Package ‘simplextree’

October 14, 2022
Type Package

Title Provides Tools for Working with General Simplicial Complexes
Version 1.0.1

Date 2020-08-25

Depends R (>=3.4.0)

Maintainer Matt Piekenbrock <matt.piekenbrock@gmail.com>

Description Provides an interface to a Simplex Tree data structure, which is
a data structure aimed at enabling efficient manipulation of simplicial complexes
of any dimension. The Simplex Tree data structure was originally introduced by
Jean-Daniel Boissonnat and Clément Maria (2014) <doi:10.1007/s00453-014-9887-3>.

Language en-US
License MIT + file LICENSE

URL https://github.com/peekxc/simplextree
LinkingTo Rcpp

Imports Rcpp (>=0.12.10), methods, magrittr
Encoding UTF-8

LazyData true

SystemRequirements C++11

RoxygenNote 7.1.0

Suggests testthat, knitr, rmarkdown, covr
NeedsCompilation yes

Author Matt Piekenbrock [cre, aut],
Jason Cory Brunson [ctb],
Howard Hinnant [cph]

Repository CRAN
Date/Publication 2020-09-12 12:20:02 UTC

https://doi.org/10.1007/s00453-014-9887-3
https://github.com/peekxc/simplextree

2

R topics documented:

R topics documented:

Index

simplextree-package L. L e 3
adjacent L e 3
as.dist.st_traversal L L L e e 4
clear e e e 4
clone e e e 5
COfACES e e e e e 5
Coface TootS o e e 5
collapseo e 6
CONLIACE o v e et e e e e e e e e e e e e e e e e 7
degree e 8
deserialize e e e e 8
empty_face 9
enclosing_radius e e 9
expand e 10
faces e e e 10
find e e e e e 11
flag . . . e 12
generate_ids L. e e e e e e 12
INSEIt o e e e e e e 13
INVErse.ChoOSE o e e e e e e e e e e e e e 14
1S _face 15
IS_LTEE . . o v e e e e e e e e 16
kosimplices o 16
k skeletono e 17
level_order e e 17
LnK . . e 18
maximal e e e e e e e 18
nat_to_Sub oL e, 19
NETVE . . v v v e 20
plotRepp_Filtration L 21
plot.simplextree e e e e e 21
Preorder . . . oL oL L e e e e e e e e 24
print.st_traversal L. 24
print_simplices L. e e e e 25
reindeX e e e e 26
TEMOVE . . . v v v e v e 26
TIPS o o o e e e e e e e e e 27
serialize L e e e 28
SIMPIEX_tree o o e e e e e e e e e e e 29
Sub_to nat e, 31
threshold e e 32
TTAVEISE . . v v v o e 32
union_find L e 33

35

simplextree-package 3

simplextree-package simplextree package

Description

Provides an R/Rcpp implementation of a Simplex Tree data structure and its related tools.

Details

This package provides a lightweight implementation of a Simplex Tree data structure, exported as an
Repp Module. The current implementation provides a limited API and a subset of the functionality
described in the paper.

Author(s)

Matt Piekenbrock

adjacent Adjacent vertices.

Description

Returns a vector of vertex ids that are immediately adjacent to a given vertex.

Usage

adjacent(st, vertices)

Arguments
st a simplex tree.
vertices vertex ids.
Examples

st <- simplex_tree(1:3)
st %>% adjacent(2)
#13

clear

as.list.st_traversal as.list.st_traversal

Description

as.list.st_traversal

Usage

S3 method for class 'st_traversal'
as.list(x, ...)

Arguments

X traversal object.

unused.

clear Clears the simplex tree

Description

Removes all simplices from the simplex tree, except the root node.

Usage

clear(st)

Arguments

st a simplex tree object.

Examples

st <- simplex_tree()

st %>% insert(1:3)

print(st) ## Simplex Tree with (3, 3, 1) (0, 1, 2)-simplices
st %>% clear()

print(st) ## < empty simplex tree >

clone 5

clone Clones the given simplex tree.

Description

Performs a deep-copy on the supplied simplicial complex.

Usage

clone(st)

Arguments

st a simplex tree.

cofaces Generates a coface traversal on the simplex tree.

Description

Generates a coface traversal on the simplex tree.

Usage

cofaces(st, sigma)

Arguments
st the simplex tree to traverse.
sigma simplex to start the traversal at.
coface_roots Generates a coface roots traversal on the simplex tree.
Description

The coface roots of a given simplex sigma are the roots of subtrees in the trie whose descendents
(including the roots themselves) are cofaces of sigma. This traversal is more useful when used in
conjunction with other traversals, e.g. a preorder or level_order traversal at the roots enumerates
the cofaces of sigma.

