## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Import required packages library(shazam) # Load example data data(ExampleDb, package="alakazam") # Subset to IGHG for faster usage demonstration db <- subset(ExampleDb, c_call == "IGHG") ## ----eval=FALSE--------------------------------------------------------------- # # Create substitution model using silent mutations # sub_model <- createSubstitutionMatrix(db, model="s", # sequenceColumn="sequence_alignment", # germlineColumn="germline_alignment_d_mask", # vCallColumn="v_call") ## ----eval=FALSE--------------------------------------------------------------- # # Create mutability model using silent mutations # mut_model <- createMutabilityMatrix(db, sub_model, model="s", # sequenceColumn="sequence_alignment", # germlineColumn="germline_alignment_d_mask", # vCallColumn="v_call") ## ----eval=FALSE--------------------------------------------------------------- # # Number of silent mutations used for estimating 5-mer mutabilities # mut_model@numMutS # # Number of replacement mutations used for estimating 5-mer mutabilities # mut_model@numMutR # # Mutability and source as a data.frame # head(as.data.frame(mut_model)) ## ----eval=FALSE--------------------------------------------------------------- # # Extend models to include ambiguous 5-mers # sub_model <- extendSubstitutionMatrix(sub_model) # mut_model <- extendMutabilityMatrix(mut_model) ## ----eval=FALSE--------------------------------------------------------------- # # Create targeting model matrix from substitution and mutability models # tar_matrix <- createTargetingMatrix(sub_model, mut_model) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Collapse sequences into clonal consensus clone_db <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", nproc=1) # Create targeting model in one step using only silent mutations # Use consensus sequence input and germline columns model <- createTargetingModel(clone_db, model="s", sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", vCallColumn="v_call") ## ----eval=TRUE, warning=FALSE, fig.width=7, fig.height=7.5-------------------- # Generate hedgehog plot of mutability model plotMutability(model, nucleotides="A", style="hedgehog") plotMutability(model, nucleotides="C", style="hedgehog") ## ----eval=TRUE, warning=FALSE, fig.width=7, fig.height=4.5-------------------- # Generate bar plot of mutability model plotMutability(model, nucleotides="G", style="bar") plotMutability(model, nucleotides="T", style="bar") ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Calculate distance matrix dist <- calcTargetingDistance(model)