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auxiliary Implement Saturated Correlates with FIML
Description

Automatically add auxiliary variables to a lavaan model when using full information maximum
likelihood (FIML) to handle missing data

Usage

auxiliary(model, data, aux, fun, ..., envir = getNamespace("lavaan"),
return.syntax = FALSE)

lavaan.auxiliary(model, data, aux, ..., envir = getNamespace("lavaan"))

cfa.auxiliary(model, data, aux, ..., envir = getNamespace("lavaan"))

sem.auxiliary(model, data, aux, ..., envir = getNamespace("”lavaan"))

growth.auxiliary(model, data, aux, ..., envir = getNamespace("lavaan"))
Arguments

model The analysis model can be specified with 1 of 2 objects:

1. lavaan lavaan: :model.syntax() specifying a hypothesized model with-
out mention of auxiliary variables in aux

2. aparameter table, as returned by lavaan: :parTable(), specifying the tar-
get model without auxiliary variables. This option requires these columns

non

(and silently ignores all others): c("1lhs", "op",

n o n n o n

rhs”,"user"”,"group”, "free","label”, "plabe

data data. frame that includes auxiliary variables as well as any observed variables
in the model

aux character. Names of auxiliary variables to add to model

fun character. Name of a specific lavaan function used to fit model to data (i.e.,

n on

"lavaan”, "cfa", "sem”, or "growth"). Only required for auxiliary.
Additional arguments to pass to fun=.
envir Passed to do.call().

return.syntax logical indicating whether to return a character string of lavaan: :model. syntax()
that can be added to a target model= that is also a character string. This can be
advantageous, for example, to use add saturated correlates to a blavaan model.
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Details

These functions are wrappers around the corresponding lavaan functions. You can use them the
same way you use lavaan::lavaan(), but you must pass your full data.frame to the data ar-
gument. Because the saturated-correlates approaches (Enders, 2008) treats exogenous variables as
random, fixed.x must be set to FALSE. Because FIML requires continuous data (although nonnor-
mality corrections can still be requested), no variables in the model nor auxiliary variables specified
in aux can be declared as ordered.

Value

a fitted lavaan::lavaan object. Additional information is stored as a 1ist in the @external slot:

* baseline.model. a fitted lavaan::lavaan object. Results of fitting an appropriate indepen-
dence model for the calculation of incremental fit indices (e.g., CFI, TLI) in which the auxil-
iary variables remain saturated, so only the target variables are constrained to be orthogonal.
See Examples for how to send this baseline model to 1avaan: : fitMeasures().

* aux. The character vector of auxiliary variable names.

* baseline.syntax. A character vector generated within the auxiliary function, specifying
the baseline.model syntax.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Enders, C. K. (2008). A note on the use of missing auxiliary variables in full information maxi-
mum likelihood-based structural equation models. Structural Equation Modeling, 15(3), 434—448.
doi:10.1080/10705510802154307

Examples

datl <- lavaan::HolzingerSwineford1939

set.seed(12345)

dat1%$z <- rnorm(nrow(dat1))

dat1$x5 <- ifelse(dati$z < quantile(dat1$z, .3), NA, dat1$x5)
dat1$x9 <- ifelse(dat1$z > quantile(dat1$z, .8), NA, dat1$x9)

targetModel <- "

visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

n

## works just like cfa(), but with an extra "aux” argument

fitaux1 <- cfa.auxiliary(targetModel, data = datl, aux = "z",
missing = "fiml"”, estimator = "mlr")

## with multiple auxiliary variables and multiple groups
fitaux2 <- cfa.auxiliary(targetModel, data = datl, aux = c("z","ageyr","grade"),


https://doi.org/10.1080/10705510802154307
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group = "school”, group.equal = "loadings")

## calculate correct incremental fit indices (e.g., CFI, TLI)
fitMeasures(fitaux2, fit.measures = c("cfi”,”tli"))

## NOTE: lavaan will use the internally stored baseline model, which
#it is the independence model plus saturated auxiliary parameters
lavInspect(fitaux2@external$baseline.model, "free")

AVE Calculate average variance extracted

Description

Calculate average variance extracted (AVE) per factor from lavaan object

Usage

AVE(object, obs.var = TRUE, omit.imps = c(”"no.conv”, "no.se"),
omit.factors = character(@), dropSingle = TRUE, return.df = TRUE)

Arguments

object A lavaan::lavaan or lavaan.mi::lavaan.mi object, expected to contain only ex-
ogenous common factors (i.e., a CFA model). Cross-loadings are not allowed
and will result in NA for any factor with indicator(s) that cross-load.

obs.var logical indicating whether to compute AVE using observed variances in the
denominator. Setting FALSE triggers using model-implied variances in the de-
nominator.

omit.imps character vector specifying criteria for omitting imputations from pooled re-

sults. Can include any of c("no.conv”, "no.se”, "no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd”) would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. NPD solutions are not excluded
by default because they are likely to occur due to sampling error, especially in
small samples. However, gross model misspecification could also cause NPD
solutions, users can compare pooled results with and without this setting as a
sensitivity analysis to see whether some imputations warrant further investiga-
tion.

omit.factors character vector naming any common factors modeled in object whose indi-
cators’ AVE is not of interest.

dropSingle logical indicating whether to exclude factors defined by a single indicator from
the returned results. If TRUE (default), single indicators will still be included in
the total column when return. total = TRUE.
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return.df logical indicating whether to return reliability coefficients in a data.frame
(one row per group/level), which is possible when every model block includes
the same factors (after excluding those in omit. factors and applying dropSingle).

Details

The average variance extracted (AVE) can be calculated by

1'diag (AUA') 1

AVE = —
1'diag (z) 1
Note that this formula is modified from Fornell & Larcker (1981) in the case that factor variances
are not 1. The proposed formula from Fornell & Larcker (1981) assumes that the factor variances
are 1. Note that AVE will not be provided for factors consisting of items with dual loadings. AVE is
the property of items but not the property of factors. AVE is calculated with polychoric correlations
when ordinal indicators are used.

Value

numeric vector of average variance extracted from indicators per factor. For models with mul-
tiple "blocks" (any combination of groups and levels), vectors may be returned as columns in a
data.frame with additional columns indicating the group/level (see return.df= argument de-
scription for caveat).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable
variables and measurement errors. Journal of Marketing Research, 18(1), 39-50. doi:10.2307/
3151312

See Also

compRelSEM() for composite reliability estimates

Examples

data(HolzingerSwineford1939)

HS9 <- HolzingerSwineford1939[ , c("x7","x8","x9")]

HSbinary <- as.data.frame( lapply(HS9, cut, 2, labels=FALSE) )
names(HSbinary) <- c("y7","y8","y9")

HS <- cbind(HolzingerSwineford1939, HSbinary)

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ y7 +y8 + y9 '


https://doi.org/10.2307/3151312
https://doi.org/10.2307/3151312
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fit <- cfa(HS.model, data = HS, ordered = c("y7","y8","y9"), std.lv = TRUE)

## works for factors with exclusively continuous OR categorical indicators
AVE(fit) # uses observed (or unconstrained polychoric/polyserial) by default
AVE(fit, obs.var = FALSE)

## works for multigroup models and for multilevel models (and both)
data(Demo. twolevel)
## assign clusters to arbitrary groups
Demo.twolevel$g <- ifelse(Demo.twolevel$cluster %% 2L, "typel”, "type2")
model2 <- ' group: typel
level: within
fac =~ y1 + L2xy2 + L3*y3
level: between
fac =~ y1 + L2xy2 + L3=*y3

group: type2
level: within
fac =~ y1 + L2xy2 + L3*y3
level: between
fac =~ y1 + L2xy2 + L3=*y3

fit2 <- sem(model2, data = Demo.twolevel, cluster = "cluster"”, group = "g")
AVE(fit2)
BootMiss-class Class For the Results of Bollen-Stine Bootstrap with Incomplete Data
Description

This class contains the results of Bollen-Stine bootstrap with missing data.

Usage

## S4 method for signature 'BootMiss'
show(object)

## S4 method for signature 'BootMiss'
summary (object)

## S4 method for signature 'BootMiss'
hist(x, ..., alpha = 0.05, nd = 2,
printLegend = TRUE, legendArgs = list(x = "topleft"))
Arguments

object, x object of class BootMiss
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Additional arguments to pass to graphics: :hist()
alpha alpha level used to draw confidence limits
nd number of digits to display
printLegend logical. If TRUE (default), a legend will be printed with the histogram

legendArgs list of arguments passed to the graphics::legend() function. The default
argument is a list placing the legend at the top-left of the figure.
Value
The hist method returns a list of length == 2, containing the arguments for the call to hist and
the arguments to the call for legend, respectively.
Slots

time A list containing 2 difftime objects (transform and fit), indicating the time elapsed for
data transformation and for fitting the model to bootstrap data sets, respectively.

transData Transformed data

bootDist The vector of chi? values from bootstrap data sets fitted by the target model
origChi The chi? value from the original data set

df The degree of freedom of the model

bootP The p value comparing the original chi? with the bootstrap distribution

Objects from the Class

Objects can be created via the bsBootMiss () function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

See Also

bsBootMiss()

Examples

# See the example from the bsBootMiss function
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bsBootMiss Bollen-Stine Bootstrap with the Existence of Missing Data

Description

Implement the Bollen and Stine’s (1992) Bootstrap when missing observations exist. The imple-
mented method is proposed by Savalei and Yuan (2009). This can be used in two ways. The first
and easiest option is to fit the model to incomplete data in lavaan using the FIML estimator, then
pass that 1lavaan object to bsBootMiss.

Usage

bsBootMiss(x, transformation = 2, nBoot = 500, model, rawData, Sigma, Mu,
group, ChiSquared, EMcov, writeTransData = FALSE, transDataOnly = FALSE,
writeBootData = FALSE, bootSamplesOnly = FALSE, writeArgs, seed = NULL,
suppressWarn = TRUE, showProgress = TRUE, ...)

Arguments

X A target 1avaan object used in the Bollen-Stine bootstrap

transformation The transformation methods in Savalei and Yuan (2009). There are three meth-
ods in the article, but only the first two are currently implemented here. Use
transformation = 1 when there are few missing data patterns, each of which
has a large size, such as in a planned-missing-data design. Use transformation
= 2 when there are more missing data patterns. The currently unavailable transformation
= 3 would be used when several missing data patterns have n = 1.

nBoot The number of bootstrap samples.

model Optional. The target model if x is not provided.

rawData Optional. The target raw data set if x is not provided.

Sigma Optional. The model-implied covariance matrix if x is not provided.

Mu Optional. The model-implied mean vector if x is not provided.

group Optional character string specifying the name of the grouping variable in rawData
if x is not provided.

ChiSquared Optional. The model’s x? test statistic if x is not provided.

EMcov Optional, if x is not provided. The EM (or Two-Stage ML) estimated covariance

matrix used to speed up Transformation 2 algorithm.

writeTransData Logical. If TRUE, the transformed data set is written to a text file, transDataOnly
is set to TRUE, and the transformed data is returned invisibly.

transDataOnly Logical. If TRUE, the result will provide the transformed data only.

writeBootData Logical. If TRUE, the stacked bootstrap data sets are written to a text file, bootSamplesOnly
is set to TRUE, and the list of bootstrap data sets are returned invisibly.

bootSamplesOnly
Logical. If TRUE, the result will provide bootstrap data sets only.
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writeArgs Optional 1ist. If writeBootData = TRUE or writeBootData = TRUE, user can
pass arguments to the utils: :write.table() function as a list. Some default
values are provided: file = "bootstrappedSamples.dat”, row.names = FALSE,
and na = "-999", but the user can override all of these by providing other values
for those arguments in the writeArgs list.

seed The seed number used in randomly drawing bootstrap samples.

suppressWarn  Logical. If TRUE, warnings from lavaan function will be suppressed when fitting
the model to each bootstrap sample.

showProgress  Logical. Indicating whether to display a progress bar while fitting models to
bootstrap samples.

The additional arguments in the 1avaan: : lavaan() function. See also lavaan: : lavOptions()

Details

The second is designed for users of other software packages (e.g., LISREL, EQS, Amos, or Mplus).
Users can import their data, x? value, and model-implied moments from another package, and they
have the option of saving (or writing to a file) either the transformed data or bootstrapped samples
of that data, which can be analyzed in other programs. In order to analyze the bootstrapped samples
and return a p value, users of other programs must still specify their model using lavaan syntax.

Value

As a default, this function returns a BootMiss object containing the results of the bootstrap samples.
Use show, summary, or hist to examine the results. Optionally, the transformed data set is returned
if transDataOnly = TRUE. Optionally, the bootstrap data sets are returned if bootSamplesOnly =
TRUE.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Syntax for transformations borrowed from http://www?2.psych.ubc.ca/~vsavalei/

References

Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation
models. Sociological Methods & Research, 21(2), 205-229. doi:10.1177/0049124192021002004

Savalei, V., & Yuan, K.-H. (2009). On the model-based bootstrap with missing data: Obtaining
a p-value for a test of exact fit. Multivariate Behavioral Research, 44(6), 741-763. doi:10.1080/
00273170903333590

See Also

BootMiss


https://doi.org/10.1177/0049124192021002004
https://doi.org/10.1080/00273170903333590
https://doi.org/10.1080/00273170903333590
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Examples

dat1 <- HolzingerSwineford1939
dat1$x5 <- ifelse(dat1$x1 <= quantile(dat1$x1, .3), NA, dat1$x5)
dat1$x9 <- ifelse(is.na(dat1$x5), NA, dat1$x9)

targetModel <- "

visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6

speed =~ x7 + x8 + x9

targetFit <- sem(targetModel, datl, meanstructure = TRUE, std.lv = TRUE,
missing = "fiml", group = "school"”)

summary (targetFit, fit = TRUE, standardized = TRUE)

## The number of bootstrap samples should be much higher than this example
temp <- bsBootMiss(targetFit, transformation = 1, nBoot = 10, seed = 31415)

temp

summary (temp)

hist(temp)

hist(temp, printLegend = FALSE) # suppress the legend

## user can specify alpha level (default: alpha = ©.05), and the number of

## digits to display (default: nd = 2). Pass other arguments to hist(...),

## or a list of arguments to legend() via "legendArgs"”

hist(temp, alpha = .01, nd = 3, xlab = "something else”, breaks = 25,
legendArgs = list("bottomleft”, box.lty = 2))

chisgSmallN Small-N correction for chi” 2 test statistic

Description

Calculate small-N corrections for chi? model-fit test statistic to adjust for small sample size (relative
to model size).

Usage
chisgSmallN(fit@, fit1 = NULL, smallN.method = if (is.null(fit1))
c("swain”, "yuan.2015") else "yuan.2005”, ..., omit.imps = c("no.conv",
"no.se"))
Arguments

fite, fit1l lavaan::lavaan or lavaan.mi::lavaan.mi object(s)
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smallN.method character indicating the small-N correction method to use. Multiple may be
chosen (all of which assume normality), as described in Shi et al. (2018):
c("swain”,"yuan.2015","yuan.2005", "bartlett”). Users may also sim-
ply select "all”.

Additional arguments to the lavaan: : lavTestLRT() or lavaan.mi: :lavTestLRT.mi()
functions. Ignored when is.null(fit1).

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Ignored unless fit@ (and optionally fit1) is a lavaan.mi::lavaan.mi ob-
ject. See lavaan.mi::lavTestLRT.mi() for a description of options and de-
faults.

Details

Four finite-sample adjustments to the chi-squared statistic are currently available, all of which are
described in Shi et al. (2018). These all assume normally distributed data, and may not work well
with severely nonnormal data. Deng et al. (2018, section 4) review proposed small-N adjustments
that do not assume normality, which rarely show promise, so they are not implemented here. This
function currently will apply small-N adjustments to scaled test statistics with a warning that they
do not perform well (Deng et al., 2018).

Value

A list of numeric vectors: one for the originally requested statistic(s), along with one per re-
quested smallN.method. All include the the (un)adjusted test statistic, its df, and the p value for the
test under the null hypothesis that the model fits perfectly (or that the 2 models have equivalent fit).
The adjusted chi-squared statistic(s) also include(s) the scaling factor for the small-N adjustment.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Deng, L., Yang, M., & Marcoulides, K. M. (2018). Structural equation modeling with many
variables: A systematic review of issues and developments. Frontiers in Psychology, 9, 580.
doi:10.3389/fpsyg.2018.00580

Shi, D., Lee, T., & Terry, R. A. (2018). Revisiting the model size effect in structural equation
modeling. Structural Equation Modeling, 25(1), 21-40. doi:10.1080/10705511.2017.1369088

Examples
HS.model <- '
visual =~ x1 + b1*x2 + x3
textual =~ x4 + b2xx5 + x6
speed =~ x7 + b3*x8 + x9

fitl <- cfa(HS.model, data = HolzingerSwineford1939[1:50,1)
## test a single model (implicitly compared to a saturated model)
chisgSmallN(fit1)


https://doi.org/10.3389/fpsyg.2018.00580
https://doi.org/10.1080/10705511.2017.1369088
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## fit a more constrained model

fit@ <- cfa(HS.model, data = HolzingerSwineford1939[1:50,],
orthogonal = TRUE)

## compare 2 models

chisgSmallN(fit1, fite)

clipboard Copy or save the result of lavaan or FitDiff objects into a clipboard
or a file

Description

Copy or save the result of lavaan or FitDiff object into a clipboard or a file. From the clipboard,
users may paste the result into the Microsoft Excel or spreadsheet application to create a table of
the output.

Usage

clipboard(object, what = "summary”, ...)

saveFile(object, file, what = "summary”, tableFormat = FALSE,

fit.measures = "default”, writeArgs = list(), ...)
Arguments
object An object of class lavaan::lavaan or FitDiff.
what The attributes of the lavaan object to be copied in the clipboard. "summary” is

to copy the screen provided from the summary function. "mifit” is to copy the
result from the miPowerFit () function. Other attributes listed in the inspect
method in the lavaan::lavaan could also be used, such as "coef”, "se", "fit",
"samp", and so on. Ignored for FitDiff-class objects.

Additional arguments when passing a Lavaan object to the summary or miPowerFit ()

function.
file A file name used for saving the result.
tableFormat If TRUE, save the result in the table format using tabs for separation. Otherwise,

save the result as the output screen printed in the R console.

fit.measures character vector specifying names of fit measures returned by lavaan: : fitMeasures()
to be copied/saved. Only relevant if object is class FitDiff.

writeArgs list of additional arguments to be passed to utils: :write.table()

Value

The resulting output will be saved into a clipboard or a file. If using the clipboard function, users
may paste it in the other applications.
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Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Examples
library(lavaan)
HW.model <- ' visual =~ x1 + c1*x2 + x3
textual =~ x4 + c1xx5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HW.model, data = HolzingerSwineford1939, group = "school”)

if(interactive()){
# Copy the summary of the lavaan object
clipboard(fit)

# pass additional arguments to summary() method for class?lavaan
clipboard(fit, rsquare = TRUE, standardized = TRUE, fit.measures = TRUE)

# Copy modification indices and fit stats from the miPowerFit() function
clipboard(fit, "mifit")

# Copy the parameter estimates
clipboard(fit, "coef")

# Copy the standard errors
clipboard(fit, "se")

# Copy the sample statistics
clipboard(fit, "samp")

# Copy the fit measures
clipboard(fit, "fit")

# Save the summary of the lavaan object
saveFile(fit, "out.txt")

# Save modification indices and fit stats from the miPowerFit() function
saveFile(fit, "out.txt”, "mifit")

# Save the parameter estimates
saveFile(fit, "out.txt”, "coef”)

# Save the standard errors
saveFile(fit, "out.txt”, "se")

# Save the sample statistics
saveFile(fit, "out.txt”, "samp”)

# Save the fit measures
saveFile(fit, "out.txt”, "fit")
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combinequark Combine the results from the quark function

Description

This function builds upon the quark() function to provide a final dataset comprised of the original
dataset provided to quark() and enough principal components to be able to account for a certain
level of variance in the data.