Usage

coface_roots(st, sigma)

6 collapse

Arguments
st the simplex tree to traverse.
sigma simplex to start the traversal at.
collapse Elementary collapse
Description

Performs an elementary collapse.

Usage
collapse(st, pair, w = NULL)

Arguments

st a simplex tree.

pair list of simplices to collapse.

W vertex to collapse to, if performing a vertex collapse.
Details

This function provides two types of elementary collapses.

The first type of collapse is in the sense described by (1), which is summarized here. A simplex o is
said to be collapsible through one of its faces 7 if o is the only coface of 7 (excluding 7 itself). This
function checks whether its possible to collapse o through 7, (if 7 has o as its only coface), and if
s0, both simplices are removed. tau and sigma are sorted before comparison. To perform this kind
of elementary collapse, call collapse with two simplices as arguments, i.e. tau before sigma.

Alternatively, this method supports another type of elementary collapse, also called a vertex col-
lapse, as described in (2). This type of collapse maps a pair of vertices into a single vertex. To use
this collapse, specify three vertex ids, the first two representing the free pair, and the last represent-
ing the target vertex to collapse to.

Value

boolean indicating whether the collapse was performed.

References

1. Boissonnat, Jean-Daniel, and Clement Maria. "The simplex tree: An efficient data structure for
general simplicial complexes." Algorithmica 70.3 (2014): 406-427.

2. Dey, Tamal K., Fengtao Fan, and Yusu Wang. "Computing topological persistence for simplicial
maps." Proceedings of the thirtieth annual symposium on Computational geometry. ACM, 2014.

contract 7

Examples

st <- simplextree::simplex_tree(1:3)
st %>% print_simplices()
#1,2,3,12,13,23,123

st %>% collapse(list(1:2, 1:3))
#1, 2, 3, 13, 2 3=

st %>% insert(list(1:3, 2:5))
st %>% print_simplices(”column")

#1234511222334122232
23345455233443
345554
5
st %>% collapse(list(2:4, 2:5))
st %>% print_simplices("column”)
#12345112223341223
233454552344
3555
contract Edge contraction
Description
Performs an edge contraction.
Usage
contract(st, edge)
Arguments
st a simplex tree.
edge an edge to contract, as a 2-length vector.
Details

This function performs an edge contraction in the sense described by (1), which is summarized
here. Given an edge va, vb, vb is contracted to va if vb is removed from the complex and the link
of va is augmented with the link of vb. This may be thought as applying the mapping:

f(u) =va

if w = vb and identity otherwise, to all simplices in the complex.
edge is not sorted prior to contraction: the second vertex of the edge is always contracted to the
first. Note that edge contraction is not symmetric.

8 deserialize

References

1. Boissonnat, Jean-Daniel, and Clement Maria. "The simplex tree: An efficient data structure for
general simplicial complexes." Algorithmica 70.3 (2014): 406-427.

Examples

st <- simplex_tree(1:3)

st %>% print_simplices()
#1,2,3,12,13,23,123

st %>% contract(c(1, 3)) %>% print_simplices()
#1,2,12

degree The vertex degree.

Description

Returns the number of edges (degree) for each given vertex id.

Usage

degree(st, vertices)

Arguments
st a simplex tree.
vertices the vertex ids to check the degree of.
deserialize Deserializes the simplex tree.
Description

Provides a compressed serialization interface for the simplex tree.

Usage

deserialize(complex, st = NULL)

Arguments

complex The result of serialize.

st optionally, the simplex tree to insert into. Otherwise a new one is created.

empty_face 9

Details

The serialize/deserialize commands can be used to compress/uncompress the complex into smaller
form amenable for e.g. storing on disk (see saveRDS) or saving for later use.

See Also

Other serialization: serialize()

empty_face empty_face

Description

Alias to the empty integer vector (integer(OL)). Used to indicate the empty face of the tree.

Usage

empty_face

Format

An object of class integer of length 0.

See Also

traverse

enclosing_radius enclosing_radius

Description

Computes the enclosing radius of a set of distances.

Usage

enclosing_radius(d)

Arguments

d a dist object.

Details

The enclosing radius is useful as an upper bound of the scale parameter for the rips filtration. Scales
above the enclosing radius render the Vietoris—Rips complex as a simplicial cone, beyond which
the homology is trivial.

10 faces

expand k-expansion.

Description

Performs a k-expansion on the 1-skeleton of the complex, adding k-simplices if all combinations
of edges are included. Because this operation uses the edges alone to infer the existence of higher
order simplices, the expansion assumes the underlying complex is a flag complex.

