration-1 when using add_duration.
fail	Name of the variable indicating that a spell ended in failure.
distr	The type of distribution to use in the hazard rate. Valid options are "weibull" or "loglog"; defaults to "weibull".
max.iter	Maximum number of iterations to use in the likelihood maximization.
na.action	a function which indicates what should happen when the data contain NAs. The default is set by the na.action setting of options, and is na.fail if that is unset.
silent	Suppress optimization output, FALSE by default.
	Optional arguments, see details.

Details

See summary.spdur, predict.spdur, and plot.spdur for post-estimation options.

Optional arguments:

base.inits Initial values for the base duration model that is estimated to get initial values for the full split-population model. This needs to be a vector with starting values for the constant, coefficients in the duration equation, and an additional value for the shape parameter of the density used, e.g. Weibull. By default they are 0 for all coefficients and 0 or 1 for the Weibull and LogLog shape parameters respectively.

Value

Returns an object of class spdur, with attributes:

coefficients	A named vector of coefficient point estimates.
VCV	Estimated covariance matrix.
se	Standard error estimates.
zstat	Z-statistic values.
pval	P-values.
mf.dur	Model frame for the duration equation.
mf.risk	Model frame for the risk equation.
Υ	Matrix of duration variables: risk, duration, end of spell, and t.0.
na.action	What action was taken for missing values in data.
call	The original, unevaluated spdur call.
distr	Distribution used for the hazard rate.

spduration

Split-Population Duration (Cure) Regression Models

Description

The spduration package provides functions to estimate split-population duration regression models in which only a subset of the population is at risk for failure, while the remainder is immune, or cured, from the possibility of experiencing a failure event. In practice, this class of models also may produce better performance in sparse data with few actual failure events.

Details

The main function spdur is used to estimate the model objects with class spdur.

Postestimation tools include predict.spdur, for calculating fitted values with arbitrary data and for several probabilities that might be of interest, as well as plot.spdur for visual display of model fit.

Author(s)

Maintainer: Andreas Beger <adbeger@gmail.com> (ORCID)

Authors:

- Daina Chiba <dchiba@essex.ac.uk> (ORCID)
- Daniel W. Hill, Jr. <dwhill@uga.edu>
- Nils W. Metternich <n.metternich@ucl.ac.uk> (ORCID)
- Shahryar Minhas <hermes829@gmail.com>
- Michael D. Ward <michael.don.ward@gmail.com> (ORCID) [copyright holder]

References

Boag, J.W. 1949. "Maximum Likelihood Estimates of the Proportion of Patients Cured by Cancer Therapy." https://www.jstor.org/stable/2983694>

Berkson, J. and Gage, R.P. "Survival Curve for Cancer Patients Following Treatment." https://www.jstor.org/stable/2281318

Leisch, Friedrich. 2009. "Creating R Packages: A Tutorial."

Schmidt, Peter and Witte, Ann Dryden. 1989. "Predicting Criminal Recidivism Using "Split Population" Survival Time Models." <doi:10.1016/0304-4076(89)90034-1>

Svolik, Milan. 2008. "Authoritarian Reversals and Democratic Consolidation." American Political Science Review.

20

summary.spdur

See Also

Useful links:

- https://github.com/andybega/spduration
- https://www.andybeger.com/spduration/
- Report bugs at https://github.com/andybega/spduration/issues

summary.spdur

Summarize split-population duration results

Description

summary method for class "spdur".

Usage

S3 method for class 'spdur'
summary(object, ...)

Arguments

object	An object with class spdur.
	Further arguments passed to or from other methods.

Details

This will list the estimated coefficients and standard errors for the risk and duration equations of a split-population duration model.

Value

An object with class summary.spdur.

See Also

The model fitting function is spdur, and see summary for the generic function.

For print formatting, see print.summary.spdur.

```
data(model.coups)
s <- summary(model.coups)
class(s)
print(s)</pre>
```

xtable.spdur

Description

xtable-like function for class "spdur".

Usage

```
## S3 method for class 'spdur'
xtable(x, ...)
```

Arguments

Х	An object with class spdur.
	Further arguments passed to xtable.

Details

Format a split-duration model for export to Latex or html.

Value

An object with class xtable.

See Also

xtable, or as.data.frame.spdur for a simpler alternative that will convert a spdur object to a data frame containing model parameter estimates.

For print formatting, see print.xtable.

```
library(xtable)
data(model.coups)
xtable(model.coups)
print(xtable(model.coups), include.rownames=FALSE)
```

Index

* datasets

bscoup, 7 coups, 8 accessors, 2 add_duration, 3, 19 AIC.spdur, *3*, *5*, *7* as.data.frame.spdur, 6, 22 BIC, 7 BIC.spdur, 3, 5, 7 bscoup, 7 coef.spdur (accessors), 2 coups, 8, 11 Date, 4 fitted.spdur(predict.spdur), 14 forecast, 9 forecast.spdur, 4, 9, 15 lag, <u>11</u> logLik.spdur (accessors), 2 model.coups, 10 model.matrix.spdur(accessors), 2 na.fail, 19 nobs.spdur (accessors), 2 panel_lag, 5, 11 plot, 13 plot.spdur, 12, *19*, *20* plot_hazard, 12, 12, 13, 14 plot_hazard1, 13 plot_hazard2, 14 predict.spdur, *10*, 14, *17-20* print.summary.spdur, 16, 21 print.xtable, 22

residuals.spdur(predict.spdur), 14

separationplot, 17, 18
sepplot, 12, 13, 17
spdur, 9, 10, 16, 18, 20, 21
spduration, 20
spduration-package (spduration), 20
summary, 21
summary.spdur, 16, 19, 21
terms.spdur (accessors), 2

vcov.spdur (accessors), 2

xtable, 22
xtable.spdur, 6, 22