Usage

combinequark(quark, percent)

Arguments
quark Provide the quark() object that was returned. It should be a list of objects.
Make sure to include it in its entirety.
percent Provide a percentage of variance that you would like to have explained. That
many components (columns) will be extracted and kept with the output dataset.
Enter this variable as a number WITHOUT a percentage sign.
Value

The output of this function is the original dataset used in quark combined with enough principal
component scores to be able to account for the amount of variance that was requested.

Author(s)

Steven R. Chesnut (University of Southern Mississippi <Steven.Chesnut@usm. edu>)

See Also
quark()

Examples

set.seed(123321)

dat <- HolzingerSwineford1939[,7:15]

misspat <- matrix(runif(nrow(dat) * 9) < 0.3, nrow(dat))
dat[misspat] <- NA

dat <- chind(HolzingerSwineford1939[,1:3], dat)

quark.list <- quark(data = dat, id = c(1, 2))

final.data <- combinequark(quark = quark.list, percent = 80)
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compareFit Build an object summarizing fit indices across multiple models

Description

This function will create the template to compare fit indices across multiple fitted lavaan objects.
The results can be exported to a clipboard or a file later.

Usage

compareFit(..., nested = TRUE, argsLRT = list(), indices = TRUE,
moreIndices = FALSE, baseline.model = NULL, nPrior = 1)

Arguments
fitted lavaan models or list(s) of lavaan objects. lavaan.mi::lavaan.mi objects
are also accepted, but all models must belong to the same class.

nested logical indicating whether the models in ... are nested. See net() for an
empirical test of nesting.

argsLRT list of arguments to pass to lavaan: : lavTestLRT(), as well as to lavaan.mi: :lavTestLRT.mi()
and lavaan: : fitMeasures() when comparing lavaan.mi::lavaan.mi models.

indices logical indicating whether to return fit indices from the lavaan: : fitMeasures()
function. Selecting particular indices is controlled in the summary method; see
FitDiff.

moreIndices logical indicating whether to return fit indices from the moreFitIndices()
function. Selecting particular indices is controlled in the summary method; see
FitDiff.

baseline.model optional fitted lavaan::lavaan model passed to lavaan: : fitMeasures() to cal-
culate incremental fit indices.

nPrior passed to moreFitIndices(), if relevant

Value

A FitDiff object that saves model fit comparisons across multiple models. If the models are not
nested, only fit indices for each model are returned. If the models are nested, the differences in fit
indices are additionally returned, as well as test statistics comparing each sequential pair of models
(ordered by their degrees of freedom).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

See Also
FitDiff, clipboard()
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Examples
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

## non-nested models
fitl <- cfa(HS.model, data = HolzingerSwineford1939)

m2 <- " f1 =~ x1 + x2 + x3 + x4
f2 =~ x5 + x6 + x7 + x8 + x9 '
fit2 <- cfa(m2, data = HolzingerSwineford1939)

(outl <- compareFit(fitl, fit2, nested = FALSE))
summary (out1)

## nested model comparisons: measurement equivalence/invariance

fit.config <- cfa(HS.model, data = HolzingerSwineford1939, group = "school”)

fit.metric <- cfa(HS.model, data = HolzingerSwineford1939, group = "school”,
group.equal = "loadings")

fit.scalar <- cfa(HS.model, data = HolzingerSwineford1939, group = "school”,
group.equal = c("loadings”,"intercepts”))

fit.strict <- cfa(HS.model, data = HolzingerSwineford1939, group = "school”,
group.equal = c("loadings”,"intercepts”,"residuals”))

measEqOut <- compareFit(fit.config, fit.metric, fit.scalar, fit.strict,

morelndices = TRUE) # include moreFitIndices()

summary (measEqOut)
summary (measEqOut, fit.measures = "all")
summary(measEqOut, fit.measures = c("aic”, "bic", "sic”, "ibic"))
compRelSEM Composite Reliability using SEM
Description

Calculate composite reliability from estimated factor-model parameters

Usage

compRelSEM(object, obs.var = TRUE, tau.eq = FALSE, ord.scale = TRUE,
config = character(@), shared = character(@), higher = character(9),
return.total = FALSE, dropSingle = TRUE, omit.factors = character(Q),
omit.indicators = character(@), omit.imps = c("no.conv”, "no.se"),
return.df = TRUE)
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Arguments

object

obs.var

tau.eq

ord.scale

config

shared

higher

return.total
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A lavaan::lavaan or lavaan.mi::lavaan.mi object, expected to contain only ex-
ogenous common factors (i.e., a CFA model).

logical indicating whether to compute reliability using observed variances in
the denominator. Setting FALSE triggers using model-implied variances in the
denominator.

logical indicating whether to assume (essential) tau-equivalence, yielding a
coefficient analogous to «. Setting FALSE yields an w-type coefficient.

logical indicating whether to apply Green and Yang’s (2009, formula 21) cor-
rection, so that reliability is calculated for the actual ordinal response scale (ig-
nored for factors with continuous indicators). Setting FALSE yields coefficients
that are only applicable to the continuous latent-response scale.

character vector naming any configural constructs in a multilevel CFA. For
these constructs (and optional total composite), Lai’s (2021) coefficients w" and
w2 are returned (or corresponding o coefficients when tau.eq=TRUE), rather
than Geldhof et al.’s (2014) coefficients for hypothetical composites of latent
components (although the same formula is used for wW in either case). Note
that the same name must be used for the factor component represented at each
level of the model.

character vector naming any shared constructs in a multilevel CFA. For these
constructs (and optional total composite), Lai’s (2021) coefficient wB or aP is
returned, rather than Geldhof et al.’s (2014) between-level coefficient for hy-
pothetical composites of latent cluster means. Lai’s (2021) coefficient quan-
tifies reliability relative to error associated with both indicators (measurement
error) and subjects (sampling error), like a generalizability coefficient. Given
that subjects can be considered as raters of their cluster’s shared construct, an
interrater reliability (IRR) coefficient is also returned, quantifying reliability
relative to rater/sampling error alone. To quantify reliability relative to indi-
cator/measurement error alone (i.e., w?"), the shared= construct name(s) can
additionally be included in config= argument.

character vector naming any higher-order constructs in object for which com-
posite reliability should be calculated. Ignored when tau.eq=TRUE because
alpha is not based on a CFA model; instead, users must fit a CFA with tau-
equivalence constraints. To obtain Lai’s (2021) multilevel composite-reliability
indices for a higher-order factor, do not use this argument; instead, specify the
higher-order factor(s) using the shared= or config= argument (compRelSEM
will automatically check whether it includes latent indicators and apply the ap-
propriate formula).

logical indicating whether to return a final column containing the reliability
of a composite of all indicators (not listed in omit.indicators) of first-order
factors not listed in omit.factors. Ignored in 1-factor models, and should
only be set TRUE if all factors represent scale dimensions that could be mean-
ingfully collapsed to a single composite (scale sum or scale mean). Setting
a negative value (e.g., -1 returns only the total-composite reliability (exclud-
ing coefficients per factor), except when requesting Lai’s (2021) coefficients for
multilevel configural or shared= constructs.
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dropSingle logical indicating whether to exclude factors defined by a single indicator from
the returned results. If TRUE (default), single indicators will still be included in
the total column when return. total = TRUE.

omit.factors character vector naming any common factors modeled in object whose com-
posite reliability is not of interest. For example, higher-order or method factors.
Note that reliabilityL2() should be used to calculate composite reliability of
a higher-order factor.

omit.indicators
character vector naming any observed variables that should be omitted from
the composite whose reliability is calculated.

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv”, "no.se”, "no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. NPD solutions are not excluded
by default because they are likely to occur due to sampling error, especially in
small samples. However, gross model misspecification could also cause NPD
solutions, users can compare pooled results with and without this setting as a
sensitivity analysis to see whether some imputations warrant further investiga-
tion.

return.df logical indicating whether to return reliability coefficients in a data.frame
(one row per group/level), which is possible when every model block includes
the same factors (after excluding those in omit. factors and applying dropSingle).

Details

Several coefficients for factor-analysis reliability have been termed "omega", which Cho (2021)
argues is a misleading misnomer and argues for using p to represent them all, differentiated by
descriptive subscripts. In our package, we strive to provide unlabeled coefficients, leaving it to the
user to decide on a label in their report. But we do use the symbols « and w in the formulas below
in order to distinguish coefficients that do (not) assume essential tau-equivalence. For higher-order
constructs with latent indicators, only w is available. Lai’s (2021) multilevel coefficients are labeled
in accordance with the symbols used in that article (more details below).

Bentler (1968) first introduced factor-analysis reliability for a unidimensional factor model with
congeneric indicators, labeling the coeficients . McDonald (1999) later referred to this and other
reliability coefficients, first as 6 (in 1970), then as w, which is a source of confusion when reporting
coefficients (Cho, 2021). Coefficients based on factor models were later generalized to account for
multidimenisionality (possibly with cross-loadings) and correlated errors. The general w formula
implemented in this function is:

(Ele )‘i) i Var (1)
131

w =

where 3 can be the model-implied covariance matrix from either the saturated model (i.e., the
"observed" covariance matrix, used by default) or from the hypothesized CFA model, controlled by



compRelSEM 21

the obs.var argument. A k-dimensional vector 1 is used to sum elements in the matrix. Note that
if the model includes any directed effects (latent regression slopes), all coefficients are calculated
from total factor variances: lavInspect(object, "cov.1v").

Assuming (essential) tau-equivalence (tau.eq=TRUE) makes w equivalent to coefficient o« from clas-
sical test theory (Cronbach, 1951):

k
k > iz1 i

o= 1-—- ,

k-1 Yy i 25,0

where k is the number of items in a factor’s composite, o;; signifies item i’s variance, and o;;
signifies the covariance between items i and j. Again, the obs.var argument controls whether « is
calculated using the observed or model-implied covariance matrix.

By setting return. total=TRUE, one can estimate reliability for a single composite calculated using
all indicators in a multidimensional CFA (Bentler, 1972, 2009). Setting return.total = -1 will
return only the total-composite reliability (not per factor).

Higher-Order Factors: The reliability of a composite that represents a higher-order construct
requires partitioning the model-implied factor covariance matrix ® in order to isolate the common-
factor variance associated only with the higher-order factor. Using a second-order factor model, the
model-implied covariance matrix of observed indicators 3 can be partitioned into 3 sources:

1. the second-order common-factor (co)variance: AB®, B’A’

2. the residual variance of the first-order common factors (i.e., not accounted for by the second-
order factor): AU, A’

3. the measurement error of observed indicators: ©

where A contains first-order factor loadings, B contains second-order factor loadings, ®5 is the
model-implied covariance matrix of the second-order factor(s), and ¥,, is the covariance matrix of
first-order factor disturbances. In practice, we can use the full B matrix and full model-implied $
matrix (i.e., including all latent factors) because the zeros in B will cancel out unwanted compo-
nents of ®. Thus, we can calculate the proportion of variance of a composite score calculated from
the observed indicators (e.g., a total score or scale mean) that is attributable to the second-order
factor (i.e., coefficient w):

1'AB®B’'A’1
Ww=———,
1'¥1
where 1 is the k-dimensional vector of 1s and k is the number of observed indicators in the com-
posite. Note that if a higher-order factor also has observed indicators, it is necessary to model the
observed indicators as single-indicator constructs, so that all of the higher-order factor indicators
are latent (with loadings in the Beta matrix, not Lambda).

Categorical Indicators: When all indicators (per composite) are ordinal, the ord. scale argument
controls whether the coefficient is calculated on the latent-response scale (FALSE) or on the observed
ordinal scale (TRUE, the default). For w-type coefficients (tau.eq=FALSE), Green and Yang’s (2009,
formula 21) approach is used to transform factor-model results back to the ordinal response scale.
When ord.scale=TRUE and tau.eq=TRUE, coefficient « is calculated using the covariance matrix
calculated from the integer-valued numeric weights for ordinal categories, consistent with its defi-
nition (Chalmers, 2018) and the alpha function in the psych package; this implies obs.var=TRUE,
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so obs.var=FALSE will be ignored When ord. scale=FALSE, the standard « formula is applied to
the polychoric correlation matrix ("ordinal a"; Zumbo et al., 2007), estimated from the saturated or
hypothesized model (see obs.var), and w is calculated from CFA results without applying Green
and Yang’s (2009) correction (see Zumbo & Kroc, 2019, for a rationalization). No method anal-
ogous to Green and Yang (2009) has been proposed for calculating reliability with a mixture of
categorical and continuous indicators, so an error is returned if object includes factors with a mix-
ture of indicator types (unless omitted using omit.factors). If categorical indicators load on a
different factor(s) than continuous indicators, then reliability will still be calculated separately for
those factors, but return.total must be FALSE (unless omit.factors is used to isolate factors
with indicators of the same type).

Multilevel Measurement Models: Under the default settings, compRe1SEM() will apply the same
formula in each "block" (group and/or level of analysis). In the case of multilevel (ML-)SEMs, this
yields "reliability" for latent within- and between-level components, as proposed by Geldhof et al.
(2014). Although this works fine to calculate reliability per group, this is not recommended for ML-
SEMs because the coefficients do not correspond to actual composites that would be calculated from
the observed data. Lai (2021) proposed coefficients for reliability of actual composites, depending
on the type of construct, which requires specifying the names of constructs for which reliability is
desired (or multiple constructs whose indicators would compose a multidimensional composite).
Configural (config=) and/or shared= constructs can be specified; the same construct can be spec-
ified in both arguments, so that overall scale-reliability can be estimated for a shared construct by
including it in config. Instead of organizing the output by block (the default), specifying config=
and/or shared= will prompt organizing the list of output by $config and/or $shared.

* The overall (_2L) scale reliability for configural constructs is returned, along with the relia-
bility of a purely individual-level composite (_W, calculated by cluster-mean centering).

 The reliability for a shared construct quantifies generalizability across both indicators and
raters (i.e., subjects rating their cluster’s construct). Liidtke et al. (2011) refer to these
as measurement error and sampling error, respectively. An interrater reliability (IRR) co-
efficient is also returned, quantifying generalizability across rater/sampling-error only. To
obtain a scale-reliability coefficient (quantifying a shared construct’s generalizability across
indicator/measurement-error only), include the same factor name in config=. Jak et al. (2021)
recommended modeling components of the same construct at both levels, but users may also
saturate the within-level model (Lai, 2021).

Be careful about including Level-2 variables in the model, especially whether it makes sense to in-
clude them in a total composite for a Level-2 construct. dropSingle=TRUE only prevents estimating
reliability for a single-indicator construct, not from including such an indicator in a total compos-
ite. It is permissible for shared= constructs to have additional indicators at Level-2 only. If it is
necessary to model other Level-2 variables (e.g., to justify the missing-at-random assumption when
using missing="FIML" estimation), they should be placed in the omit.indicators= argument
to exclude them from total composites.

Value

A numeric vector of composite reliability coefficients per factor, or a 1ist of vectors per "block"
(group and/or level of analysis), optionally returned as a data. frame when possible (see return.df=
argument description for caveat). If there are multiple factors, whose multidimensional indicators
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combine into a single composite, users can request return.total=TRUE to add a column includ-
ing a reliability coefficient for the total composite, or return.total = -1 to return only the total-
composite reliability (ignored when config= or shared= is specified because each factor’s specifi-
cation must be checked across levels).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Uses hidden functions written by Sunthud Pornprasertmanit (<psunthud@gmail.com>) for the old
reliability() function.
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See Also

maximalRelia() for the maximal reliability of weighted composite

Examples

data(HolzingerSwineford1939)

HS9 <- HolzingerSwineford1939[ , c("x7","x8","x9")]

HSbinary <- as.data.frame( lapply(HS9, cut, 2, labels=FALSE) )
names(HSbinary) <- c("y7","y8","y9")

HS <- cbind(HolzingerSwineford1939, HSbinary)

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ y7 + y8 + y9 '

fit <- cfa(HS.model, data = HS, ordered = c("y7","y8","y9"), std.lv = TRUE)

## works for factors with exclusively continuous OR categorical indicators
compRelSEM(fit)

## reliability for ALL indicators only available when they are
## all continuous or all categorical
compRelSEM(fit, omit.factors = "speed”, return.total = TRUE)

compRelSEM

## loop over visual indicators to calculate alpha if one indicator is removed

for (i in paste@("x", 1:3)) {
cat("Drop ", i, ":\n", sep = "")
print(compRelSEM(fit, omit.factors = c("textual"”,"speed"),
omit.indicators = i, tau.eq = TRUE))
3
## item-total correlations obtainable by adding a composite to the data
HS$Visual <- HS$x1 + HS$x2 + HS$x3
cor(HS$Visual, y = HS[paste@("x", 1:3)1)
## comparable to psych::alpha(HS[paste@("x", 1:3)1)

## Reliability of a composite that represents a higher-order factor

mod.hi <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
general =~ visual + textual + speed '

fit.hi <- cfa(mod.hi, data = HolzingerSwineford1939)
compRelSEM(fit.hi, higher = "general”)
## reliabilities for lower-order composites also returned

## works for multigroup models and for multilevel models (and both)
data(Demo. twolevel)

## assign clusters to arbitrary groups

Demo.twolevel$g <- ifelse(Demo.twolevel$cluster %% 2L, "typel”, "type2")
model2 <- ' group: typel
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level: 1
f1 =~ y1 + L2%y2 + L3*y3
f2 =~ y4 + L5%y5 + L6*y6
level: 2
f1 =~ y1 + L2%y2 + L3*y3
f2 =~ y4 + L5%y5 + L6*y6

group: type2
level: 1
f1 =~ y1 + L2%xy2 + L3xy3
f2 =~ y4 + L5%xy5 + L6%y6
level: 2
f1 =~ y1 + L2%xy2 + L3xy3
f2 =~ y4 + L5xy5 + L6%y6
fit2 <- sem(model2, data = Demo.twolevel, cluster = "cluster"”, group = "g")
compRelSEM(fit2) # Geldhof's indices (hypothetical, for latent components)

## Lai's (2021) indices for Level-1 and configural constructs
compRelSEM(fit2, config = c("f1","f2"))

## Lai's (2021) indices for shared (Level-2) constructs

## (also an interrater reliability coefficient)
compRelSEM(fit2, shared = c("f1","f2"))

## Shared construct using saturated within-level model
mod.satl <- ' level: 1

yl ~~ yl1 +y2 + y3 + y4 + y5 + y6
y2 ~~ y2 + y3 + y4 + y5 + yb

y3 ~~ y3 + y4 + y5 + y6

y4 ~~ y4 + y5 + y6

y5 ~~ y5 + y6

y6 ~~ y6

level: 2

f1 =~ y1 + L2xy2 + L3*y3

f2 =~ y4 + L5xy5 + L6%y6
fit.sat1l <- sem(mod.sat1, data = Demo.twolevel, cluster = "cluster")
compRelSEM(fit.sat1, shared = c("f1","f2"))

## Simultaneous shared-and-configural model (Stapleton et al, 2016, 2019),
## not recommended, but possible by omitting shared or configural factor.
mod.both <- ' level: 1
fc =~ y1 + L2%xy2 + L3xy3 + L4xy4 + L5*y5 + L6xy6
level: 2
## configural construct
fc =~ y1 + L2%xy2 + L3xy3 + L4xy4 + L5*y5 + L6xy6
## orthogonal shared construct
fs =~ NAxyl + y2 + y3 + y4 + y5 + y6
fs ~~ 1*xfs + 0xfc
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fit.both <- sem(mod.both, data = Demo.twolevel, cluster = "cluster")
compRelSEM(fit.both, shared = "fs", config = "fc")

dat2way Simulated Dataset to Demonstrate Two-way Latent Interaction

Description

A simulated data set with 2 independent factors and 1 dependent factor where each factor has three
indicators

Usage

dat2way

Format

A data. frame with 500 observations of 9 variables.

x1 The first indicator of the first independent factor

x2 The second indicator of the first independent factor
x3 The third indicator of the first independent factor

x4 The first indicator of the second independent factor
x5 The second indicator of the second independent factor
x6 The third indicator of the second independent factor
x7 The first indicator of the dependent factor

x8 The second indicator of the dependent factor

x9 The third indicator of the dependent factor

Source

Data were generated by the MASS: :mvrnorm() function in the MASS package.