Usage

expand(st, k = 2)

Arguments
st a simplex tree.
k the target dimension of the expansion.
faces Generates a face traversal on the simplex tree.
Description

Generates a face traversal on the simplex tree.

Usage

faces(st, sigma)

Arguments

st the simplex tree to traverse.

sigma simplex to start the traversal at.

find 11

find Find simplices

Description

Returns whether supplied simplices exist in the complex.

Usage

find(st, simplices)

Arguments
st a simplex tree.
simplices simplices to insert, either as a vector, a list of vectors, or a column-matrix. See
details.
Details

Traverses the simplex tree looking for simplex, returning whether or not it exists. simplex can
be specified as vector to represent a single simplex, and a list to represent a set of simplices. Each
simplex is sorted before traversing the trie.

If simplices is a vector, it’s assumed to be a simplex. If a list, its assumed each element in the list

represents a simplex (as vectors). If the simplices to insert are all of the same dimension, you can
also optionally use a matrix, where each column is assumed to be a simplex.

Value

boolean indicating whether or not simplex exists in the tree.

Usage

st

See Also

insert remove

12 generate_ids

flag flag

Description

Creates a filtration of flag complexes

Usage

flag(st, d)

Arguments

st a simplex tree. See details.

d a vector of edge weights, or a ’dist’ object.

Details

A flag complex is a simplicial complex whose k-simplices for k >= 2 are completely determined
by edges/graph of the complex. This function creates filtered simplicial complex using the supplied
edge weights. The resulting complex is a simplex tree object endowed with additional structure;
see. Vertices have their weights set to 0, and k-simplices w/ k >= 2 have their weights set to the
maximum weight of any of its edges.

generate_ids Generates vertex ids.

Description

Generates vertex ids representing O-simplices not in the tree.

Usage

generate_ids(st, n)

Arguments

st a simplex tree.

n the number of ids to generate.

insert 13

Details

This function generates new vertex ids for use in situations which involve generating new new 0-
simplices, e.g. insertions, contractions, collapses, etc. There are two ’policies’ which designate
the generating mechanism of these ids: ’compressed’ and ’unique’. ’compressed’ generates vertex
ids sequentially, starting at 0. "unique’ tracks an incremental internal counter, which is updated on
every call to generate_ids. The new ids under the *unique’ policy generates the first sequential n
ids that are strictly greater max(counter, max vertex id).

Examples

st <- simplex_tree()
print(st$id_policy)

"compressed”

st %>% generate_ids(3)
#0112

st %>% generate_ids(3)
##t 0 1 2

st %>% insert(list(1,2,3))
print(st$vertices)
1 2 3

st %>% insert(as.list(st %>% generate_ids(2)))
st %>% print_simplices()
#o,1,2, 3,4

st %>% remove(4)

st %>% generate_ids(1)

4

insert Insert simplices

Description
Inserts simplices into the simplex tree. Individual simplices are specified as vectors, and a set of
simplices as a list of vectors.

Usage

insert(st, simplices)

Arguments
st a simplex tree.
simplices simplices to insert, either as a vector, a list of vectors, or a column-matrix. See

details.

14 inverse.choose

Details

This function allows insertion of arbitrary order simplices. If the simplex already exists in the tree,
no insertion is made, and the tree is not modified. simplex is sorted before traversing the trie. Faces
of simplex not in the simplex tree are inserted as needed.

If simplices is a vector, it’s assumed to be a simplex. If a list, its assumed each element in the list
represents a simplex (as vectors). If the simplices to insert are all of the same dimension, you can
also optionally use a matrix, where each column is assumed to be a simplex.

See Also

find remove

Examples

st <- simplex_tree()

st %>% insert(1:3) ## inserts the 2-simplex { 1, 2, 3 }

st %>% insert(list(4:5, 6)) ## inserts a 1-simplex { 4, 5 } and a @-simplex { 6 }.
st %>% insert(combn(5,3)) ## inserts all the 2-faces of a 4-simplex

inverse.choose inverse.choose

Description

Inverts the binomial coefficient for general (n,k).

Usage

inverse.choose(x, k)

Arguments

X the binomial coefficient.

k the denominator of the binomial coefficient x.
Details

Given a quantity x = choose(n, k) with fixed k, finds n.

Value

the numerator of the binomial coefficient, if the Otherwise

Examples

100 == inverse.choose(choose(100,2), k = 2)

TRUE

12345 == inverse.choose(choose(12345, 5), k = 5)
TRUE

is_face 15

is_face Is face

Description

Checks whether a simplex is a face of another simplex and is in the complex.

Usage

is_face(st, tau, sigma)

Arguments
st a simplex tree.
tau a simplex which may contain sigma as a coface.
sigma a simplex which may contain tau as a face.
Details

A simplex 7 is a face of o if 7 C o. This function checks whether that is true. tau and sigma are
sorted before comparison.

Value

boolean indicating whether tau is a face of sigma.

See Also

std::includes

Examples

st <- simplex_tree()

st %>% insert(1:3)

st %>% is_face(2:3, 1:3)
st %>% is_face(1:3, 2:3)

https://en.cppreference.com/w/cpp/algorithm/includes

16 k_simplices

is_tree Checks if the simplicial complex is a tree.

Description

This function performs a breadth-first search on the simplicial complex, checking if the complex is
acyclic.

Usage

is_tree(st)

Arguments

st a simplex tree.

Examples

st <- simplex_tree()

st %>% insert(list(1:2, 2:3))
st %>% is_tree() # true

st %>% insert(c(1, 3))

st %>% is_tree() # false

k_simplices Generates a traversal on the k-simplices of the simplex tree.

Description

Generates a traversal on the k-simplices of the simplex tree.

Usage

k_simplices(st, k, sigma = NULL)

Arguments
st the simplex tree to traverse.
k the dimension of the skeleton to include.

sigma simplex to start the traversal at.

k_skeleton

17

k_skeleton

Generates a k-skeleton traversal on the simplex tree.

Description

Generates a k-skeleton traversal on the simplex tree.

Usage

k_skeleton(st, k, sigma = NULL)

Arguments
st the simplex tree to traverse.
k the dimension of the skeleton to include.
sigma simplex to start the traversal at.

level_order Generates a level order traversal on the simplex tree.

Description

Generates a level order traversal on the simplex tree.

Usage

level_order(st, sigma = NULL)

Arguments

st the simplex tree to traverse.

sigma simplex to start the traversal at.

18 maximal

link Generates a traversal on the link of a given simplex in the simplex tree.

Description

Generates a traversal on the link of a given simplex in the simplex tree.

Usage

link(st, sigma)

Arguments
st the simplex tree to traverse.
sigma simplex to start the traversal at.
maximal Generates a traversal on the maximal of the simplex tree.
Description

Generates a traversal on the maximal of the simplex tree.

Usage

maximal(st, sigma = NULL)

Arguments

st the simplex tree to traverse.

sigma simplex to start the traversal at.

nat_to_sub 19

nat_to_sub nat_to_sub

Description

Computes the xth (n choose 2) combination.

Usage

nat_to_sub(x, n, k)

Arguments
X non-negative integers in the range c(1, choose(n, k))
n numerator of the binomial coefficient
k denominator of the binomial coefficient

Details

The mapping is done via an lexicographically-ordered combinadic mapping.
In general, this function is not intended to be used to generate all (n choose k) combinations in the
combinadic mapping.

Value

integer matrix whose columns give the combinadics of x.

References

McCaffrey, J. D. "Generating the mth lexicographical element of a mathematical combination."
MSDN Library (2004).

Examples

library(simplextree)
all(nat_to_sub(seq(choose(100,2)), n = 100, k = 2) == combn(100,2))

Generating pairwise combinadics is particularly fast
Below: test to generate ~ 45k combinadics (note: better to use microbenchmark)
system.time({
x <- seq(choose(300,2))
nat_to_sub(x, n = 300, k = 2L)
»

Compare with generating raw combinations
system. time(combn(300,2))

20 nerve
nerve nerve
Description
Compute the nerve of a given cover.
Usage
nerve(st, cover, k = st$dimension, threshold = 1L, neighborhood = NULL)
Arguments
st a simplex tree.
cover list of integers indicating set membership. See details.
k max simplex dimension to consider.
threshold the number of elements in common for k sets to be considered intersecting.

Defaults to 1.

neighborhood which combinations of sets to check. See details.

Details

This computes the nerve of a given cover, adding a k-simplex for each combination of k+1/ sets in
the given cover that have at least threshold elements in their common intersection.

If neighborhood is supplied, it can be either 1) a matrix, 2) a list, or 3) a function. Each type
parameterizes which sets in the cover need be checked for to see if they have at least threshold
elements in their common intersection. If a matrix is supplied, the columns should indicate the in-
dices of the cover to check (e.g if neighborhood =matrix(c(1,2), nrow = 2), then only the first
two sets of cover are tested.). Similarly, if a list is supplied, each element in the list should give the
indices to test.