Examples

head(dat2way)
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dat3way Simulated Dataset to Demonstrate Three-way Latent Interaction

Description

A simulated data set with 3 independent factors and 1 dependent factor where each factor has three
indicators

Usage

dat3way

Format

A data. frame with 500 observations of 12 variables.

x1 The first indicator of the first independent factor

x2 The second indicator of the first independent factor
x3 The third indicator of the first independent factor
x4 The first indicator of the second independent factor
x5 The second indicator of the second independent factor
x6 The third indicator of the second independent factor
x7 The first indicator of the third independent factor

x8 The second indicator of the third independent factor
x9 The third indicator of the third independent factor
x10 The first indicator of the dependent factor

x11 The second indicator of the dependent factor

x12 The third indicator of the dependent factor

Source

Data were generated by the MASS: :mvrnorm() function in the MASS package.

Examples

head(dat3way)
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datCat

datCat

Simulated Data set to Demonstrate Categorical Measurement Invari-
ance

Description

A simulated data set with 2 factors with 4 indicators each separated into two groups

Usage

datCat

Format

A data. frame with 200 observations of 9 variables.

g Sex of respondents

ul
u2
ul
ud
us
u6
u?
u8

Source

Indicator 1
Indicator 2
Indicator 3
Indicator 4
Indicator 5
Indicator 6
Indicator 7

Indicator 8

Data were generated using the lavaan package.

Examples

head(datCat)
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discriminantValidity Calculate discriminant validity statistics

Description

Calculate discriminant validity statistics based on a fitted lavaan object

Usage

discriminantValidity(object, cutoff = 0.9, merge = FALSE, level = 0.95,
boot.ci.type = "perc”)

Arguments
object The lavaan::lavaan model object returned by the lavaan: :cfa() function.
cutoff A cutoff to be used in the constrained models in likelihood ratio tests.
merge Whether the constrained models should be constructed by merging two factors
as one. Implies cutoff = 1.
level The confidence level required.

boot.ci.type  If bootstrapping was used, the type of interval required. The value should be one
of "norm”, "basic”, "perc”, or "bca.simple”. For the first three options, see
the help page of the boot. ci function in the boot package. The "bca.simple”
option produces intervals using the adjusted bootstrap percentile (BCa) method,
but with no correction for acceleration (only for bias). Note that the p-value is
still computed assuming that the z-statistic follows a standard normal distribu-

tion.

Details

Evaluated on the measurement scale level, discriminant validity is commonly evaluated by checking
if each pair of latent correlations is sufficiently below one (in absolute value) that the latent variables
can be thought of representing two distinct constructs.

discriminantValidity function calculates two sets of statistics that are commonly used in dis-
criminant validity evaluation. The first set are factor correlation estimates and their confidence
intervals. The second set is a series of nested model tests, where the baseline model is compared
against a set of constrained models that are constructed by constraining each factor correlation to
the specified cutoff one at a time.

The function assume that the object is set of confirmatory factor analysis results where the latent
variables are scaled by fixing their variances to 1s. If the model is not a CFA model, the function will
calculate the statistics for the correlations among exogenous latent variables, but for the residual
variances with endogenous variables. If the latent variables are scaled in some other way (e.g.
fixing the first loadings), the function issues a warning and re-estimates the model by fixing latent
variances to 1 (and estimating all loadings) so that factor covariances are already estimated as
correlations.
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The likelihood ratio tests are done by comparing the original baseline model against more con-
strained alternatives. By default, these alternatives are constructed by fixing each correlation at a
time to a cutoff value. The typical purpose of this test is to demonstrate that the estimated factor
correlation is well below the cutoff and a significant chi? statistic thus indicates support for dis-
criminant validity. In some cases, the original correlation estimate may already be greater than the
cutoff, making it redundant to fit a "restricted" model. When this happens, the likelihood ratio test
will be replaced by comparing the baseline model against itself. For correlations that are estimated
to be negative, a negation of the cutoff is used in the constrained model.

Another alternative is to do a nested model comparison against a model where two factors are
merged as one by setting the merge argument to TRUE. In this comparison, the constrained model is
constructed by removing one of the correlated factors from the model and assigning its indicators
to the factor that remains in the model.

Value

A data.frame of latent variable correlation estimates, their confidence intervals, and a likelihood
ratio tests against constrained models. with the following attributes:

baseline The baseline model after possible rescaling.

constrained A list of the fitted constrained models used in the likelihood ratio test.

Author(s)

Mikko Ronkkd (University of Jyviskyld; <mikko. ronkko@jyu. fi>):

References

Ronkko, M., & Cho, E. (2022). An updated guideline for assessing discriminant validity. Organi-
zational Research Methods, 25(1), 6-14. doi:10.1177/1094428120968614

Examples
library(lavaan)
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data = HolzingerSwineford1939)
discriminantValidity(fit)
discriminantValidity(fit, merge = TRUE)


https://doi.org/10.1177/1094428120968614
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EFA-class Class For Rotated Results from EFA

Description

This class contains the results of rotated exploratory factor analysis

Usage
## S4 method for signature 'EFA'
show(object)

## S4 method for signature 'EFA'
summary (object, suppress = 0.1, sort = TRUE)

Arguments
object object of class EFA
suppress any standardized loadings less than the specified value will not be printed to the
screen
sort logical. If TRUE (default), factor loadings will be sorted by their size in the
console output
Slots

loading Rotated standardized factor loading matrix

rotate Rotation matrix

gradRotate gradient of the objective function at the rotated loadings

convergence Convergence status

phi: Factor correlation matrix. Will be an identity matrix if orthogonal rotation is used.
se Standard errors of the rotated standardized factor loading matrix

method Method of rotation

call The command used to generate this object

Objects from the Class

Objects can be created via the orthRotate or oblgRotate function.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

See Also

efaUnrotate; orthRotate; oblgRotate
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Examples

efa.ekc

unrotated <- efalUnrotate(HolzingerSwineford1939, nf = 3,

varList = paste@("x", 1:9), estimator = "mlr")

summary (unrotated, std = TRUE)
lavInspect(unrotated, "std")

# Rotated by Quartimin
rotated <- oblgRotate(unrotated, method = "quartimin”)

summary (rotated)

efa.ekc

Empirical Kaiser criterion

Description

Identify the number of factors to extract based on the Empirical Kaiser Criterion (EKC). The anal-
ysis can be run on a data.frame or data matrix (data), or on a correlation or covariance matrix
(sample.cov) and the sample size (sample.nobs). A data.frame is returned with two columns:
the eigenvalues from your data or covariance matrix and the reference eigenvalues. The number of
factors suggested by the Empirical Kaiser Criterion (i.e. the sample eigenvalues greater than the
reference eigenvalues), and the number of factors suggested by the original Kaiser Criterion (i.e.
sample eigenvalues > 1) is printed above the output.

Usage

efa.ekc(data =

NULL, sample.cov = NULL, sample.nobs = NULL,

missing = "default”, ordered = NULL, plot = TRUE)

Arguments

data

sample.cov

sample.nobs

missing

A data.frame or data matrix containing columns of variables to be factor-
analyzed.

A covariance or correlation matrix can be used, instead of data, to estimate the
eigenvalues.

Number of observations (i.e. sample size) if is.null(data) and sample.cov=
is used.

If "listwise"”, incomplete cases are removed listwise from the data. frame. If
"direct” or "ml” or "fiml" and the estimator= is maximum likelihood, an
EM algorithm is used to estimate an unrestricted covariance matrix (and mean
vector). If "pairwise”, pairwise deletion is used. If ‘"default"*, the value is set
depending on the estimator and the mimic option (see lavaan::1lavCor() for
details).
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ordered character vector. Only used if object is a data.frame. Treat these variables
as ordered= (ordinal) variables. Importantly, all other variables will be treated
as numeric (unless is.ordered == TRUE in data). (see also lavCor)

plot logical. Whether to print a scree plot comparing the sample eigenvalues with
the reference eigenvalues.

Value

A data. frame showing the sample and reference eigenvalues.

The number of factors suggested by the Empirical Kaiser Criterion (i.e. the sample eigenvalues
greater than the reference eigenvalues) is returned as an attribute (see Examples).

The number of factors suggested by the original Kaiser Criterion (i.e. sample eigenvalues > 1) is
also printed as a header to the data.frame
Author(s)

Ylenio Longo (University of Nottingham; <yleniolongo@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Braeken, J., & van Assen, M. A. L. M. (2017). An empirical Kaiser criterion. Psychological
Methods, 22(3), 450-466. doi:10.1037/met0000074

Examples
## Simulate data with 3 factors
model <- '
f1 =~ .3*%x1 + .5%x2 + .4%x3
f2 =~ .3*%x4 + .5%x5 + .4%x6
f3 =~ .3xx7 + .5%x8 + .4%x9

dat <- simulateData(model, seed = 123)
## save summary statistics

myCovMat <- cov(dat)

myCorMat <- cor(dat)

N <- nrow(dat)

## Run the EKC function
(out <- efa.ekc(dat))

## To extract the recommended number of factors using the EKC:
attr(out, "nfactors”)

## If you do not have raw data, you can use summary statistics
(x1 <- efa.ekc(sample.cov = myCovMat, sample.nobs = N, plot = FALSE))
(x2 <- efa.ekc(sample.cov = myCorMat, sample.nobs = N, plot = FALSE))


https://doi.org/10.1037/met0000074
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exLong Simulated Data set to Demonstrate Longitudinal Measurement Invari-
ance

Description

A simulated data set with 1 factors with 3 indicators in three timepoints

Usage

exLong

Format

A data. frame with 200 observations of 10 variables.

sex Sex of respondents

y1tl Indicator 1 in Time 1
y2t1 Indicator 2 in Time 1
y3t1 Indicator 3 in Time 1
y1t2 Indicator 1 in Time 2
y2t2 Indicator 2 in Time 2
y3t2 Indicator 3 in Time 2
y1t3 Indicator 1 in Time 3
y2t3 Indicator 2 in Time 3
y3t3 Indicator 3 in Time 3

Source

Data were generated using the simsem package.

Examples

head(exLong)
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findRMSEApower Find the statistical power based on population RMSEA

Description

Find the proportion of the samples from the sampling distribution of RMSEA in the alternative
hypothesis rejected by the cutoff dervied from the sampling distribution of RMSEA in the null hy-
pothesis. This function can be applied for both test of close fit and test of not-close fit (MacCallum,
Browne, & Suguwara, 1996)

Usage
findRMSEApower (rmsea@, rmseaA, df, n, alpha = 0.05, group = 1)

Arguments

rmsead Null RMSEA

rmseaA Alternative RMSEA

df Model degrees of freedom

n Sample size of a dataset

alpha Alpha level used in power calculations

group The number of group that is used to calculate RMSEA.
Details

This function find the proportion of sampling distribution derived from the alternative RMSEA that
is in the critical region derived from the sampling distribution of the null RMSEA. If rmseaA is
greater than rmsea@, the test of close fit is used and the critical region is in the right hand side of the
null sampling distribution. On the other hand, if rmseaA is less than rmsea®, the test of not-close fit
is used and the critical region is in the left hand side of the null sampling distribution (MacCallum,
Browne, & Suguwara, 1996).

There is also a Shiny app called "power4dSEM" that provides a graphical user interface for this func-
tionality (Jak et al., in press). It can be accessed at https://sjak.shinyapps.io/power4SEM/.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)

References

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determi-
nation of sample size for covariance structure modeling. Psychological Methods, 1(2), 130-149.
doi:10.1037/1082989X.1.2.130

Jak, S., Jorgensen, T. D., Verdam, M. G., Oort, F. J., & Elffers, L. (2021). Analytical power cal-
culations for structural equation modeling: A tutorial and Shiny app. Behavior Research Methods,
53, 1385-1406. doi:10.3758/s13428020014790


https://sjak.shinyapps.io/power4SEM/
https://doi.org/10.1037/1082-989X.1.2.130
https://doi.org/10.3758/s13428-020-01479-0
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See Also

* plotRMSEApower () to plot the statistical power based on population RMSEA given the sam-
ple size

¢ plotRMSEAdist() to visualize the RMSEA distributions

* findRMSEAsamplesize() to find the minium sample size for a given statistical power based
on population RMSEA

Examples

findRMSEApower (rmsea@ = .05, rmseaA = .08, df = 20, n = 200)

findRMSEApowernested  Find power given a sample size in nested model comparison

Description

Find the sample size that the power in rejection the samples from the alternative pair of RMSEA is
just over the specified power.

Usage

findRMSEApowernested(rmsea®A = NULL, rmsea®B = NULL, rmsealA,
rmsealB = NULL, dfA, dfB, n, alpha = 0.05, group = 1)

Arguments
rmseadA The Hj baseline RMSEA
rmseadB The Hy alternative RMSEA (trivial misfit)
rmsealA The H, baseline RMSEA
rmsealB The H; alternative RMSEA (target misfit to be rejected)
dfA degree of freedom of the more-restricted model
dfB degree of freedom of the less-restricted model
n Sample size
alpha The alpha level
group The number of group in calculating RMSEA
Author(s)
Bell Clinton

Pavel Panko (Texas Tech University; <pavel.panko@ttu.edu>)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)
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References

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covari-
ance structure models: Power analysis and null hypotheses. Psychological Methods, 11(1), 19-35.
doi:10.1037/1082989X.11.1.19

See Also

* plotRMSEApowernested() to plot the statistical power for nested model comparison based
on population RMSEA given the sample size

* findRMSEAsamplesizenested() to find the minium sample size for a given statistical power
in nested model comparison based on population RMSEA

Examples

findRMSEApowernested(rmseadA
rmsealB
alpha =

0.06, rmseadB = 0.05, rmsealA = 0.08,
0.05, dfA = 22, dfB = 20, n = 200,
.05, group = 1)

S 1o

findRMSEAsamplesize Find the minimum sample size for a given statistical power based on
population RMSEA

Description

Find the minimum sample size for a specified statistical power based on population RMSEA. This
function can be applied for both test of close fit and test of not-close fit (MacCallum, Browne, &
Suguwara, 1996)

Usage
findRMSEAsamplesize(rmsea®, rmseaA, df, power = 0.8, alpha = 0.05,
group = 1)
Arguments
rmsea@ Null RMSEA
rmseaA Alternative RMSEA
df Model degrees of freedom
power Desired statistical power to reject misspecified model (test of close fit) or retain
good model (test of not-close fit)
alpha Alpha level used in power calculations

group The number of group that is used to calculate RMSEA.


https://doi.org/10.1037/1082-989X.11.1.19
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Details

This function find the minimum sample size for a specified power based on an iterative routine. The
sample size keep increasing until the calculated power from findRMSEApower () function is just
over the specified power. If group is greater than 1, the resulting sample size is the sample size per

group.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

References

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determi-
nation of sample size for covariance structure modeling. Psychological Methods, 1(2), 130-149.
doi:10.1037/1082989X.1.2.130

Jak, S., Jorgensen, T. D., Verdam, M. G., Oort, F. J., & Elffers, L. (2021). Analytical power cal-
culations for structural equation modeling: A tutorial and Shiny app. Behavior Research Methods,
53, 1385-1406. doi:10.3758/s13428020014790

See Also

* plotRMSEApower () to plot the statistical power based on population RMSEA given the sam-
ple size

* plotRMSEAdist() to visualize the RMSEA distributions

* findRMSEApower () to find the statistical power based on population RMSEA given a sample
size

Examples

findRMSEAsamplesize(rmsea@ = .05, rmseaA = .08, df = 20, power = 0.80)

findRMSEAsamplesizenested
Find sample size given a power in nested model comparison

Description

Find the sample size that the power in rejection the samples from the alternative pair of RMSEA is
just over the specified power.

Usage

NULL, rmsea®B = NULL, rmsealA,
0.8, alpha = 0.05, group = 1)

findRMSEAsamplesizenested(rmsea®A
rmsealB = NULL, dfA, dfB, power


https://doi.org/10.1037/1082-989X.1.2.130
https://doi.org/10.3758/s13428-020-01479-0
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Arguments
rmseadA The H, baseline RMSEA
rmseaoB The H alternative RMSEA (trivial misfit)
rmsealA The H, baseline RMSEA
rmsealB The H; alternative RMSEA (target misfit to be rejected)
dfA degree of freedom of the more-restricted model.
dfB degree of freedom of the less-restricted model.
power The desired statistical power.
alpha The alpha level.
group The number of group in calculating RMSEA.
Author(s)
Bell Clinton

Pavel Panko (Texas Tech University; <pavel.panko@ttu.edu>)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)

References

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covari-
ance structure models: Power analysis and null hypotheses. Psychological Methods, 11(1), 19-35.
doi:10.1037/1082989X.11.1.19

See Also

* plotRMSEApowernested() to plot the statistical power for nested model comparison based
on population RMSEA given the sample size

* findRMSEApowernested() to find the power for a given sample size in nested model compar-
ison based on population RMSEA

Examples

findRMSEAsamplesizenested(rmsea@A = @, rmseadB = @, rmsealA = 0.06,
rmsealB = 0.05, dfA = 22, dfB = 20, power = 0.80,
alpha = .05, group = 1)


https://doi.org/10.1037/1082-989X.11.1.19
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FitDiff-class Class For Representing A Template of Model Fit Comparisons

Description

This class contains model fit measures and model fit comparisons among multiple models

Usage

## S4 method for signature 'FitDiff'
show(object)

## S4 method for signature 'FitDiff'

summary(object, fit.measures = "default”, nd = 3,
tag = IIT”)
Arguments
object object of class FitDiff

fit.measures  character vector naming fit indices the user can request from lavaan: : fitMeasures().
If "default”, the fit measures will be c("chisq"”, "df", "pvalue”, "cfi”,

nosn

"tli"”, "rmsea”, "srmr", "aic"”, "bic"). If "all”, all available fit measures
will be returned.

nd number of digits printed

tag single character used to flag the model preferred by each fit index. To omit
tags, set to NULL or NA.