The most flexible option is supplying a function to neighborhood. If a function is passed, it’s
assumed to accept an integer vector of k indices (of the cover) and return a boolean indicating
whether or not to fest if they have at least threshold elements in their common intersection. This
can be used to filter out subsets of the cover the user knows are The indices are generated using the
same code that performs expand.

plot.Repp_Filtration

plot.Rcpp_Filtration plot.Rcpp_Filtration

Description

plot.Rcpp_Filtration

Usage
S3 method for class 'Rcpp_Filtration'
plot(...)

Arguments

passed to plot.Rcpp_SimplexTree

Functions

* plot.Rcpp_Filtration: family of plotting methods.

plot.simplextree Plots the simplex tree

Description

Plots the simplex tree

Usage

S3 method for class 'Rcpp_SimplexTree'
plot(
X,
coords = NULL,
vertex_opt = NULL,
text_opt = NULL,
edge_opt = NULL,
polygon_opt = NULL,
color_pal = NULL,
maximal = TRUE,
by_dim = TRUE,
add = FALSE,

22 plot.simplextree

Arguments
X a simplex tree.
coords Optional (n x 2) matrix of coordinates, where n is the number of O-simplices.
vertex_opt Optional parameters to modify default vertex plotting options. Passed to points.
text_opt Optional parameters to modify default vertex text plotting options. Passed to
text.
edge_opt Optional parameters to modify default edge plotting options. Passed to segments.

polygon_opt Optional parameters to modify default k-simplex plotting options for k > 1.
Passed to polygon.

color_pal Optional vector of colors. See details.
maximal Whether to draw only the maximal faces of the complex. Defaults to true.
by_dim Whether to apply (and recycle or truncate) the color palette to the dimensions
rather than to the individual simplices. Defaults to true.
add Whether to add to the plot or redraw. Defaults to false. See details.
unused
Details

This function allows generic plotting of simplicial complexes using base graphics.

If not (x,y) coordinates are supplied via coords, a default layout is generated via phyllotaxis ar-
rangement. This layout is not in general does not optimize the embedding towards any usual vi-
sualization criteria e.g. it doesn’t try to separate connected components, minimize the number of
crossings, etc. For those, the user is recommended to look in existing code graph drawing libraries,
e.g. igraphs ’layout.auto’ function, etc. The primary benefit of the default phyllotaxis arrangement
is that it is deterministic and fast to generate.

All parameters passed via list to vertex_opt, text_opt, edge_opt, polygon_opt override default
parameters and are passed to points, text, segments, and polygon, respectively.

If add is true, the plot is not redrawn.
If maximal is true, only the maximal simplices are drawn.

The color_pal argument controls how the simplicial complex is colored. It can be specified in
multiple ways.

1. A vector of colors of length dim+ 1, where dim=x$dimension
2. A vector of colors of length n, where n=sum(x$n_simplices)

3. A named list of colors

Option (1) assigns every simplex a color based on its dimension.

Option (2) assigns each individual simplex a color. The vector must be specified in level-order
(see 1traverse or examples below).

Option (3) allows specifying individual simplices to draw. It expects a named list, where the names

plot.simplextree 23

must correspond to simplices in x as comma-separated strings and whose values are colors. If op-
tion (3) is specified, this method will only draw the simplices given in color_pal.

If length(color_pal) does not match the dimension or the number of simplices in the complex
the color palette is recyled and simplices are as such.

Examples

Simple 3-simplex
st <- simplex_tree() %>% insert(list(1:4))

Default is categorical colors w/ diminishing opacity
plot(st)

If supplied colors have alpha defined, use that
vpal <- rainbow(st$dimension + 1)
plot(st, color_pal = vpal)

If alpha not supplied, decreasing opacity applied
plot(st, color_pal = substring(vpal, first=1, last=7))

Bigger example; observe only maximal faces (+vertices and edges) are drawn
st <- simplex_tree(list(1:3, 2:5, 5:9, 7:8, 10))
plot(st, color_pal = rainbow(st$dimension + 1))

If maximal == FALSE, every simplex is drawn (even on top of each other)

vpal <- rainbow(st$dimension + 1)[c(1,2,5,4,3)]

pal_alpha <- c(1, 1, 0.2, 0.35, 0.35)

vpal <- sapply(seq_along(vpal), function(i) adjustcolor(vpal[i], alpha.f = pal_alphalil))
plot(st, color_pal = vpal, maximal = FALSE)

You can also color each simplex individually by supplying a vector
of the same length as the number of simplices.
plot(st, color_pal = sample(rainbow(sum(st$n_simplices))))

The order is assumed to follow the level order traversal (first @-simplices, 1-, etc.)
This example colors simplices on a rainbow gradient based on the sum of their labels
si_sum <- straverse(st %>% level_order, sum)

rbw_pal <- rev(rainbow(50, start=0,end=4/6))

plot(st, color_pal=rbw_pall[cut(si_sum, breaks=50, labels = FALSE)])