Slots

name character. The name of each model
model.class character. One class to which each model belongs

nested data.frame. Model fit comparisons between adjacently nested models that are ordered by
their degrees of freedom (df)

fit data.frame. Fit measures of all models specified in the name slot, ordered by their df

fit.diff data.frame. Sequential differences in fit measures in the fit slot

Objects from the Class

Objects can be created via the compareFit() function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)
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See Also

compareFit(); clipboard()

Examples
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit.config <- cfa(HS.model, data = HolzingerSwineford1939, group = "school”)

## invariance constraints

fit.metric <- cfa(HS.model, data = HolzingerSwineford1939, group = "school”,
group.equal = "loadings")

fit.scalar <- cfa(HS.model, data = HolzingerSwineford1939, group = "school”,
group.equal = c("loadings”,"intercepts”))

fit.strict <- cfa(HS.model, data = HolzingerSwineford1939, group = "school”,
group.equal = c("loadings”,"intercepts”,"residuals”))

measEqOut <- compareFit(fit.config, fit.metric, fit.scalar, fit.strict)

summary (measEqOut)

summary (measEqOut, fit.measures = "all")

summary (measEqOut, fit.measures = c("aic”, "bic"))
if(interactive()){

## Save results to a file
saveFile(measEqOut, file = "measEq.txt")

## Copy to a clipboard
clipboard(measEqOut)
3

fmi Fraction of Missing Information.

Description

This function estimates the Fraction of Missing Information (FMI) for summary statistics of each
variable, using either an incomplete data set or a list of imputed data sets.

Usage

fmi(data, method = "saturated”, group = NULL, ords = NULL,
varnames = NULL, exclude = NULL, return.fit = FALSE)

Arguments

data Either a single data. frame with incomplete observations, or a 1ist of imputed
data sets.
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method character. If "saturated” or "sat"” (default), the model used to estimate FMI
is a freely estimated covariance matrix and mean vector for numeric variables,
and/or polychoric correlations and thresholds for ordered categorical variables,
for each group (if applicable). If "null”, only means and variances are es-
timated for numeric variables, and/or thresholds for ordered categorical vari-
ables (i.e., covariances and/or polychoric/polyserial correlations are constrained
to zero). See Details for more information.

group character. The optional name of a grouping variable, to request FMI in each
group.
ords Optional character vector naming ordered-categorical variables, if they are not

already stored as class ordered in data.

varnames Optional character vector of variable names, to calculate FMI for a subset
of variables in data. By default, all numeric and ordered= variables will be
included, unless data= is a single incomplete data. frame, in which case only
numeric variables can be used with FIML estimation. Other variable types will

be removed.
exclude Optional character vector naming variables to exclude from the analysis.
return.fit logical. If TRUE, the fitted lavaan::lavaan or lavaan.mi::lavaan.mi model is re-

turned, so FMI can be found from summary(. .., fmi=TRUE).

Details

The function estimates a saturated model with lavaan::lavaan() for a single incomplete data
set using FIML, or with lavaan.mi::lavaan.mi() for a list of imputed data sets. If method =
"saturated”, FMI will be estiamted for all summary statistics, which could take a lot of time with
big data sets. If method = "null”, FMI will only be estimated for univariate statistics (e.g., means,
variances, thresholds). The saturated model gives more reliable estimates, so it could also help to
request a subset of variables from a large data set.

Value

fmi() returns a list with at least 2 of the following:

Covariances A list of symmetric matrices: (1) the estimated/pooled covariance matrix, or
a list of group-specific matrices (if applicable) and (2) a matrix of FMI, or
a list of group-specific matrices (if applicable). Only available if method =
"saturated”. When method="cor", this element is replaced by Correlations.

Variances The estimated/pooled variance for each numeric variable. Only available if
method = "null” (otherwise, it is on the diagonal of Covariances).
Means The estimated/pooled mean for each numeric variable.
Thresholds The estimated/pooled threshold(s) for each ordered-categorical variable.
Author(s)

Mauricio Garnier Villarreal (Vrije Universiteit Amsterdam; <m.garniervillarreal@vu.nl>)

Terrence Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
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References

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.

Savalei, V. & Rhemtulla, M. (2012). On obtaining estimates of the fraction of missing informa-
tion from full information maximum likelihood. Structural Equation Modeling, 19(3), 477—494.
doi:10.1080/10705511.2012.687669

Wagner, J. (2010). The fraction of missing information as a tool for monitoring the quality of survey
data. Public Opinion Quarterly, 74(2), 223-243. doi:10.1093/poq/nfq007

Examples

HSMiss <- HolzingerSwineford1939[ , c(paste(”x", 1:9, sep = ""),
"ageyr", "agemo","school”)]

set.seed(12345)

HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)

age <- HSMiss$ageyr + HSMiss$agemo/12

HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

## calculate FMI (using FIML, provide partially observed data set)

(out1 <- fmi(HSMiss, exclude = "school"))

(out2 <- fmi(HSMiss, exclude = "school”, method = "null"))

(out3 <- fmi(HSMiss, varnames = c("x5","x6","x7","x8","x9")))

(out4 <- fmi(HSMiss, method = "cor”, group = "school”)) # correlations by group

## significance tests in lavaan(.mi) object
out5 <- fmi(HSMiss, method = "cor"”, return.fit = TRUE)
summary (out5) # factor loading == SD, covariance = correlation

if (requireNamespace("lavaan.mi")){
## ordered-categorical data
data(binHS5imps, package = "lavaan.mi")

## calculate FMI, using list of imputed data sets
fmi(binHS5imps, group = "school")
}

goricaSEM Wrapper for goric.lavaan() from the restriktor package

Description

The goricaSEM() function is an interface to restriktor: :goric.lavaan(), allowing users to per-
form generalized order-restricted information criterion approximation (GORICA) analysis specifi-
cally for structural equation models fitted using the lavaan package.

Usage

goricaSEM(object, ..., hypotheses = NULL, comparison = NULL,
type = "gorica"”, standardized = FALSE, debug = FALSE)


https://doi.org/10.1080/10705511.2012.687669
https://doi.org/10.1093/poq/nfq007

44 goricaSEM

Arguments

object A lavaan::lavaan object.
Additional arguments passed to restriktor::goric.lavaan().

hypotheses A named list of hypotheses to test. See Details for information on how to
specify hypotheses.

comparison A character string specifying the type of comparison. Options are "unconstrained”,
"complement”, or "none”. Default behavior depends on the number of hypothe-
ses.

type A character string indicating the type of analysis, either "gorica” (default) or
"goricac”.

standardized logical indicating whether standardized estimates are used in the analysis. De-
faults to FALSE.

debug logical indicating whether to print debugging information. Defaults to FALSE.

Details

This function is designed as a wrapper for the restriktor::goric.lavaan() function. It cal-
culates GORICA values and weights, which can be used to compare models or hypotheses under
inequality constraints.

The hypotheses= argument allows users to specify constraints in text-based syntax or matrix no-
tation. For text-based syntax, constraints are specified as a string (e.g., "al > a2"). For matrix
notation, a named list with $constraints, $rhs, and $neq elements can be provided.

The comparison= argument determines whether the specified hypothesis is compared against its
"complement”, the "unconstrained” model, or neither ("none").

Value
A list containing the results of the goric.lavaan function, including:

* The log-likelihood.

* Penalty term.

* GORIC(A) values and weights.
* Relative GORIC(A) weights.

Author(s)

Leonard Vanbrabant and Rebecca Kuiper

References

Kuiper, R. M., Hoijtink, H., & Silvapulle, M. J. (2011). An Akaike-type information criterion for
model selection under inequality constraints. Biometrika, 98(2), 495-501. doi:10.1093/biomet/
asr002

Vanbrabant, L., Van Loey, N., & Kuiper, R. M. (2020). Evaluating a theory-based hypothesis against

its complement using an AIC-type information criterion with an application to facial burn injury.
Psychological Methods, 25(2), 129-142. doi:10.1037/met0000238


https://doi.org/10.1093/biomet/asr002
https://doi.org/10.1093/biomet/asr002
https://doi.org/10.1037/met0000238
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See Also

restriktor::goric.lavaan()

Examples

## Example: Perform GORICA analysis on a lavaan model
library(lavaan)
library(restriktor)

## Define the SEM model

model <- '
ind60 =~ x1 + x2 + x3
dem6@ =~ y1 + al*xy2 + bl*xy3 + cl*y4
dem65 =~ y5 + a2*y6 + b2*y7 + c2*y8
dem6@ ~ ind60@
dem65 ~ ind6@ + dem60@

yl ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

## Fit the model
data(PoliticalDemocracy)
fit <- sem(model, data = PoliticalDemocracy)

## Define hypotheses
myHypothesis <- 'al > a2, bl > b2, c1 > c2'

## Perform GORICA analysis

result <- goricaSEM(fit, hypotheses = list(H1 = myHypothesis),
standardized = FALSE, comparison = "complement”,
type = "gorica")

## Print result
print(result)

htmt Assessing Discriminant Validity using Heterotrait—-Monotrait Ratio

Description

This function assesses discriminant validity through the heterotrait-monotrait ratio (HTMT) of the
correlations (Henseler, Ringlet & Sarstedt, 2015). Specifically, it assesses the arithmetic (Henseler
etal., ) or geometric (Roemer et al., 2021) mean correlation among indicators across constructs (i.e.
heterotrait-heteromethod correlations) relative to the geometric-mean correlation among indicators
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within the same construct (i.e. monotrait-heteromethod correlations). The resulting HTMT(2) val-
ues are interpreted as estimates of inter-construct correlations. Absolute values of the correlations
are recommended to calculate the HTMT matrix, and are required to calculate HTMT2. Correla-
tions are estimated using the lavaan: : lavCor () function.

Usage

htmt (model, data = NULL, sample.cov = NULL, missing = "listwise”,
ordered = NULL, absolute = TRUE, htmt2 = TRUE)

Arguments

model

data

sample.cov

missing

ordered

absolute

htmt2

Value

lavaan lavaan: :model. syntax() of a confirmatory factor analysis model where
at least two factors are required for indicators measuring the same construct.

A data.frame or data matrix

A covariance or correlation matrix can be used, instead of data=, to estimate the
HTMT values.

If "listwise”, cases with missing values are removed listwise from the data
frame. If "direct” or "ml"” or "fiml" and the estimator is maximum likelihood,
an EM algorithm is used to estimate the unrestricted covariance matrix (and
mean vector). If "pairwise”, pairwise deletion is used. If "default”, the
value is set depending on the estimator and the mimic option (see details in
lavaan::1lavCor()).

Character vector. Only used if object is a data.frame. Treat these variables
as ordered (ordinal) variables. Importantly, all other variables will be treated as
numeric (unless is.ordered in data=). See also lavaan: :lavCor().

logical indicating whether HTMT values should be estimated based on abso-
lute correlations (default is TRUE). This is recommended for HTMT but required
for HTMT?2 (so silently ignored).

logical indicating whether to use the geometric mean (default, appropriate for
congeneric indicators) or arithmetic mean (which assumes tau-equivalence).

A matrix showing HTMT(2) values (i.e., discriminant validity) between each pair of factors.

Author(s)

Ylenio Longo (University of Nottingham; <yleniolongo@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant valid-
ity in variance-based structural equation modeling. Journal of the Academy of Marketing Science,
43(1), 115-135. doi:10.1007/s1174701404038


https://doi.org/10.1007/s11747-014-0403-8
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Roemer, E., Schuberth, F., & Henseler, J. (2021). HTMT2—An improved criterion for assessing
discriminant validity in structural equation modeling. Industrial Management & Data Systems,
121(21), 2637-2650. doi:10.1108/IMDS0220210082

Voorhees, C. M., Brady, M. K., Calantone, R., & Ramirez, E. (2016). Discriminant validity testing
in marketing: An analysis, causes for concern, and proposed remedies. Journal of the Academy of
Marketing Science, 44(1), 119-134. doi:10.1007/s1174701504554

Examples
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

dat <- HolzingerSwineford1939[, paste@("x", 1:9)]
htmt (HS.model, dat)

## save covariance matrix

HS.cov <- cov(HolzingerSwineford1939[, pasteo("x", 1:9)1)
## HTMT using arithmetic mean

htmt (HS.model, sample.cov = HS.cov, htmt2 = FALSE)

imposeStart Specify starting values from a lavaan output

Description

This function will save the parameter estimates of a lavaan output and impose those parameter
estimates as starting values for another analysis model. The free parameters with the same names
or the same labels across two models will be imposed the new starting values. This function may
help to increase the chance of convergence in a complex model (e.g., multitrait-multimethod model
or complex longitudinal invariance model).

Usage

imposeStart(out, expr, silent = TRUE)

Arguments
out The lavaan output that users wish to use the parameter estimates as staring
values for an analysis model
expr The original code that users use to run a lavaan model
silent Logical to print the parameter table with new starting values
Value

A fitted lavaan model


https://doi.org/10.1108/IMDS-02-2021-0082
https://doi.org/10.1007/s11747-015-0455-4
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Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

Examples

## The following example show that the longitudinal weak invariance model

## using effect coding was not convergent with three time points but convergent

## with two time points. Thus, the parameter estimates from the model with

## two time points are used as starting values of the three time points.

## The model with new starting values is convergent properly.

weak2time <- '

# Loadings

f1t1 =~ LOAD1*y1t1 + LOAD2*y2t1 + LOAD3*y3t1
f1t2 =~ LOAD1xy1t2 + LOAD2xy2t2 + LOAD3*y3t2

# Factor Variances
f1t1 ~~ f1t1
f1t2 ~~ f1t2

# Factor Covariances
f1t1 ~~ f1t2

# Error Variances

y1t1 ~~ y1t1
y2t1 ~~ y2ti
y3t1 ~~ y3ti
y1t2 ~~ y1t2
y2t2 ~~ y2t2
y3t2 ~~ y3t2

# Error Covariances

y1t1 ~~ y1t2
y2t1 ~~ y2t2
y3t1 ~~ y3t2

# Factor Means
f1t1 ~ NAx1
f1t2 ~ NAx1

# Measurement Intercepts
y1t1l ~ INT1*1
y2t1 ~ INT2*1
y3t1 ~ INT3x*1
y1t2 ~ INT4x*1
y2t2 ~ INT5%*1
y3t2 ~ INT6x*1

# Constraints for Effect-coding Identification
LOAD1 == 3 - LOAD2 - LOAD3

INTT == @ - INT2 - INT3

INT4 == @ - INT5 - INT6
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model2time <- lavaan(weak2time, data = exLong)

weak3time <- '

# Loadings

f1t1 =~ LOAD1*y1t1 + LOAD2*y2t1 + LOAD3*y3t1
f1t2 =~ LOAD1xy1t2 + LOAD2xy2t2 + LOAD3*y3t2
f1t3 =~ LOAD1*y1t3 + LOAD2xy2t3 + LOAD3*y3t3

# Factor Variances

f1t1 ~~ f1t1
f1t2 ~~ f1t2
f1t3 ~~ f1t3

# Factor Covariances
f1t1 ~~ f1t2 + f1t3
f1t2 ~~ f1t3

# Error Variances

y1t1 ~~ yi1t1
y2t1 ~~ y2ti
y3t1 ~~ y3til
y1t2 ~~ y1t2
y2t2 ~~ y2t2
y3t2 ~~ y3t2
y1t3 ~~ y1t3
y2t3 ~~ y2t3
y3t3 ~~ y3t3

# Error Covariances

y1tl ~~ y1t2
y2t1 ~~ y2t2
y3t1 ~~ y3t2
y1t1 ~~ y1t3
y2t1 ~~ y2t3
y3t1 ~~ y3t3
ylt2 ~~ y1t3
y2t2 ~~ y2t3
y3t2 ~~ y3t3

# Factor Means

f1t1 ~ NA*1
f1t2 ~ NA*1
f1t3 ~ NA*1

# Measurement Intercepts
y1t1 ~ INT1%*1
y2t1 ~ INT2x*1
y3t1 ~ INT3*1
y1t2 ~ INT4x*1
y2t2 ~ INT5%*1
y3t2 ~ INT6x*1
y1t3 ~ INT7%*1
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y2t3 ~ INT8*1
y3t3 ~ INT91

# Constraints for Effect-coding Identification

LOAD1 == 3 - LOAD2 - LOAD3

INT1 == @ - INT2 - INT3

INT4 == @ - INT5 - INT6

INT7 == @ - INT8 - INT9

### The following command does not provide convergent result
# model3time <- lavaan(weak3time, data = exLong)

### Use starting values from the model with two time points
model3time <- imposeStart(model2time, lavaan(weak3time, data
summary (model3time)

indProd

= exLong))

indProd

Make products of indicators using no centering, mean centering,

double-mean centering, or residual centering

Description

The indProd function will make products of indicators using no centering, mean centering, double-

mean centering, or residual centering. The orthogonalize function
function to make the residual-centered indicators products.

Usage

is the shortcut of the indProd

indProd(data, varl, var2, var3 = NULL, match = TRUE, meanC = TRUE,

residualC = FALSE, doubleMC = TRUE, namesProd = NULL)

orthogonalize(data, varl, var2, var3 = NULL, match = TRUE,

namesProd = NULL)

products

Arguments

data The desired data to be transformed.

vari Names or indices of the variables loaded on the first factor

var2 Names or indices of the variables loaded on the second factor

var3 Names or indices of the variables loaded on the third factor (for three-way inter-
action)

match Specify TRUE to use match-paired approach (Marsh, Wen, & Hau, 2004). If
FALSE, the resulting products are all possible products.

meanC Specify TRUE for mean centering the main effect indicator before making the
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residualC Specify TRUE for residual centering the products by the main effect indicators
(Little, Bovaird, & Widaman, 2006).

doubleMC Specify TRUE for centering the resulting products (Lin et. al., 2010)

namesProd The names of resulting products

Value

The original data attached with the products.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>) Alexander Schoemann (East Carolina Uni-
versity; <schoemanna@ecu. edu>)

References

Marsh, H. W., Wen, Z. & Hau, K. T. (2004). Structural equation models of latent interactions:
Evaluation of alternative estimation strategies and indicator construction. Psychological Methods,
9(3), 275-300. doi:10.1037/1082989X.9.3.275

Lin, G. C., Wen, Z., Marsh, H. W., & Lin, H. S. (2010). Structural equation models of latent interac-
tions: Clarification of orthogonalizing and double-mean-centering strategies. Structural Equation
Modeling, 17(3), 374-391. doi:10.1080/10705511.2010.488999

Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing pow-
ered and product terms: Implications for modeling interactions among latent variables. Structural
Equation Modeling, 13(4), 497-519. doi:10.1207/s15328007sem 1304 _1

See Also

* probe2WayMC () For probing the two-way latent interaction when the results are obtained from
mean-centering, or double-mean centering.

* probe3WayMC() For probing the three-way latent interaction when the results are obtained
from mean-centering, or double-mean centering.

* probe2WayRC() For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

* probe3WayRC() For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

* plotProbe() Plot the simple intercepts and slopes of the latent interaction.

Examples

## Mean centering / two-way interaction / match-paired
dat <- indProd(attitude[ , -11, varl = 1:3, var2 = 4:6)

## Residual centering / two-way interaction / match-paired
dat2 <- indProd(attitude[ , -1], var1l = 1:3, var2 = 4:6, match = FALSE,
meanC = FALSE, residualC = TRUE, doubleMC = FALSE)

## Double-mean centering / two-way interaction / match-paired


https://doi.org/10.1037/1082-989X.9.3.275
https://doi.org/10.1080/10705511.2010.488999
https://doi.org/10.1207/s15328007sem1304_1

52 kd

dat3 <- indProd(attitude[ , -1], varl

= 1:3, var2 = 4:6, match = FALSE,
meanC = TRUE, residualC =

FALSE, doubleMC = TRUE)

## Mean centering / three-way interaction / match-paired
dat4 <- indProd(attitude[ , -1], var1l = 1:2, var2 = 3:4, var3 = 5:6)

## Residual centering / three-way interaction / match-paired
dat5 <- orthogonalize(attitude[ , -11, varl = 1:2, var2 = 3:4, var3 = 5:6,
match = FALSE)

## Double-mean centering / three-way interaction / match-paired

dat6 <- indProd(attitude[ , -1], varl = 1:2, var2 = 3:4, var3 = 5:6,
match = FALSE, meanC = TRUE, residualC = TRUE,
doubleMC = TRUE)

## To add product-indicators to multiple-imputed data sets
HSMiss <- HolzingerSwineford1939[ , c(paste@("x", 1:9), "ageyr”,"agemo")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 3, p2s = FALSE)
imps <- HS.amelia$imputations # extract a list of imputations
## apply indProd() to the list of data.frames
imps2 <- lapply(imps, indProd,
varl = c("x1","x2","x3"), var2 = c("x4","x5","x6"))
## verify:
lapply(imps2, head)

kd Generate data via the Kaiser-Dickman (1962) algorithm.

Description

Given a covariance matrix and sample size, generate raw data that correspond to the covariance
matrix. Data can be generated to match the covariance matrix exactly, or to be a sample from the
population covariance matrix.

Usage

kd(covmat, n, type = c("exact”, "sample"))
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Arguments
covmat a symmetric, positive definite covariance matrix
n the sample size for the data that will be generated
type type of data generation. exact generates data that exactly correspond to covmat.
sample treats covmat as a poulation covariance matrix, generating a sample of
size n.
Details

By default, R’s cov() function divides by n-1. The data generated by this algorithm result in a
covariance matrix that matches covmat, but you must divide by n instead of n-1.
Value

kd returns a data matrix of dimension n by nrow(covmat).

Author(s)

Ed Merkle (University of Missouri; <merklee@missouri.edu>)

References

Kaiser, H. F. and Dickman, K. (1962). Sample and population score matrices and sample corre-
lation matrices from an arbitrary population correlation matrix. Psychometrika, 27(2), 179-182.
doi:10.1007/BF02289635

Examples

#i### First Example
## Get data
dat <- HolzingerSwineford1939[ , 7:15]

hs.n <- nrow(dat)

## Covariance matrix divided by n
hscov <- ((hs.n-1)/hs.n) * cov(dat)

## Generate new, raw data corresponding to hscov
newdat <- kd(hscov, hs.n)

## Difference between new covariance matrix and hscov is minimal
newcov <- (hs.n-1)/hs.n * cov(newdat)

summary (as.numeric(hscov - newcov))

## Generate sample data, treating hscov as population matrix
newdat2 <- kd(hscov, hs.n, type = "sample”)

#i### Another example

## Define a covariance matrix


https://doi.org/10.1007/BF02289635
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covmat <- matrix(@Q, 3, 3)
diag(covmat) <- 1.5
covmat[2:3,1] <- c(1.3, 1.7)
covmat[3,2] <- 2.1

covmat <- covmat + t(covmat)

## Generate data of size 300 that have this covariance matrix
rawdat <- kd(covmat, 300)

## Covariances are exact if we compute sample covariance matrix by
## dividing by n (vs by n - 1)
summary(as.numeric((299/300)*cov(rawdat) - covmat))

## Generate data of size 300 where covmat is the population covariance matrix
rawdat2 <- kd(covmat, 300)

kurtosis Finding excessive kurtosis

Description

Finding excessive kurtosis (gs) of an object

Usage
kurtosis(object, population = FALSE)

Arguments
object A vector used to find a excessive kurtosis
population TRUE to compute the parameter formula. FALSE to compute the sample statistic
formula.
Details

The excessive kurtosis computed by default is go, the fourth standardized moment of the empirical
distribution of object. The population parameter excessive kurtosis 5 formula is

4
Y2 =35 —
py o

where ; denotes the ¢ order central moment.

The excessive kurtosis formula for sample statistic g is

k4
= — — 3
g2 k% )

where k; are the ¢ order k-statistic.



lavaan2emmeans 55

The standard error of the excessive kurtosis is

. 24
Var(gz) = N

where N is the sample size.

Value

A value of an excessive kurtosis with a test statistic if the population is specified as FALSE

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

References

Weisstein, Eric W. (n.d.). Kurtosis. Retrieved from MathWorld—A Wolfram Web Resource: http:
//mathworld.wolfram.com/Kurtosis.html

See Also

¢ skew() Find the univariate skewness of a variable
¢ mardiaSkew() Find the Mardia’s multivariate skewness of a set of variables

e mardiaKurtosis() Find the Mardia’s multivariate kurtosis of a set of variables

Examples

kurtosis(1:5)

lavaan2emmeans emmeans Support Functions for 1lavaan Models

Description

Provide emmeans support for lavaan objects

Usage

recover_data.lavaan(object, lavaan.DV, data = NULL, ...)

emm_basis.lavaan(object, trms, xlev, grid, lavaan.DV, ...)


http://mathworld.wolfram.com/Kurtosis.html
http://mathworld.wolfram.com/Kurtosis.html
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Arguments
object An object of class lavaan: :lavaan(). See Details.
lavaan.DV character string naming the variable(s) for which expected marginal means /
trends should be produced. A vector of names indicates a multivariate outcome,
treated by default as repeated measures.
data An optional data. frame without missing values, to be passed whenmissing="FIML"

estimation was useed, thus avoiding a reference-grid with missing values.
Further arguments passed to emmeans: : recover_data. lmor emmeans: :emm_basis.1lm

trms, xlev, grid See emmeans::emm_basis

Details

Supported DVs: lavaan.DV must be an endogenous variable, by appearing on the left-hand
side of either a regression operator ("~") or an intercept operator ("~1"), or both.

lavaan.DV can also be a vector of endogenous variable, in which case they will be treated by
emmeans as a multivariate outcome (often, this indicates repeated measures) represented by an ad-
ditional factor named rep.meas by default. The mult.name= argument can be used to overwrite
this default name.

Unsupported Models: This functionality does not support the following models:

* Multi-level models are not supported.

e Models not fit to a data. frame (i.e., models fit to a covariance matrix).

Dealing with Fixed Parameters: Fixed parameters (set with lavaan’s modifiers) are treated
as-is: their values are set by the users, and they have a SE of 0 (as such, they do not co-vary with
any other parameter).

Dealing with Multigroup Models: If a multigroup model is supplied, a factor is added to the
reference grid, the name matching the group argument supplied when fitting the model. Note that
you must set nesting = NULL.

Dealing with Missing Data: Limited testing suggests that these functions do work when the
model was fit to incomplete data.

Dealing with Factors: By default emmeans recognizes binary variables (0,1) as a "factor" with
two levels (and not a continuous variable). With some clever contrast defenitions it should be
possible to get the desired emmeans / contasts. See example below.

Author(s)

Mattan S. Ben-Shachar (Ben-Gurion University of the Negev; <matanshm@post.bgu.ac.il>)
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Examples

## Not run:

library(lavaan)
library(emmeans)

#### Moderation Analysis ##HH
mean_sd <- function(x) mean(x) + c(-sd(x), @, sd(x))

model <- '
# regressions
Sepal.Length ~ b1 * Sepal.Width + b2 x Petal.Length + b3 * Sepal.Width:Petal.Length

# define mean parameter label for centered math for use in simple slopes
Sepal.Width ~ Sepal.Width.mean * 1

# define variance parameter label for centered math for use in simple slopes
Sepal.Width ~~ Sepal.Width.var * Sepal.Width

# simple slopes for condition effect

SD.below := b2 + b3 * (Sepal.Width.mean - sqrt(Sepal.Width.var))
mean b2 + b3 * (Sepal.Width.mean)

SD.above := b2 + b3 * (Sepal.Width.mean + sqrt(Sepal.Width.var))

semFit <- sem(model = model,
data = iris)

## Compare simple slopes
# From “emtrends”
test(
emtrends(semFit, ~ Sepal.Width, "Petal.Length”,
lavaan.DV = "Sepal.Length”,
cov.red = mean_sd)

)

# From lavaan

parameterEstimates(semFit, output = "pretty”)[13:15, ]

# Identical slopes.

# SEs differ due to lavaan estimating uncertainty of the mean / SD
# of Sepal.Width, whereas emmeans uses the mean+-SD as is (fixed).

#### Latent DV ##HH#

model <- '
LAT1 =~ Sepal.Length + Sepal.Width

LAT1 ~ b1 * Petal.Width + 1 x Petal.Length

57
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Petal.Length ~ Petal.Length.mean * 1

V1 := 1 % Petal.Length.mean + 1 * bl
V2 := 1 % Petal.Length.mean + 2 * b1

semFit <- sem(model = model,
data = iris, std.lv = TRUE)

## Compare emmeans
# From emmeans

test(
emmeans(semFit, ~ Petal.Width,
lavaan.DV = "LAT1",
at = list(Petal.Width = 1:2))
)

# From lavaan

parameterEstimates(semFit, output = "pretty”)[15:16, ]

# Identical means.

# SEs differ due to lavaan estimating uncertainty of the mean
# of Petal.Length, whereas emmeans uses the mean as is.

#### Multi-Variate DV #i#t##

model <- '
ind60@ =~ x1 + x2 + x3

# metric invariance
dem6@ =~ y1 + axy2 + bxy3 + c*y4
dem65 =~ y5 + a*xy6 + bxy7 + cxy8

# scalar invariance

yl + y5 ~ d*1
y2 + y6 ~ exl
y3 + y7 ~ f*1
y4 + y8 ~ gxl

# regressions (slopes differ: interaction with time)
dem60@ ~ b1*ind60
dem65 ~ b2*ind6@ + NA*1 + Mean.Diff=*1

# residual correlations
yl ~~ y5

y2 ~~ y4 + y6

y3 ~~ y7

y4 ~~ y8

y6 ~~ y8

# conditional mean differences (besides mean(ind6@) == 0)
low := (-1xb2 + Mean.Diff) - (-1%b1) # 1 SD below M
high := (b2 + Mean.Diff) - bl # 1 SD above M

lavaan2emmeans
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semFit <- sem(model, data = PoliticalDemocracy)

## Compare contrasts

# From emmeans

emmeans(semFit, pairwise ~ rep.meas|ind69,
lavaan.DV = c("dem60@","dem65"),
at = list(ind6@ = c(-1,1)))[[2]1]

# From lavaan
parameterEstimates(semFit, output = "pretty”)[49:50, ]

#### Multi Group ##t##

model <- 'x1 ~ c(intl1, int2)*1 + c(b1, b2)xageyr
diff_11 := (int2 + b2x11) - (int1 + b1%11)
diff_13 := (int2 + b2%13) - (int1 + b1x13)
diff_15 (int2 + b2x15) - (int1 + b1x15)

semFit <- sem(model, group = "school”, data = HolzingerSwineford1939)

## Compare contrasts

# From emmeans (note “nesting = NULL™)

emmeans(semFit, pairwise ~ school | ageyr, lavaan.DV = "x1",
at = list(ageyr = c(11, 13, 15)), nesting = NULL)[[2]]

# From lavaan
parameterEstimates(semFit, output = "pretty”)

#### Dealing with factors #it##

warpbreaks <- cbind(warpbreaks,
model.matrix(~ wool + tension, data = warpbreaks))

model <- "
# Split for convenience
breaks ~ 1

breaks ~ woolB
breaks ~ tensionM + tensionH
breaks ~ woolB:tensionM + woolB:tensionH

n

semFit <- sem(model, warpbreaks)

## Compare contrasts
# From 1lm -> emmeans
ImFit <- 1m(breaks ~ wool * tension, data = warpbreaks)

ImEM <- emmeans(lmFit, ~ tension + wool)
contrast(1lmeEM, method = data.frame(L_all = c(-1, .05, 0.5),
M_.H = c(, 1, -1)), by = "wool")
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# From lavaan -> emmeans
lavEM <- emmeans(semFit, ~ tensionM + tensionH + woolB,
lavaan.DV = "breaks")
contrast(lavEM,
method = list(
"L_all|A" = c(c(-1, .05, 0.5, @), rep(o, 4)),

"M_H |A" = c(c(o, 1, -1, 0), rep(e, 4)),
"L_all|A" = c(rep(0, 4), c(-1, .05, 0.5, 9)),
"M_H A" = c(rep(0, 4), c(o, 1, -1, 0))

)

## End(Not run)

loadingFromAlpha Find standardized factor loading from coefficient alpha

Description

Find standardized factor loading from coefficient alpha assuming that all items have equal loadings.

Usage

loadingFromAlpha(alpha, ni)

Arguments
alpha A desired coefficient alpha value.
ni A desired number of items.
Value
result The standardized factor loadings that make desired coefficient alpha with speci-
fied number of items.
Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)

Examples

loadingFromAlpha(0.8, 4)
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lrv2ord

Calculate Population Moments for Ordinal Data Treated as Numeric

Description

This function calculates ordinal-scale moments implied by LRV-scale moments

Usage

lrv2ord(Sigma, Mu, thresholds, cWts)

Arguments

Sigma

Mu

thresholds

cWts

Details

Population covariance matrix(), with variable names saved in the dimnames ()
attribute.

Optional numeric vector of population means. If missing, all means will be set
to zero.

Either a single numeric vector of population thresholds used to discretize each
normally distributed variable, or a named list of each discretized variable’s
vector of thresholds. The discretized variables may be a subset of all variables
in Sigma if the remaining variables are intended to be observed rather than latent
normally distributed variables.

Optional (default when missing is to use O for the lowest category, followed by
successive integers for each higher category). Either a single numeric vector of
category weights (if they are identical across all variables) or a named list of
each discretized variable’s vector of category weights.

Binary and ordinal data are frequently accommodated in SEM by incorporating a threshold model
that links each observed categorical response variable to a corresponding latent response variable
that is typically assumed to be normally distributed (Kamata & Bauer, 2008; Wirth & Edwards,
2007). This function can be useful for real-data analysis or for designing Monte Carlo simulations,
as described by Jorgensen and Johnson (2022).

Value

A list including the LRV-scale population moments (means, covariance matrix, correlation ma-
trix, and thresholds), the category weights, a data.frame of implied univariate moments (means,
SDs, skewness, and excess kurtosis (i.e., in excess of 3, which is the kurtosis of the normal distri-
bution) for discretized data treated as numeric, and the implied covariance and correlation matrix
of discretized data treated as numeric.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Andrew R. Johnson (Curtin University; <andrew. johnson@curtin.edu.au>)
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Examples

## SCENARIO 1: DIRECTLY SPECIFY POPULATION PARAMETERS

## specify population model in LISREL matrices

Nu <- rep(0, 4)

Alpha <- c(1, -0.5)

Lambda <- matrix(c(1, 1, @, @, @, @, 1, 1), nrow = 4, ncol = 2,
dimnames = list(paste@("y"”, 1:4), paste@("eta”, 1:2)))

Psi <- diag(c(1, .75))

Theta <- diag(4)

Beta <- matrix(c(@, .5, @, @), nrow = 2, ncol = 2)

## calculate model-implied population means and covariance matrix
## of latent response variables (LRVs)

IB <- solve(diag(2) - Beta) # to save time and space

Mu_LRV <- Nu + Lambda %*% IB %*% Alpha

Sigma_LRV <- Lambda %*% IB %*% Psi %*% t(IB) %*% t(Lambda) + Theta

## Specify (unstandardized) thresholds to discretize normally distributed data
## generated from Mu_LRV and Sigma_LRV, based on marginal probabilities
PiList <- list(yl = c(.25, .5, .25),
y2 = c¢(.17, .33, .33, .17),
y3 =c(.1, .2, .4, .2, .1),
## make final variable highly asymmetric
y4 = c(.33, .25, .17, .12, .08, .05))
sapply(PiList, sum) # all sum to 100%
CumProbs <- sapply(PiList, cumsum)
## unstandardized thresholds
TauList <- mapply(gnorm, p = lapply(CumProbs, function(x) x[-length(x)1),
m = Mu_LRV, sd = sqrt(diag(Sigma_LRV)))
for (i in 1:4) names(TauList[[i]]) <- paste@(names(TauList)[i], "|t",
1:1length(TauList[[i]]))

## assign numeric weights to each category (optional, see default)
NumCodes <- list(yl = c(-0.5, @, 0.5), y2 = 0:3, y3 = 1:5, y4 = 1:6)

## Calculate Population Moments for Numerically Coded Ordinal Variables
lrv2ord(Sigma = Sigma_LRV, Mu = Mu_LRV, thresholds = TauList, cWts = NumCodes)


https://doi.org/10.1080/10705511.2021.1988609
https://doi.org/10.1080/10705510701758406
https://doi.org/10.1037/1082-989X.12.1.58
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## SCENARIO 2: USE ESTIMATED PARAMETERS AS POPULATION

data(datCat) # already stored as c("ordered”,"factor”)

fit <= cfa(' f =~ 1xul + 1xu2 + 1*u3 + 1*u4 ', data = datCat)
1rv2ord(Sigma = fit, thresholds = fit) # use same fit for both

## or use estimated thresholds with specified parameters, but note that
## lrv2ord() will only extract standardized thresholds
dimnames(Sigma_LRV) <- list(paste@("u”, 1:4), paste@("u”, 1:4))
lrv2ord(Sigma = cov2cor(Sigma_LRV), thresholds = fit)

mardiaKurtosis Finding Mardia’s multivariate kurtosis

Description

Finding Mardia’s multivariate kurtosis of multiple variables

Usage

mardiaKurtosis(dat, use = "everything”)
Arguments

dat The target matrix or data frame with multiple variables

use Missing data handling method from the stats: : cov() function.
Details

The Mardia’s multivariate kurtosis formula (Mardia, 1970) is

=23 (% -%) 57 (%, - %))

i=1

where d is the number of variables, X is the target dataset with multiple variables, n is the sample
size, S is the sample covariance matrix of the target dataset, and X is the mean vectors of the
target dataset binded in n rows. When the population multivariate kurtosis is normal, the by 4
is asymptotically distributed as normal distribution with the mean of d(d + 2) and variance of
8d(d +2)/n.