This also makes highlighting simplicial operations fairly trivial

four_cofaces <- as.list(cofaces(st, 4))

coface_pal <- straverse(level_order(st), function(simplex){
ifelse(list(simplex) %in% four_cofaces, "orange”, "blue")

»
plot(st, color_pal=unlist(coface_pal))

You can also give a named list to draw individual simplices.
*xOnly the maximal simplices in the list are drawn*x*
blue_vertices <- structure(as.list(rep(”blue”, 5)), names=as.character(seq(5, 9)))

24

plot(st, color_pal=append(blue_vertices, list("5,6,7,8,9"="red")))

print.st_traversal

preorder Generates a preorder traversal on the simplex tree.

Description

Generates a preorder traversal on the simplex tree.

Usage

preorder(st, sigma = NULL)

Arguments
st the simplex tree to traverse.
sigma simplex to start the traversal at.
print.st_traversal print.st_traversal
Description

print.st_traversal

Usage
S3 method for class 'st_traversal'
print(x, ...)

Arguments
X traversal object.

unused.

print_simplices 25

print_simplices Print simplices to the console

Description

Prints simplices in a formatted way

Prints a traversal, a simplex tree, or a list of simplices to the R console, with options to customize
how the simplices are printed. The format must be one of "summary", "tree", "cousins", "short",
"column", or "row", with the default being "short". In general, the "tree" and "cousins" format give
more details on the structure of the trie, whereas the other formats just change how the given set of
simplices are formatted.

The "tree" method prints the nodes grouped by the same last label and indexed by depth. The printed

format is:
[vertex] (h = [subtree height]): [subtree depth]([subtree])

Where each lists the top node (vertex) and its corresponding subtree. The subtree height displays the
highest order k-simplex in that subtree. Each level in the subtree tree is a set of sibling k-simplices
whose order is given by the number of dots (°.”) proceeding the print level.

The "cousin" format prints the simplex relations used by various algorithms to speed up finding
adjacencies in the complex. The cousins are grouped by label and depth.

The format looks like:

(last=[label], depth=[depth of label]): [simplex]

This function is useful for understanding how the simplex tree is stored, and for debugging pur-

poses.
Usage
print_simplices(
st,
format = c("summary”, "tree", "cousins"”, "short”, "column”, "row")
Arguments
st a simplex tree.

format the choice of how to format the printing. See details.

26 remove

reindex reindexes vertex ids

Description

This function allows one to 'reorder’ or ‘reindex’ vertex ids.

Usage

reindex(st, ids)

Arguments

st a simplex tree.

ids vector of new vertex ids. See details.
Details

The ids parameter must be a sorted integer vector of new ids with length matching the number
of vertices. The simplex tree is modified to replace the vertex label at index i with ids[i]. See
examples.

Examples

st <- simplex_tree()

st %>% insert(1:3) %>% print_simplices("tree")
#1 (th=2):.(23)..(3)
#2th=1):.(03)

3 (h=0):

st %>% reindex(4:6) %>% print_simplices("tree")
#4th=2):.(56)..(6)

#5Cth=1): .(6)

#6 (h=0):

remove Remove simplices

Description

Removes simplices from the simplex tree. Individual simplices are specified as vectors, and a set of
simplices as a list of vectors.

Usage

remove(st, simplices)

rips

Arguments
st a simplex tree.
simplices simplices to insert, either as a vector, a list of vectors, or a column-matrix. See
details.
Details

This function allows removal of a arbitrary order simplices. If simplex already exists in the tree, it
is removed, otherwise the tree is not modified. simplex is sorted before traversing the trie. Cofaces

of simplex are also removed.

If simplices is a vector, it’s assumed to be a simplex. If a list, its assumed each element in the list
represents a simplex (as vectors). If the simplices to insert are all of the same dimension, you can

also optionally use a matrix, where each column is assumed to be a simplex.

See Also

find remove

rips rips

Description

Constructs the Vietoris-Rips complex.

Usage

rips(d, eps = enclosing_radius(d), dim =

1L, filtered = FALSE)

Arguments
d a numeric “dist’ vector.
eps diameter parameter.
dim maximum dimension to construct up to. Defaults to 1 (edges only).

filtered whether to construct the filtration. Defaults to false. See details.

28 serialize

serialize Serializes the simplex tree.

Description

Provides a compressed serialization interface for the simplex tree.

Usage

serialize(st)

Arguments

st a simplex tree.

Details

The serialize/deserialize commands can be used to compress/uncompress the complex into smaller
form amenable for e.g. storing on disk (see saveRDS) or saving for later use. The serialization.