Value

A value of a Mardia’s multivariate kurtosis with a test statistic

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)



64 mardiaSkew

References
Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika,
57(3), 519-530. doi:10.2307/2334770

See Also

* skew() Find the univariate skewness of a variable
¢ kurtosis() Find the univariate excessive kurtosis of a variable

¢ mardiaSkew() Find the Mardia’s multivariate skewness of a set of variables

Examples

library(lavaan)
mardiaKurtosis(HolzingerSwineford1939[ , paste@("x", 1:9)1)

mardiaSkew Finding Mardia’s multivariate skewness

Description

Finding Mardia’s multivariate skewness of multiple variables

Usage

mardiaSkew(dat, use = "everything")
Arguments

dat The target matrix or data frame with multiple variables

use Missing data handling method from the stats: : cov() function.
Details

The Mardia’s multivariate skewness formula (Mardia, 1970) is
1 n n o . _ 3
bra= 5221 [(xi-X) s (x;-X)]
1=1 j=

where d is the number of variables, X is the target dataset with multiple variables, n is the sample
size, S is the sample covariance matrix of the target dataset, and X is the mean vectors of the
target dataset binded in n rows. When the population multivariate skewness is normal, the 5 b1 4 is
asymptotically distributed as x? distribution with d(d + 1)(d + 2)/6 degrees of freedom.

Value

A value of a Mardia’s multivariate skewness with a test statistic


https://doi.org/10.2307/2334770
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Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

References
Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika,
57(3), 519-530. doi:10.2307/2334770

See Also

¢ skew() Find the univariate skewness of a variable
¢ kurtosis() Find the univariate excessive kurtosis of a variable

e mardiaKurtosis() Find the Mardia’s multivariate kurtosis of a set of variables

Examples

library(lavaan)
mardiaSkew(HolzingerSwineford1939[ , paste@(”"x", 1:9)]1)

maximalRelia Calculate maximal reliability

Description

Calculate maximal reliability of a scale

Usage
maximalRelia(object, omit.imps = c("no.conv”, "no.se"))
Arguments
object A lavaan::lavaan or lavaan.mi::lavaan.mi object, expected to contain only ex-
ogenous common factors (i.e., a CFA model).
omit.imps character vector specifying criteria for omitting imputations from pooled re-

sults. Can include any of c("no.conv”, "no.se”, "no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd") would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. NPD solutions are not excluded
by default because they are likely to occur due to sampling error, especially in
small samples. However, gross model misspecification could also cause NPD
solutions, users can compare pooled results with and without this setting as a
sensitivity analysis to see whether some imputations warrant further investiga-
tion.


https://doi.org/10.2307/2334770
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Details

Given that a composite score (W) is a weighted sum of item scores:

W =w'z,

where x is a k x 1 vector of the scores of each item, w is a & x 1 weight vector of each item,
and k represents the number of items. Then, maximal reliability is obtained by finding w such that
reliability attains its maximum (Li, 1997; Raykov, 2012). Note that the reliability can be obtained
by

w’ Srw

w’'Sxw
where St is the covariance matrix explained by true scores and Sx is the observed covariance
matrix. Numerical method is used to find w in this function.

For continuous items, St can be calculated by

St = AUAN,
where A is the factor loading matrix and ¥ is the covariance matrix among factors. S is directly

obtained by covariance among items.

For categorical items, Green and Yang’s (2009) method is used for calculating S and Sx. The
element ¢ and j of ST can be calculated by

c;—1C;—1 i i
Zl Zl D3 (7o, Tov, [AUA] ) = Zl 1 (72,.) Zl Py (7))
ci=1 ¢j— Cci= cj—

where C; and C; represents the number of thresholds in Items ¢ and j, 7, represents the threshold
¢; of Item 4, 7,,, represents the threshold ¢; of Item j, ®1 (7., ) is the cumulative probability of
y i
Tz, given a univariate standard normal cumulative distribution and ®9 (’Tmr_ Tae. s p) is the joint
i i) e

cumulative probability of 7, and Ta., given a bivariate standard normal cumulative distribution
with a correlation of p '

Each element of S'x can be calculated by

71C —1 C;—1 Cj71
Z Z Py (TVL s TV, ,P”) - Z ®y(7v,,) Z P4 (v, ),
ci=1 c;—1 ci=1 cj—1

where p7; is a polychoric correlation between Items ¢ and j.

Value

Maximal reliability values of each group. The maximal-reliability weights are also provided. Users
may extracted the weighted by the attr function (see example below).
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Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

References

Li, H. (1997). A unifying expression for the maximal reliability of a linear composite. Psychome-
trika, 62(2), 245-249. doi:10.1007/BF02295278

Raykov, T. (2012). Scale construction and development using structural equation modeling. In
R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 472-494). New York, NY:
Guilford.

See Also

reliability() for reliability of an unweighted composite score

Examples
total <- 'f =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 '
fit <- cfa(total, data = HolzingerSwineford1939)
maximalRelia(fit)

# Extract the weight
mr <- maximalRelia(fit)
attr(mr, "weight")

measEq. syntax Syntax for measurement equivalence

Description

Automatically generates lavaan model syntax to specify a confirmatory factor analysis (CFA)
model with equality constraints imposed on user-specified measurement (or structural) parame-
ters. Optionally returns the fitted model (if data are provided) representing some chosen level of
measurement equivalence/invariance across groups and/or repeated measures.

Usage

measEq.syntax(configural.model, ..., ID.fac = "std.lv",
ID.cat = "Wu.Estabrook.2016"”, ID.thr = c(1L, 2L), group = NULL,
group.equal = , group.partial = "", longFacNames = list(),
longIndNames = list(), long.equal = "", long.partial = "",
auto = "all”, warn = TRUE, debug = FALSE, return.fit = FALSE)

nn


https://doi.org/10.1007/BF02295278
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Arguments

measEq.syntax

configural.model

ID.fac

ID.cat

A model with no measurement-invariance constraints (i.e., representing only
configural invariance), unless required for model identification. configural.model
can be either:

e lavaan::model.syntax() or a lavaan: :parTable() specifying the con-
figural model. Using this option, the user can also provide either raw data
or summary statistics via sample.cov and (optionally) sample.mean. See
argument descriptions in lavaan: :lavaan(). In order to include thresh-
olds in the generated syntax, either users must provide raw data, or the
configural.model syntax must specify all thresholds (see first example).
If raw data are not provided, the number of blocks (groups, levels, or com-
bination) must be indicated using an arbitrary sample.nobs argument (e.g.,
3 groups could be specified using sample.nobs=rep(1, 3)).

* afitted lavaan::lavaan model (e.g., as returned by lavaan: :cfa()) estimat-
ing the configural model

Note that the specified or fitted model must not contain any latent structural pa-
rameters (i.e., it must be a CFA model), unless they are higher-order constructs
with latent indicators (i.e., a second-order CFA).

Additional arguments (e.g., data, ordered, or parameterization) passed to
the lavaan: :1lavaan() function. See also lavaan::lavOptions().

character. The method for identifying common-factor variances and (if meanstructure
= TRUE) means. Three methods are available, which go by different names in the
literature:

 Standardize the common factor (mean = 0, SD = 1) by specifying any of:
"std.1lv", "unit.variance”, "UV", "fixed.factor"”, "fixed-factor”

* Choose a reference indicator by specifying any of: "auto.fix.first”,

non non

"unit.loading”, "UL", "marker”, "ref", "ref.indicator”, "reference.indicator”,

n on n o n

"reference-indicator”, "marker.variable”, "marker-variable”

* Apply effects-code constraints to loadings and intercepts by specifying any
of: "FX", "EC", "effects"”, "effects.coding"”, "effects-coding”, "effects.code”,
"effects-code”

See Kloessner & Klopp (2019) for details about all three methods.

character. The method for identifying (residual) variances and intercepts of la-
tent item-responses underlying any ordered indicators. Four methods are avail-
able:

* To follow Wu & Estabrook’s (2016) guidelines (default), specify any of:
"Wu.Estabrook.2016", "Wu.2016", "Wu.Estabrook”, "Wu"”, "Wu2016".
For consistency, specify ID.fac = "std.1v".

* To use the default settings of Mplus and lavaan, specify any of: "default”,
"Mplus”, "Muthen”. Details provided in Millsap & Tein (2004).

* To use the constraints recommended by Millsap & Tein (2004; see also
Liu et al., 2017, for the longitudinal case) specify any of: "millsap”,
"millsap.2004", "millsap.tein.2004". For consistency, specify ID.fac
= "marker" and parameterization = "theta".



measEq.syntax 69

* To use the default settings of LISREL, specify "LISREL" or "Joreskog".
Details provided in Millsap & Tein (2004). For consistency, specify parameterization
= "theta".

See Details and References for more information.

ID. thr integer. Only relevant when ID.cat = "Millsap.Tein.2004". Used to indi-
cate which thresholds should be constrained for identification. The first integer
indicates the threshold used for all indicators, the second integer indicates the
additional threshold constrained for a reference indicator (ignored if binary).

group optional character indicating the name of a grouping variable. See lavaan::cfa().

group.equal optional character vector indicating type(s) of parameter to equate across groups.
Ignored if is.null(group). See lavaan::lavOptions().

group.partial optional character vector or a parameter table indicating exceptions to group . equal
(see lavaan: :lavOptions()). Any variables not appearing in the configural .model
will be ignored, and any parameter constraints needed for identification (e.g.,
two thresholds per indicator when ID.cat = "Millsap") will be removed.

longFacNames  optional named list of character vectors, each indicating multiple factors in
the model that are actually the same construct measured repeatedly. See Details
and Examples.

longIndNames  optional named list of character vectors, each indicating multiple indicators
in the model that are actually the same indicator measured repeatedly. See De-
tails and Examples.

long.equal optional character vector indicating type(s) of parameter to equate across re-
peated measures. Ignored if no factors are indicated as repeatedly measured in
longFacNames.

long.partial optional character vector or a parameter table indicating exceptions to long.equal.
Any longitudinal variable names not appearing in names(longFacNames) or
names (longIndNames) will be ignored, and any parameter constraints needed
for identification will be removed.

auto Used to automatically included autocorrelated measurement errors among re-
peatedly measured indicators in longIndNames. Specify a single integer to
set the maximum order (e.g., auto = 1L indicates that an indicator’s unique fac-
tors should only be correlated between adjacently measured occasions). auto
=TRUE or "all"” will specify residual covariances among all possible lags per
repeatedly measured indicator in longIndNames.

warn, debug logical. Passed to lavaan: :lavaan() and lavaan: : lavParseModelString().
See lavaan: :lavOptions().

return.fit logical indicating whether the generated syntax should be fitted to the provided
data (or summary statistics, if provided via sample.cov). If configural.model
is a fitted lavaan model, the generated syntax will be fitted using the update
method (see lavaan::lavaan), and ...will be passed to lavaan::lavaan(). If
neither data nor a fitted lavaan model were provided, this must be FALSE. If
TRUE, the generated measEq. syntax object will be included in the lavaan ob-
ject’s @external slot, accessible by fit@external$measEq.syntax.
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Details

This function is a pedagogical and analytical tool to generate model syntax representing some level
of measurement equivalence/invariance across any combination of multiple groups and/or repeated
measures. Support is provided for confirmatory factor analysis (CFA) models with simple or com-
plex structure (i.e., cross-loadings and correlated residuals are allowed). For any complexities that
exceed the limits of automation, this function is intended to still be useful by providing a means to
generate syntax that users can easily edit to accommodate their unique situations.

Limited support is provided for bifactor models and higher-order constructs. Because bifactor mod-
els have cross-loadings by definition, the option ID.fac = "effects.code"” is unavailable. ID. fac
= "UV" is recommended for bifactor models, but ID.fac = "UL" is available on the condition that
each factor has a unique first indicator in the configural.model. In order to maintain generality,
higher-order factors may include a mix of manifest and latent indicators, but they must therefore
require ID. fac = "UL" to avoid complications with differentiating lower-order vs. higher-order (or
mixed-level) factors. The keyword "loadings” in group.equal or long.equal constrains fac-
tor loadings of all manifest indicators (including loadings on higher-order factors that also have
latent indicators), whereas the keyword "regressions” constrains factor loadings of latent indica-
tors. Users can edit the model syntax manually to adjust constraints as necessary, or clever use of
the group.partial or long.partial arguments could make it possible for users to still automated
their model syntax. The keyword "intercepts” constrains the intercepts of all manifest indicators,
and the keyword "means"” constrains intercepts and means of all latent common factors, regardless
of whether they are latent indicators of higher-order factors. To test equivalence of lower-order and
higher-order intercepts/means in separate steps, the user can either manually edit their generated
syntax or conscientiously exploit the group.partial or long.partial arguments as necessary.

ID.fac: If the configural.model fixes any (e.g., the first) factor loadings, the generated syntax
object will retain those fixed values. This allows the user to retain additional constraints that might
be necessary (e.g., if there are only 1 or 2 indicators). Some methods must be used in conjunction
with other settings:

e ID.cat = "Millsap"” requires ID.fac = "UL" and parameterization = "theta".
e ID.cat = "LISREL" requires parameterization = "theta".

e ID.fac = "effects.code"” is unavailable when there are any cross-loadings.

ID.cat: Wu & Estabrook (2016) recommended constraining thresholds to equality first, and doing
so should allow releasing any identification constraints no longer needed. For each ordered indica-
tor, constraining one threshold to equality will allow the item’s intercepts to be estimated in all but
the first group or repeated measure. Constraining a second threshold (if applicable) will allow the
item’s (residual) variance to be estimated in all but the first group or repeated measure. For binary
data, there is no independent test of threshold, intercept, or residual-variance equality. Equivalence
of thresholds must also be assumed for three-category indicators. These guidelines provide the least
restrictive assumptions and tests, and are therefore the default.

The default setting in Mplus is similar to Wu & Estabrook (2016), except that intercepts are always
constrained to zero (so they are assumed to be invariant without testing them). Millsap & Tein
(2004) recommended parameterization = "theta"” and identified an item’s residual variance in
all but the first group (or occasion; Liu et al., 2017) by constraining its intercept to zero and one of
its thresholds to equality. A second threshold for the reference indicator (so ID.fac = "UL") is used
to identify the common-factor means in all but the first group/occasion. The LISREL software fixes
the first threshold to zero and (if applicable) the second threshold to 1, and assumes any remaining
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thresholds to be equal across groups / repeated measures; thus, the intercepts are always identified,
and residual variances (parameterization = "theta") are identified except for binary data, when
they are all fixed to one.

Repeated Measures: If each repeatedly measured factor is measured by the same indicators (speci-
fied in the same order in the configural.model) on each occasion, without any cross-loadings, the
user can let longIndNames be automatically generated. Generic names for the repeatedly measured
indicators are created using the name of the repeatedly measured factors (i.e., names (longFacNames))
and the number of indicators. So the repeatedly measured first indicator ("ind") of a longitudinal
construct called "factor" would be generated as "._factor_ind.1".

The same types of parameter can be specified for long. equal as for group.equal (see lavaan: : lavOptions()
for a list), except for "residual.covariances” or "lv.covariances”. Instead, users can con-

strain autocovariances using keywords "resid.autocov” or "1v.autocov"”. Note that group.equal
="1lv.covariances" or group.equal = "residual.covariances” will constrain any autocovari-

ances across groups, along with any other covariances the user specified in the configural.model.

Note also that autocovariances cannot be specified as exceptions in long.partial, so anything

more complex than the auto argument automatically provides should instead be manually specified

in the configural.model.

When users set orthogonal=TRUE in the configural.model (e.g., in bifactor models of repeat-
edly measured constructs), autocovariances of each repeatedly measured factor will still be freely
estimated in the generated syntax.

Missing Data: If users wish to utilize the auxiliary() function to automatically include auxiliary
variables in conjunction with missing = "FIML", they should first generate the hypothesized-model
syntax, then submit that syntax as the model to auxiliary(). If users utilized lavaan.mi: : lavaan.mi()
to fit their configural.model to multiply imputed data, that model can also be passed to the
configural.model argument, and if return.fit = TRUE, the generated model will be fitted to

the multiple imputations.

Value

By default, an object of class measEq.syntax. If return.fit = TRUE, a fitted lavaan: :lavaan()
model, with the measEq. syntax object stored in the @external slot, accessible by fit@external$measEq. syntax.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References
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See Also

compareFit()

Examples

mod.cat <- ' FU1 =~ ul + u2 + u3 + u4

FU2 =~ u5 + u6 + u7 + u8 '
## the 2 factors are actually the same factor (FU) measured twice
longFacNames <- list(FU = c("FU1","FU2"))

## CONFIGURAL model: no constraints across groups or repeated measures
syntax.config <- measEq.syntax(configural.model = mod.cat,
# NOTE: data provides info about numbers of
# groups and thresholds
data = datCat,
ordered = paste@("u”, 1:8),

parameterization = "theta”,
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", longFacNames = longFacNames)

## print lavaan syntax to the Console
cat(as.character(syntax.config))

## print a summary of model features
summary (syntax.config)

## THRESHOLD invariance:
## only necessary to specify thresholds if you have no data

mod.th <- '
ul | t1 + t2 + t3 + t4
u2 | t1 + t2 + t3 + t4
ud | t1 + t2 + t3 + t4
ud | t1 + t2 + t3 + t4
us | t1 + t2 + t3 + t4
u | t1 + t2 + t3 + t4
u7 | tl + t2 + t3 + t4
ud | t1 + t2 + t3 + t4

syntax.thresh <- measkEq.syntax(configural.model = c(mod.cat, mod.th),
# NOTE: data not provided, so syntax must

# include thresholds, and number of
# groups == 2 is indicated by:
sample.nobs = c(1, 1),

parameterization = "theta"”,

ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", group.equal = "thresholds"”,
longFacNames = longFacNames,

long.equal = "thresholds")

## notice that constraining 4 thresholds allows intercepts and residual
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## variances to be freely estimated in all but the first group & occasion
cat(as.character(syntax. thresh))

## print a summary of model features

summary (syntax. thresh)

## Fit a model to the data either in a subsequent step (recommended):
mod.config <- as.character(syntax.config)
fit.config <- cfa(mod.config, data = datCat, group = "g",
ordered = paste@("u”, 1:8), parameterization = "theta")
## or in a single step (not generally recommended):
fit.thresh <- measEq.syntax(configural.model = mod.cat, data = datCat,
ordered = paste@("u”, 1:8),
parameterization = "theta”,
ID.fac = "std.1lv"”, ID.cat = "Wu.Estabrook.2016",
group = "g", group.equal = "thresholds”,
longFacNames = longFacNames,
long.equal = "thresholds”, return.fit = TRUE)
## compare their fit to test threshold invariance
anova(fit.config, fit.thresh)

## RECOMMENDED PRACTICE: fit one invariance model at a time
e e e

## - A downside of setting return.fit=TRUE is that if the model has trouble
##  converging, you don't have the opportunity to investigate the syntax,

##  or even to know whether an error resulted from the syntax-generator or
##  from lavaan itself.

## - A downside of automatically fitting an entire set of invariance models
##  (like the old measurementInvariance() function did) is that you might

## end up testing models that shouldn't even be fitted because less

## restrictive models already fail (e.g., don't test full scalar

##  invariance if metric invariance fails! Establish partial metric

##  invariance first, then test equivalent of intercepts ONLY among the

##  indicators that have invariate loadings.)

## The recommended sequence is to (1) generate and save each syntax object,
## (2) print it to the screen to verify you are fitting the model you expect
## to (and potentially learn which identification constraints should be

## released when equality constraints are imposed), and (3) fit that model
## to the data, as you would if you had written the syntax yourself.

## Continuing from the examples above, after establishing invariance of
## thresholds, we proceed to test equivalence of loadings and intercepts
##  (metric and scalar invariance, respectively)

## simultaneously across groups and repeated measures.

## metric invariance
syntax.metric <- measEq.syntax(configural.model = mod.cat, data = datCat,
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ordered = paste@("u”, 1:8),

parameterization = "theta”,
ID.fac = "std.1lv"”, ID.cat = "Wu.Estabrook.2016",
group = "g", longFacNames = longFacNames,

group.equal = c("thresholds”,"loadings"),
long.equal = c("thresholds”,"loadings"))

summary (syntax.metric) # summarize model features
mod.metric <- as.character(syntax.metric) # save as text
cat(mod.metric) # print/view lavaan syntax

## fit model to data
fit.metric <- cfa(mod.metric, data = datCat, group = "g",

ordered = paste@("u”, 1:8), parameterization = "theta")
## test equivalence of loadings, given equivalence of thresholds
anova(fit.thresh, fit.metric)

## scalar invariance
syntax.scalar <- measEq.syntax(configural.model = mod.cat, data = datCat,
ordered = paste@("u”, 1:8),

parameterization = "theta"”,
ID.fac = "std.1lv"”, ID.cat = "Wu.Estabrook.2016",
group = "g"”, longFacNames = longFacNames,

group.equal = c("thresholds”,"loadings",
"intercepts"),

long.equal = c("thresholds”,"”loadings",
"intercepts"))

summary (syntax.scalar) # summarize model features
mod.scalar <- as.character(syntax.scalar) # save as text
cat(mod.scalar) # print/view lavaan syntax

## fit model to data
fit.scalar <- cfa(mod.scalar, data = datCat, group = "g",

ordered = paste@("u”, 1:8), parameterization = "theta")
## test equivalence of intercepts, given equal thresholds & loadings
anova(fit.metric, fit.scalar)

## For a single table with all results, you can pass the models to

## summarize to the compareFit() function

Comparisons <- compareFit(fit.config, fit.thresh, fit.metric, fit.scalar)
summary (Comparisons)

### -
## NOT RECOMMENDED: fit several invariance models at once
# -
test.seq <- c("thresholds”,"loadings”,"intercepts”, "means"”,"residuals"”)
meq.list <- list()
for (i in @:length(test.seq)) {
if (i ==0oL) {
meq.label <- "configural”
group.equal <- ""
long.equal <-
} else {
meq.label <- test.seq[i]

nn
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group.equal <- test.seq[1:i]
long.equal <- test.seq[1:i]
}
meq.list[[meq.label]] <- measEq.syntax(configural.model = mod.cat,
data = datCat,
ordered = paste@("u”, 1:8),
parameterization = "theta"”,
ID.fac = "std.lv",
ID.cat = "Wu.Estabrook.2016",
group = "g",
group.equal = group.equal,
longFacNames = longFacNames,
long.equal = long.equal,
return.fit = TRUE)

3

evalMeasEq <- compareFit(meq.list)
summary (evalMeasEq)
e

## Binary indicators
-

## borrow example data from Mplus user guide
myData <- read.table("http://www.statmodel.com/usersguide/chap5/ex5.16.dat")
names(myData) <- c("ul”,"u2","u3","ud4", "us","u6","x1","x2","x3","g")
bin.mod <- '
FUT =~ ul + u2 + u3
FU2 =~ u4 + u5 + ub
## Must SIMULTANEOUSLY constrain thresholds, loadings, and intercepts
test.seq <- list(strong = c("thresholds”,"loadings","intercepts”),
means = "means”,
strict = "residuals”)
meq.list <- list()
for (i in @:length(test.seq)) {
if (i ==o0oL) {
meq.label <- "configural”
group.equal <- ""
long.equal <-
} else {
meq.label <- names(test.seq)[il]
group.equal <- unlist(test.seq[1:i])
# long.equal <- unlist(test.seq[1:i])

nn

}

meq.list[[meq.label]] <- measEq.syntax(configural.model = bin.mod,
data = myData,
ordered = paste@("u”, 1:6),
parameterization = "theta”,
ID.fac = "std.1lv",
ID.cat = "Wu.Estabrook.2016",

non

group = g,
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group.equal = group.equal,
#longFacNames = longFacNames,
#long.equal = long.equal,
return.fit = TRUE)

3

evalMeasEq <- compareFit(meq.list)
summary (evalMeasEq)

H oo

## Multilevel Invariance

# —mmmmm oo

## To test invariance across levels in a MLSEM, specify syntax as though
## you are fitting to 2 groups instead of 2 levels.

mlsem <- ' f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6 '
## metric invariance
syntax.metric <- measEq.syntax(configural.model = mlsem, meanstructure = TRUE,
ID.fac = "std.1lv", sample.nobs = c(1, 1),
group = "cluster”, group.equal = "loadings")
## by definition, Level-1 means must be zero, so fix them
syntax.metric <- update(syntax.metric,
change.syntax = paste@("y”, 1:6, " ~ c(@, NA)Y*1"))
## save as a character string
mod.metric <- as.character(syntax.metric, groups.as.blocks = TRUE)
## convert from multigroup to multilevel
mod.metric <- gsub(pattern = "group:", replacement = "level:",
x = mod.metric, fixed = TRUE)
## fit model to data
fit.metric <- lavaan(mod.metric, data = Demo.twolevel, cluster = "cluster”)
summary (fit.metric)

measEq.syntax-class Class for Representing a Measurement-Equivalence Model

Description

This class of object stores information used to automatically generate lavaan model syntax to rep-
resent user-specified levels of measurement equivalence/invariance across groups and/or repeated
measures. See measEq. syntax() for details.

Usage

## S4 method for signature 'measEq.syntax'
as.character(x, package = "lavaan",
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params = NULL, single = TRUE, groups.as.blocks = FALSE)

## S4 method for signature 'measEq.syntax'

show(object)

## S4 method for signature 'measEq.syntax'
summary(object, verbose = TRUE)

## S4 method for signature 'measEq.syntax'

update(object,
change. syntax

Arguments

X, object
package

params

single

., evaluate = TRUE,
= NULL)

an object of class measEq. syntax

character indicating the package for which the model syntax should be gener-
ated. Currently, only "lavaan” and "mplus” are supported.

character vector indicating which type(s) of parameter to print syntax for.
Must match a type that can be passed to group.equal or long.equal, but
"residual.covariances” and "lv.covariances"” will be silently ignored.
Instead, requesting "residuals” or "lv.variances” will return covariances
along with variances. By default (NULL), all types are printed.

logical indicating whether to concatenate lavaan lavaan: :model.syntax()
into a single character string. Setting FALSE will return a vector of strings,
which may be convenient (or even necessary to prevent an error) in models with
long variable names, many variables, or many groups.

groups.as.blocks

verbose

evaluate
change.syntax

Value

summary

logical indicating whether to write lavaan lavaan: :model.syntax() using
vectors of labels and values for multiple groups (the default: FALSE), or whether
to write a separate "block" of syntax per group. The block structure could allow
users to apply the generated multigroup syntax (after some editing) to test invari-
ance across levels in a multilevel SEM (see final example on measEq. syntax()
help page).

logical indicating whether to print a summary to the screen (default). If FALSE,
only a pattern matrix is returned.

Additional arguments to the call, or arguments with changed values.
If TRUE, evaluate the new call; otherwise, return the new call.

lavaan: :model.syntax() specifying labels or fixed/free values of parameters
in object. These provide some flexibility to customize existing parameters
without having to copy/paste the output of as.character(object) into an R
script. For example, group.partial will free a parameter across all groups, but
update allows users to free the parameter in just one group while maintaining
equality constraints among other groups.

signature(object = "measkEq.syntax"”, verbose = TRUE): A character ma-
trix indicating the pattern of numeric, ordered, or latent indicators loading on
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common factors. By default (verbose = TRUE), summary also prints descriptive
details about the model, including the numbers of indicators and factors, and
which parameters are constrained to equality.

show signature(object = "measEq.syntax"): Prints a message about how to use
the object for model fitting. Invisibly returns the object.

update signature(object = "measEq.syntax”, ..., evaluate = TRUE, change.syntax
=NULL): Creates a new object with updated arguments in . . ., or updated pa-

rameter labels or fixed/free specifications in object.

as.character signature(x = "measkq.syntax”, package = "lavaan”): Converts the measEq. syntax
object to model syntax that can be copy/pasted or written to a syntax file to be
edited before analysis, or simply passed to lavaan: :lavaan() to fit the model
to data. Generated Mplus syntax could also be utilized using the MplusAuthoma-
tion package.

Slots

package character indicating the software package used to represent the model. Currently, only
"lavaan” is available, which uses the LISREL representation (see lavaan: : lavOptions()).
In the future, "OpenMx" may become available, using RAM representation.

model.type character. Currently, only "cfa" is available. Future versions may allow for MIMIC
/ RFA models, where invariance can be tested across levels of exogenous variables explicitly
included as predictors of indicators, controlling for their effects on (or correlation with) the
common factors.

call The function call as returned by match.call(), with some arguments updated if necessary
for logical consistency.

meanstructure logical indicating whether a mean structure is included in the model.
numeric character vector naming numeric manifest indicators.

ordered character vector naming ordered indicators.

parameterization character. See lavaan::lavOptions().

specify list of parameter matrices, similar in form to the output of lavInspect(fit, "free").
These matrices are logical, indicating whether each parameter should be specified in the
model syntax.

values list of parameter matrices, similar in form to the output of lavInspect(fit, "free”).
These matrices are numeric, indicating whether each parameter should be freely estimated
(indicated by NA) or fixed to a particular value.

labels list of parameter matrices, similar in form to the output of lavInspect(fit, "free").
These matrices contain character labels used to constrain parameters to equality.

constraints character vector containing additional equality constraints used to identify the
model when ID.fac = "fx".

ngroups integer indicating the number of groups.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
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Examples

## See ?measEq.syntax help page for examples using lavaan

miPowerFit Modification indices and their power approach for model fit evaluation

Description

The model fit evaluation approach using modification indices and expected parameter changes.

Usage
miPowerFit(lavaanObj, stdLoad = 0.4, cor = 0.1, stdBeta = 0.1,
intcept = 0.2, stdDelta = NULL, delta = NULL, cilevel = 0.9, )
Arguments
lavaanObj The lavaan model object used to evaluate model fit
stdLoad The amount of standardized factor loading that one would like to be detected

(rejected). The default value is 0.4, which is suggested by Saris and colleagues
(2009, p. 571).

cor The amount of factor or error correlations that one would like to be detected
(rejected). The default value is 0.1, which is suggested by Saris and colleagues
(2009, p. 571).

stdBeta The amount of standardized regression coefficients that one would like to be
detected (rejected). The default value is 0.1, which is suggested by Saris and
colleagues (2009, p. 571).

intcept The amount of standardized intercept (similar to Cohen’s d that one would like
to be detected (rejected). The default value is 0.2, which is equivalent to a low
effect size proposed by Cohen (1988, 1992).

stdDelta The vector of the standardized parameters that one would like to be detected
(rejected). If this argument is specified, the value here will overwrite the other
arguments above. The order of the vector must be the same as the row order
from modification indices from the lavaan object. If a single value is specified,
the value will be applied to all parameters.

delta The vector of the unstandardized parameters that one would like to be detected
(rejected). If this argument is specified, the value here will overwrite the other
arguments above. The order of the vector must be the same as the row order
from modification indices from the lavaan object. If a single value is specified,
the value will be applied to all parameters.

cilevel The confidence level of the confidence interval of expected parameter changes.
The confidence intervals are used in the equivalence testing.
arguments passed to lavaan: :modificationIndices(), except for delta, which
is already an argument (which can be substituted for stdDelta or specific sets
of parameters using stdLoad, cor, stdBeta, and intcept).
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Details
To decide whether a parameter should be freed, one can inspect its modification index (MI) and
expected parameter change (EPC). Those values can be used to evaluate model fit by 2 methods.

Method 1: Saris, Satorra, and van der Veld (2009, pp. 570-573) used power (probability of detecting
a significant MI) and EPC to decide whether to free a parametr. First, one should evaluate whether
a parameter’s MI is significant. Second, one should evaluate whether the power to detect a target
EPC is high enough. The combination of criteria leads to the so-called "JRule" first implemented
with LISREL (van der Veld et al., 2008):

* If the MI is not significant and the power is low, the test is inconclusive.
* If the MI is not significant and the power is high, there is no misspecification.

* If the MI is significant and the power is low, the fixed parameter is misspecified.

If the MI is significant and the power is high, the EPC is investigated. If the EPC is large
(greater than the the target EPC), the parameter is misspecified. If the EPC is low (lower than
the target EPC), the parameter is not misspecificied.

Method 2: The confidence interval (CI) of an EPC is calculated. These CIs are compared with
the range of trivial misspecification, which could be (-delta, delta) or (0, delta) for nonnegative
parameters.

* If a CI overlaps with the range of trivial misspecification, the test is inconclusive.

e If a CI completely exceeds the range of trivial misspecification, the fixed parameters are
severely misspecified.

o If a CI is completely within the range of trivial misspecification, the fixed parameters are
trivially misspecified.

Value

A data frame with these variables:

1. 1lhs: The left-hand side variable, with respect to the operator in in the lavaan lavaan: :model. syntax()

2. op: The lavaan syntax operator: "~~" represents covariance, "=~" represents factor loading,
"~" represents regression, and "~1" represents intercept.

. rhs: The right-hand side variable

. group: The level of the group variable for the parameter in question

. mi: The modification index of the fixed parameter

. epc: The EPC if the parameter is freely estimated

~N O L AW

. target.epc: The target EPC that represents the minimum size of misspecification that one
would like to be detected by the test with a high power

oo

. std.epc: The standardized EPC if the parameter is freely estimated
9. std.target.epc: The standardized target expected parameter change
10. significant.mi: Represents whether the modification index value is significant

11. high.power: Represents whether the power is enough to detect the target expected parameter
change
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12.

13.
14.
15.
16.
17.
18.

decision.pow: The decision whether the parameter is misspecified or not based on Saris
et al’s method: "M" represents the parameter is misspecified, "NM" represents the parameter
is not misspecified, "EPC:M" represents the parameter is misspecified decided by checking
the expected parameter change value, "EPC:NM" represents the parameter is not misspecified
decided by checking the expected parameter change value, and "I" represents the decision is
inconclusive.

se.epc: The standard errors of the expected parameter changes.

lower.epc: The lower bound of the confidence interval of expected parameter changes.
upper . epc: The upper bound of the confidence interval of expected parameter changes.
lower.std.epc: Lower confidence limit of standardized EPCs

upper.std.epc: Upper confidence limit of standardized EPCs

decision.ci: Decision whether the parameter is misspecified based on the CI method: "M"
represents the parameter is misspecified, "NM" represents the parameter is not misspecified,
and "I" represents the decision is inconclusive.

The row numbers matches with the results obtained from the inspect(object, "mi") function.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Erlbaum.

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. doi:10.1037/0033-
2909.112.1.155

Saris, W. E., Satorra, A., & van der Veld, W. M. (2009). Testing structural equation models
or detection of misspecifications? Structural Equation Modeling, 16(4), 561-582. doi:10.1080/
10705510903203433

van der Veld, W. M., Saris, W. E., & Satorra, A. (2008). JRule 3.0 Users Guide. doi:10.13140/
RG.2.2.13609.90729

See Also

moreFitIndices() For the additional fit indices information

Examples
library(lavaan)
HS.model <- ' visual =~ x1 + x2 + x3 '

fit <- cfa(HS.model, data = HolzingerSwineford1939,

n " nons

group = "sex", group.equal = c("loadings”,"intercepts"”))
miPowerFit(fit, free.remove = FALSE, op = "=~") # loadings
miPowerFit(fit, free.remove = FALSE, op = "~1") # intercepts

model <- '
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https://doi.org/10.1037/0033-2909.112.1.155
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# latent variable definitions
ind60 =~ x1 + x2 + x3
dem6@ =~ y1 + axy2 + bxy3 + c*y4
dem65 =~ y5 + axy6 + bxy7 + cxy8

# regressions
dem60@ ~ ind60@
dem65 ~ ind6@ + dem60@

# residual correlations

y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~y7
y4 ~~ y8
y6 ~~ y8

fit2 <- sem(model, data = PoliticalDemocracy, meanstructure = TRUE)
miPowerFit(fit2, stdLoad = 0.3, cor = 0.2, stdBeta = 0.2, intcept = 0.5)

monteCarloCI Monte Carlo Confidence Intervals to Test Functions of Parameter Es-
timates

Description

Robust confidence intervals for functions of parameter estimates, based on empirical sampling dis-
tributions of estimated model parameters.

Usage

monteCarloCI(object = NULL, expr, coefs, ACM, nRep = 20000,
standardized = FALSE, fast = TRUE, level = 0.95, na.rm = TRUE,
append.samples = FALSE, plot = FALSE,

ask = getOption("device.ask.default”), ...)
Arguments
object A object of class lavaan::lavaan in which functions of parameters have already

been defined using the : = operator in lavaan’s lavaan: :model. syntax (). When
NULL, users must specify expr, coefs, and ACM.

expr Optional character vector specifying functions of model parameters (e.g., an
indirect effect). Ideally, the vector should have names, which is necessary if
any user-defined parameters refer to other user-defined parameters defined ear-
lier in the vector (order matters!). All parameters appearing in the vector must
be provided in coef's, or defined (as functions of coefs) earlier in expr. If
length(expr) > 1L, nRep samples will be drawn simultaneously from a single
multivariate distribution; thus, ACM must include all parameters in coefs.
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coef's numeric vector of parameter estimates used in expr. Ignored when object is
used.
ACM Symmetric matrix representing the asymptotic sampling covariance matrix (ACOV)

of the parameter estimates in coefs. Ignored when object is used. Information
on how to obtain the ACOV in popular SEM software is described in Details.

nRep integer. The number of samples to draw, to obtain an empirical sampling
distribution of model parameters. Many thousand are recommended to minimize
Monte Carlo error of the estimated Cls.

standardized logical indicating whether to obtain CIs for the fully standardized ("std.all")
estimates, using their asymptotic sampling covariance matrix.

fast logical indicating whether to use a fast algorithm that assumes all functions
of parameters (in object or expr) use standard operations. Set to FALSE if
using (e.g.) c() to concatenate parameters in the definition, which would have
unintended consequences when vectorizing functions in expr across sampled

parameters.
level numeric confidence level, between 0—1
na.rm logical passed to stats::quantile()

append.samples logical indicating whether to return the simulated empirical sampling distribu-
tion of parameters (in coef's) and functions (in expr) in a 1ist with the results.
This could be useful to calculate more precise highest-density intervals (see ex-
amples).

plot logical indicating whether to plot the empirical sampling distribution of each
function in expr

ask whether to prompt user before printing each plot

arguments passed to graphics: :hist() when plot = TRUE.

Details

This function implements the Monte Carlo method of obtaining an empirical sampling distribution
of estimated model parameters, as described by MacKinnon et al. (2004) for testing indirect ef-
fects in mediation models. This is essentially a parametric bootstrap method, which (re)samples
parameters (rather than raw data) from a multivariate-normal distribution with mean vector equal
to estimates in coef () and covariance matrix equal to the asymptotic covariance matrix vcov() of
estimated parameters.

The easiest way to use the function is to fit a SEM to data with lavaan: :lavaan(), using the :=
operator in the lavaan: :model.syntax() to specify user-defined parameters. All information is
then available in the resulting lavaan::lavaan object. Alternatively (especially when using external
SEM software to fit the model), the expression(s) can be explicitly passed to the function, along
with the vector of estimated model parameters and their associated asymptotic sampling covariance
matrix (ACOV). For further information on the Monte Carlo method, see MacKinnon et al. (2004)
and Preacher & Selig (2012).