See Also

Other serialization: deserialize()

Examples

st <- simplex_tree(list(1:5, 7:9))

st2 <- deserialize(serialize(st))
all.equal(as.list(preorder(st)), as.list(preorder(st2)))
TRUE

set.seed(1234)

R <- rips(dist(replicate(2, rnorm(100))), eps = pnorm(@.10), dim = 2)
print(R$n_simplices)

100 384 851

Approx. size of the full complex
print(utils::object.size(as.list(preorder(R))), units = "Kb")
106.4 Kb

Approx. size of serialized version
print(utils::object.size(serialize(R)), units = "Kb")

5.4 Kb

You can save these to disk via e.g. saveRDS(serialize(R), ...)

simplex_tree 29

simplex_tree Simplex Tree

Description

Simplex tree class exposed as an Rcpp Module.

Usage

simplex_tree(simplices = NULL)

Arguments

simplices optional simplices to initialize the simplex tree with. See insert.

Details

A simplex tree is an ordered trie-like structure specialized for storing and doing general computa-
tion simplicial complexes. Here is figure of a simplex tree, taken from the original paper (see 1):

4 10 [I1 2134156 7[8[0[10]
. 3 6 E
-

The current implementation provides a subset of the functionality described in the paper.

Value

A queryable simplex tree, as a Rcpp_SimplexTree object (Rcpp module).

Fields

n_simplices A vector, where each index k denotes the number (k-1)-simplices.

dimension The dimension of the simplicial complex.

Properties

Properties are actively bound shortcuts to various methods of the simplex tree that may be thought of
as fields. Unlike fields, however, properties are not explicitly stored: they are generated on access.

$id_policy The policy used to generate new vertex ids. May be assigned "compressed" or "unique".
See generate_ids.
$vertices The O-simplices of the simplicial complex, as a matrix.

$edges The 1-simplices of the simplicial complex, as a matrix.

30 simplex_tree

$triangles The 2-simplices of the simplicial complex, as a matrix.
$quads The 3-simplices of the simplicial complex, as a matrix.

$connected_components The connected components of the simplicial complex.

Methods

$as_XPtr Creates an external pointer.

$clear Clears the simplex tree.

$generate_ids Generates new vertex ids according to the set policy.
$degree Returns the degree of each given vertex.

$adjacent Returns vertices adjacent to a given vertex.

$insert Inserts a simplex into the trie.

$remove Removes a simplex from the trie.

$find Returns whether a simplex exists in the trie.

$collapse Performs an elementary collapse.

$contract Performs an edge contraction.

$expand Performs an k-expansion.

$traverse Traverses a subset of the simplex tree, applying a function to each simplex.

$1traverse Traverses a subset of the simplex tree, applying a function to each simplex and return-
ing the result as a list.

$is_face Checks for faces.

$is_tree Checks if the simplicial complex is a tree.

$as_list Converts the simplicial complex to a list.
$as_adjacency_matrix Converts the 1-skeleton to an adjacency matrix.
$as_adjacency_list Converts the 1-skeleton to an adjacency list.

$as_edgelist Converts the 1-skeleton to an edgelist.

Author(s)
Matt Piekenbrock

References

Boissonnat, Jean-Daniel, and Clement Maria. "The simplex tree: An efficient data structure for
general simplicial complexes." Algorithmica 70.3 (2014): 406-427.

Examples

Recreating simplex tree from figure.

st <- simplex_tree()

st %>% insert(list(1:3, 2:5, c(6, 7, 9), 7:8, 10))
plot(st)

Example insertion

sub_to_nat 31

st <- simplex_tree(list(1:3, 4:5, 6)) ## Inserts one 2-simplex, one 1-simplex, and one @-simplex
print(st)
Simplex Tree with (6, 4, 1) (0, 1, 2)-simplices

More detailed look at structure
print_simplices(st, "tree")
#1(th=2): .(23)..(3)
#2th=1):.(03)

#3 (h=0):
#4h=1):.(5)
#5 (h=0):
#6 (h=0):

Print the set of simplices making up the star of the simplex '2'
print_simplices(st %>% cofaces(2))
#2,23,12,123

Retrieves list of all simplices in DFS order, starting with the empty face
dfs_list <- ltraverse(st %>% preorder(empty_face), identity)

Get connected components
print(st$connected_components)
11111445

Use clone() to make copies of the complex (don't use the assignment ‘<-%)
new_st <- st %>% clone()

Other more internal methods available via ‘$*°
list_of_simplices <- st$as_list()
adj_matrix <- st$as_adjacency_matrix()

... see also as_adjacency_list(), as_edge_list(), etc
sub_to_nat sub_to_nat
Description

Given a combination X, computes its position out of all lexicographically-ordered (n choose 2)
combinations.

Usage

sub_to_nat(x, n)

Arguments

X matrix whose columns represent k-combinations.

n numerator of the binomial coefficient

32 traverse

Details

The mapping is done via an lexicographically-ordered combinadic mapping.

Value

integer vector of the positions of the given combinations.

References

McCaffrey, J. D. "Generating the mth lexicographical element of a mathematical combination."
MSDN Library (2004).

threshold threshold

Description

Thresholds a given filtered simplicial complex.

Usage

threshold(st, index = NULL, value = NULL)

Arguments
st simplex tree.
index integer index to threshold to.
value numeric index to threshold filtration.
traverse traverse
Description

Traverses specific subsets of a simplicial complex.
Usage

traverse(traversal, f, ...)

straverse(traversal, f, ...)

ltraverse(traversal, f, ...)

union_find 33

Arguments
traversal the type of traversal.
f the function to apply to each simplex.
unused.
Details

traverse allows for traversing ordered subsets of the simplex tree. The specific subset and order
are determined by the choice of traversal: examples include the preorder traversal, the cofaces
traversal, etc. See the links below. Each simplex in the traversal is passed as the first and only
argument to f, one per simplex in the traversal. traverse does nothing with the result; if you want
to collect the results of applying f to each simplex into a list, use 1traverse (or straverse), which
are meant to be used like lapply and sapply, respectively.

Value

NULL; for list or vector-valued returns, use ltraverse and straverse respectively.

Examples

Starter example complex
st <- simplex_tree()
st %>% insert(list(1:3, 2:5))

Print out complex using depth-first traversal.
st %>% preorder() %>% traverse(print)

Collect the last labels of each simplex in the tree.
last_labels <- st %>% preorder() %>% straverse(function(simplex){ tail(simplex, 1) })

union_find UnionFind

Description

Union find structure exposed as an Rcpp Module.

Usage

union_find(n = QL)

Arguments

n Number of elements in the set.

Value

A disjoint set, as a Rcpp_UnionFind object (Rcpp module).

34 union_find

Methods

$print.simplextree S3 method to print a basic summary of the simplex tree.

Author(s)
Matt Piekenbrock

Index

+ datasets
empty_face, 9

x serialization
deserialize, 8
serialize, 28

x traversals
traverse, 32

adjacent, 3, 30
as.list.st_traversal, 4

clear, 4
clone, 5
coface_roots, 5
cofaces, 5, 33
collapse, 6, 30
contract, 7, 30

degree, 8, 30
deserialize, 8, 28
dist, 9

empty_face, 9
enclosing_radius, 9
expand, 10, 20, 30

faces, 10
find, 11, 30
flag, 12

generate_ids, 12, 29, 30
graphics, 22

id_policy (generate_ids), 12
insert, 13, 29, 30
inverse.choose, 14
is_face, 15, 30
is_tree, 16, 30

k_simplices, 16
k_skeleton, 17

35

lapply, 33
level_order, 17

link, 18
ltraverse, 22, 30, 33
ltraverse (traverse), 32

maximal, 18

nat_to_sub, 19
nerve, 20

plot.Rcpp_Filtration, 21

plot.Rcpp_SimplexTree, 21

plot.Rcpp_SimplexTree
(plot.simplextree), 21

plot.simplextree, 21

points, 22

polygon, 22

preorder, 24, 33

print.st_traversal, 24

print_simplices, 25

reindex, 26
remove, 26, 30
rips, 27

sapply, 33

segments, 22

serialize, §, 9,28
simplex_tree, 29

SimplexTree (simplex_tree), 29
simplextree (simplex_tree), 29
simplextree-package, 3
straverse, 33

straverse (traverse), 32
sub_to_nat, 31

text, 22
threshold, 32
traverse, 30, 32, 33

union_find, 33

	simplextree-package
	adjacent
	as.list.st_traversal
	clear
	clone
	cofaces
	coface_roots
	collapse
	contract
	degree
	deserialize
	empty_face
	enclosing_radius
	expand
	faces
	find
	flag
	generate_ids
	insert
	inverse.choose
	is_face
	is_tree
	k_simplices
	k_skeleton
	level_order
	link
	maximal
	nat_to_sub
	nerve
	plot.Rcpp_Filtration
	plot.simplextree
	preorder
	print.st_traversal
	print_simplices
	reindex
	remove
	rips
	serialize
	simplex_tree
	sub_to_nat
	threshold
	traverse
	union_find
	Index