The asymptotic covariance matrix can be obtained easily from many popular SEM software pack-

ages.

e LISREL: Including the EC option on the OU line will print the ACM to a seperate file. The
file contains the lower triangular elements of the ACM in free format and scientific notation.
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* Mplus: Include the command TECH3; in the OUTPUT section. The ACM will be printed in
the output.

* lavaan: Use the vcov() method on the fitted lavaan::lavaan object to return the ACM.

Value

A lavaan.data. frame (to use lavaan’s print method) with point estimates and confidence limits
of each requested function of parameters in expr is returned. If append.samples = TRUE, output
will be a 1ist with the same $Results along with a second data.frame with the $Samples (in
rows) of each parameter (in columns), and an additional column for each requested function of
those parameters.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect
effect: Distribution of the product and resampling methods. Multivariate Behavioral Research,
39(1) 99-128. doi:10.1207/s15327906mbr3901_4

Preacher, K. J., & Selig, J. P. (2010, July). Monte Carlo method for assessing multilevel mediation:
An interactive tool for creating confidence intervals for indirect effects in 1-1-1 multilevel models.
Computer software available from http://quantpsy.org/.

Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect
effects. Communication Methods and Measures, 6(2), 77-98. doi:10.1080/19312458.2012.679848

Selig, J. P, & Preacher, K. J. (2008, June). Monte Carlo method for assessing mediation: An
interactive tool for creating confidence intervals for indirect effects. Computer software available
from http://quantpsy.org/.

Examples

## From the mediation tutorial:
## http://lavaan.ugent.be/tutorial/mediation.html

set.seed(1234)

X <= rnorm(100)

M <- 0.5*%X + rnorm(100)

Y <- 0.7%M + rnorm(100)

dat <- data.frame(X = X, Y =Y, M = M)

mod <- ' # direct effect
Y ~ cxX
# mediator
M ~ axX
Y ~ b*M
# indirect effect (a*xb)
ind := a*b
# total effect
total := ind + ¢


https://doi.org/10.1207/s15327906mbr3901_4
http://quantpsy.org/
https://doi.org/10.1080/19312458.2012.679848
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fit <- sem(mod, data = dat)
summary(fit, ci = TRUE) # print delta-method CIs

## Automatically extract information from lavaan object
set.seed(1234)
monteCarloCI(fit) # CIs more robust than delta method in smaller samples

## delta method for standardized solution
standardizedSolution(fit)

## compare to Monte Carlo CIs:
set.seed(1234)

monteCarloCI(fit, standardized = TRUE)

## save samples to calculate more precise intervals:
set.seed(1234)

foo <- monteCarloCI(fit, append.samples = TRUE)

# library(HDInterval) # not a dependency; must be installed
# hdi(foo$Samples)

## Parameters can also be obtained from an external analysis
myParams <- c("a","b","c")
(coefs <- coef(fit)[myParams]) # names must match those in the "expression”
## Asymptotic covariance matrix from an external analysis
(AsyCovMat <- vcov(fit)[myParams, myParams])
## Compute CI, include a plot
set.seed(1234)
monteCarloCI(expr = c(ind = 'a*b', total = 'ind + c¢',
## other arbitrary functions are also possible
meaningless = 'sqrt(a)*b / log(abs(c))'),
coefs = coefs, ACM = AsyCovMat,
plot = TRUE, ask = TRUE) # print a plot for each

moreFitIndices Calculate more fit indices

Description

Calculate more fit indices that are not already provided in lavaan.

Usage
moreFitIndices(object, fit.measures = "all”, nPrior = 1)
Arguments
object The lavaan model object provided after running the cfa, sem, growth, or lavaan

functions.
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fit.measures Additional fit measures to be calculated. All additional fit measures are calcu-
lated by default

nPrior The sample size on which prior is based. This argument is used to compute
bic.priorN.

Details

See nul1RMSEA() for the further details of the computation of RMSEA of the null model.

Gamma-Hat (gammaHat; West, Taylor, & Wu, 2012) is a global goodness-of-fit index which can be
computed (assuming equal number of indicators across groups) by

where p is the number of variables in the model, X% is the 2 test statistic value of the target model,
dfy is the degree of freedom when fitting the target model, and N is the sample size (or sample size
minus the number of groups if mimic is set to "EQS").

Adjusted Gamma-Hat (adjGammaHat; West, Taylor, & Wu, 2012) is a global fit index which can be
computed by

_— Kxpx(p+1) .
Fadj(lzxdfk)X(lF),

where K is the number of groups (please refer to Dudgeon, 2004, for the multiple-group adjustment
for adjGammaHat).

Note that if Satorra-Bentler’s or Yuan—Bentler’s method is used, the fit indices using the scaled 2
values are also provided.

The remaining indices are information criteria calculated using the object’s —2x log-likelihood,
abbreviated —2LL.

Corrected Akaike Information Criterion (aic.smallN; Burnham & Anderson, 2003) is a corrected
version of AIC for small sample size, often abbreviated AICc:

2q(q +1)

AlCsna—ny = Al
Cs all— N C+N—q—17

where AIC is the original AIC: —2LL + 2q (where ¢ = the number of estimated parameters in
the target model). Note that AICc is a small-sample correction derived for univariate regression
models, so it is probably not appropriate for comparing SEMs.

Corrected Bayesian Information Criterion (bic.priorN; Kuha, 2004) is similar to BIC but explic-
itly specifying the sample size on which the prior is based (Np,io) using the nPrior argument.

BICpriorfN = —-2LL+ q IOg (1 +

—).

prior
Bollen et al. (2012, 2014) discussed additional BICs that incorporate more terms from a Taylor
series expansion, which the standard BIC drops. The "Scaled Unit-Information Prior" BIC is cal-
culated depending on whether the product of the vector of estimated model parameters (¢) and the
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observed information matrix (FIM) exceeds the number of estimated model parameters (Case 1) or
not (Case 2), which is checked internally:

SPBICCasel =—-2LL+ q(l — ), or

q
' FIM6
SPBICcyse 2 = —2LL + 6 FIM,

Note that this implementation of SPBIC is calculated on the assumption that priors for all estimated
parameters are centered at zero, which is inappropriate for most SEMs (e.g., variances should not
have priors centered at the lowest possible value; Bollen, 2014, p. 6).

Bollen et al. (2014, eq. 14) credit the HBIC to Haughton (1988):

N
HBIC = —2LL + qlog o
™

Bollen et al. (2012, p. 305) proposed the information matrix (/)-based BIC by adding another term:

N
IBIC = —2LL + qlog o + log det FIM,
7r

or equivalently, using the inverse information (the asymptotic sampling covariance matrix of esti-
mated parameters: ACOV):

IBIC = —2LL — glog 27w — log det ACOV.

Stochastic information criterion (SIC; see Preacher, 2006, for details) is similar to IBIC but does
not include the ¢ log 27 term that is also in HBIC. SIC and IBIC both account for model complexity
in a model’s functional form, not merely the number of free parameters. The SIC can be computed
as:

SIC = —2LL + glog N + log det FIM = —2LL — log det ACOV.

Hannan—Quinn Information Criterion (HQC; Hannan & Quinn, 1979) is used for model selection,
similar to AIC or BIC.

HQC = —2LL + 2qlog (log N),

Bozdogan Information Complexity (ICOMP) Criteria (Howe et al., 2011), instead of penalizing the
number of free parameters directly, [COMP penalizes the covariance complexity of the model.

g’\‘ >

ICOMP = —2LL + s x log(=)
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Value
A numeric lavaan.vector including any of the following requested via fit.measures=

gammaHat: Gamma-Hat

adjGammaHat: Adjusted Gamma-Hat

baseline.rmsea: RMSEA of the default baseline (i.e., independence) model
gammaHat . scaled: Gamma-Hat using scaled x?

adjGammaHat.scaled: Adjusted Gamma-Hat using scaled x?

A

baseline.rmsea.scaled: RMSEA of the default baseline (i.e., independence) model using
scaled 2

aic.smallN: Corrected (for small sample size) AIC

% =

. bic.priorN: BIC with specified prior sample size
9. spbic: Scaled Unit-Information Prior BIC (SPBIC)
10. hbic: Haughton’s BIC (HBIC)
11. ibic: Information-matrix-based BIC (IBIC)
12. sic: Stochastic Information Criterion (SIC)
13. hgc: Hannan-Quinn Information Criterion (HQC)
14. icomp: Bozdogan Information Complexity (ICOMP) Criteria

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
Aaron Boulton (University of Delaware)

Ruben Arslan (Humboldt-University of Berlin, <rubenarslan@gmail.com>)
Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

Mauricio Garnier-Villarreal (Vrije Universiteit Amsterdam; <mgv@pm.me>)

A great deal of feedback was provided by Kris Preacher regarding Bollen et al.’s (2012, 2014)
extensions of BIC.
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See Also

* miPowerFit() For the modification indices and their power approach for model fit evaluation

* nullRMSEA() For RMSEA of the default independence model

Examples
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data = HolzingerSwineford1939)
moreFitIndices(fit)

fit2 <- cfa(HS.model, data = HolzingerSwineford1939, estimator = "mlr")
moreFitIndices(fit2)

mvrnonnorm Generate Non-normal Data using Vale and Maurelli (1983) method

Description

Generate Non-normal Data using Vale and Maurelli (1983) method. The function is designed to be
as similar as the popular mvrnorm function in the MASS package. The codes are copied from mvrnorm
function in the MASS package for argument checking and lavaan package for data generation using
Vale and Maurelli (1983) method.

Usage

mvrnonnorm(n, mu, Sigma, skewness = NULL, kurtosis = NULL,
empirical = FALSE)


https://doi.org/10.1177/0049124103262065
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Arguments

n

mu

Sigma

skewness

kurtosis

empirical

Value

A data matrix

Author(s)

net

Sample size

A mean vector. If elements are named, those will be used as variable names in
the returned data matrix.

A positive-definite symmetric matrix specifying the covariance matrix of the
variables. If rows or columns are named (and mu is unnamed), those will be
used as variable names in the returned data matrix.

A vector of skewness of the variables
A vector of excessive kurtosis of the variables

deprecated, ignored.

The original function is the lavaan::simulateData() function written by Yves Rosseel in the
lavaan package. The function is adjusted for a convenient usage by Sunthud Pornprasertmanit
(<psunthud@gmail.com>). Terrence D. Jorgensen added the feature to retain variable names from

mu or Sigma.

References

Vale, C. D. & Maurelli, V. A. (1983). Simulating multivariate nonormal distributions. Psychome-
trika, 48(3), 465-471. doi:10.1007/BF02293687

Examples

set.seed(123)

mvrnonnorm(20, c(1, 2), matrix(c(10, 2, 2, 5), 2, 2),
skewness = c(5, 2), kurtosis = c(3, 3))
## again, with variable names specified in mu

set.seed(123)

mvrnonnorm(20, c(a = 1, b = 2), matrix(c(10, 2, 2, 5), 2, 2),
skewness = c(5, 2), kurtosis = c(3, 3))

net

Nesting and Equivalence Testing

Description

This test examines whether pairs of SEMs are nested or equivalent.


https://doi.org/10.1007/BF02293687
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Usage
net(..., crit = 1e-04)
Arguments
The 1avaan objects used for test of nesting and equivalence
crit The upper-bound criterion for testing the equivalence of models. Models are
considered nested (or equivalent) if the difference between their x? fit statistics
is less than this criterion.
Details

The concept of nesting/equivalence should be the same regardless of estimation method. How-
ever, the particular method of testing nesting/equivalence (as described in Bentler & Satorra, 2010)
employed by the net function analyzes summary statistics (model-implied means and covariance
matrices, not raw data). In the case of robust methods like MLR, the raw data is only utilized for the
robust adjustment to SE and chi-sq, and the net function only checks the unadjusted chi-sq for the
purposes of testing nesting/equivalence. This method also applies to models for categorical data,
following the procedure described by Asparouhov & Muthen (2019).

Value
The Net object representing the outputs for nesting and equivalent testing, including a logical matrix
of test results and a vector of degrees of freedom for each model.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Bentler, P. M., & Satorra, A. (2010). Testing model nesting and equivalence. Psychological Meth-
ods, 15(2), 111-123. doi:10.1037/a0019625

Asparouhov, T., & Muthen, B. (2019). Nesting and equivalence testing for structural equation
models. Structural Equation Modeling, 26(2), 302-309. doi:10.1080/10705511.2018.1513795

Examples
ml <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
m2 <- " f1 =~ x1 + x2 + x3 + x4

f2 =~ x5 + x6 + x7 + x8 + x9 '

m3 <- ' visual =~ x1 + x2 + x3
textual =~ eg*x4 + eqxx5 + eq*x6
speed =~ x7 + x8 + x9 '
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fitl <- cfa(ml, data = HolzingerSwineford1939)

fitla <- cfa(ml, data = HolzingerSwineford1939, std.lv = TRUE) # Equivalent to fit1
fit2 <- cfa(m2, data = HolzingerSwineford1939) # Not equivalent to or nested in fitl
fit3 <- cfa(m3, data = HolzingerSwineford1939) # Nested in fit1 and fitla

tests <- net(fit1, fitla, fit2, fit3)
tests
summary (tests)

Net-class Class For the Result of Nesting and Equivalence Testing

Description

This class contains the results of nesting and equivalence testing among multiple models

Usage

## S4 method for signature 'Net'
show(object)

## S4 method for signature 'Net'

summary (object)
Arguments
object An object of class Net.
Value
show signature(object = "Net"): prints the logical matrix of test results. NA indi-

cates a model did not converge.

summary signature(object = "Net"”): prints a narrative description of results. The
original object is invisibly returned.

Slots

test Logical matrix indicating nesting/equivalence among models

df The degrees of freedom of tested models

Objects from the Class

Objects can be created via the net () function.
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Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

See Also

net()

Examples

# See the example in the net function.

nul1RMSEA Calculate the RMSEA of the null model

Description

Calculate the RMSEA of the null (baseline) model

Usage

nullRMSEA(object, scaled = FALSE, silent = FALSE)

Arguments
object The lavaan model object provided after running the cfa, sem, growth, or lavaan
functions.
scaled If TRUE, the scaled (or robust, if available) RMSEA is returned. Ignored if a
robust test statistic was not requested.
silent If TRUE, do not print anything on the screen.
Details

RMSEA of the null model is calculated similar to the formula provided in the 1lavaan package. The
standard formula of RMSEA is

_xr 1
RMSEA = Nl Nxx@

where x? is the chi-square test statistic value of the target model, IV is the total sample size, df is
the degree of freedom of the hypothesized model, GG is the number of groups. Kenny proposed in
his website that

"A reasonable rule of thumb is to examine the RMSEA for the null model and make sure that is no
smaller than 0.158. An RMSEA for the model of 0.05 and a TLI of .90, implies that the RMSEA
of the null model is 0.158. If the RMSEA for the null model is less than 0.158, an incremental
measure of fit may not be that informative."

See also http://davidakenny.net/cm/fit.htm


http://davidakenny.net/cm/fit.htm
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Value

A value of RMSEA of the null model (a numeric vector) returned invisibly.

Author(s)

Ruben Arslan (Humboldt-University of Berlin, <rubenarslan@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The performance of RMSEA in models
with small degrees of freedom. Sociological Methods Research, 44(3), 486-507. doi:10.1177/
0049124114543236

See Also

* miPowerFit() For the modification indices and their power approach for model fit evaluation

e moreFitIndices() For other fit indices

Examples
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data = HolzingerSwineford1939)
nullRMSEA(fit)

OLDlavaan.mi-class Class for a lavaan Model Fitted to Multiple Imputations

Description

This class extends the lavaan::lavaanList class, created by fitting a lavaan model to a list of data
sets. In this case, the list of data sets are multiple imputations of missing data.

Usage

## S4 method for signature 'OLDlavaan.mi'
show(object)

## S4 method for signature 'OLDlavaan.mi'

summary(object, se = TRUE, ci = FALSE,
level = 0.95, standardized = FALSE, rsquare = FALSE, fmi = FALSE,
scale.W = lasymptotic, omit.imps = c("no.conv”, "no.se"),
asymptotic = FALSE, header = TRUE, output = "text"”,


https://doi.org/10.1177/0049124114543236
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fit.measures = FALSE, ...)

## S4 method for signature 'OLDlavaan.mi'
nobs(object, total = TRUE)

## S4 method for signature 'OLDlavaan.mi'
coef(object, type = "free"”, labels = TRUE,
omit.imps = c("no.conv”, "no.se"))

## S4 method for signature 'OLDlavaan.mi'
vcov(object, type = c("pooled”, "between”, "within”,

"ariv"), scale.W = TRUE, omit.imps = c("no.conv"”, "no.se"))

## S4 method for signature 'OLDlavaan.mi'
anova(object, ...)

## S4 method for signature 'OLDlavaan.mi'

fitMeasures(object, fit.measures = "all",
baseline.model = NULL, output = "vector”, omit.imps = c("no.conv”,
"no.se"), ...)

## S4 method for signature 'OLDlavaan.mi'

fitmeasures(object, fit.measures = "all"”,
baseline.model = NULL, output = "vector”, omit.imps = c("no.conv”,
"no.se"), ...)

## S4 method for signature 'OLDlavaan.mi'
fitted(object, omit.imps = c(”"no.conv”, "no.se"))

## S4 method for signature 'OLDlavaan.mi'
fitted.values(object, omit.imps = c("no.conv"”,
"no.se"))

## S4 method for signature 'OLDlavaan.mi'
residuals(object, type = c("raw”, "cor"),

omit.imps = c("no.conv”, "no.se"))

## S4 method for signature 'OLDlavaan.mi'

resid(object, type = c("raw”, "cor"),
omit.imps = c("no.conv”, "no.se"))
Arguments
object An object of class OLDlavaan.mi

se, ci, level, standardized, rsquare, header, output
See lavaan::parameterEstimates(). The output= argument can also be
passed to lavaan: : fitMeasures().

fmi logical indicating whether to include the Fraction Missing Information (FMI)
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for parameter estimates in the summary output (see Value section).

scale.W logical. If TRUE (default), the vcov method will calculate the pooled covari-
ance matrix by scaling the within-imputation component by the ARIV (see En-
ders, 2010, p. 235, for definition and formula). Otherwise, the pooled ma-
trix is calculated as the weighted sum of the within-imputation and between-
imputation components (see Enders, 2010, ch. 8, for details). This in turn af-
fects how the summary () method calculates its pooled standard errors, as well
as lavTestWald.mi().

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Can include any of c("no.conv”, "no.se”, "no.npd"), the first 2 of
which are the default setting, which excludes any imputations that did not con-
verge or for which standard errors could not be computed. The last option
("no.npd"”) would exclude any imputations which yielded a nonpositive defi-
nite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. NPD solutions are not excluded
by default because they are likely to occur due to sampling error, especially in
small samples. However, gross model misspecification could also cause NPD
solutions, users can compare pooled results with and without this setting as a
sensitivity analysis to see whether some imputations warrant further investiga-
tion. Specific imputation numbers can also be included in this argument, in case
users want to apply their own custom omission criteria (or simulations can use
different numbers of imputations without redundantly refitting the model).

asymptotic logical. If FALSE (typically a default, but see Value section for details using
various methods), pooled tests (of fit or pooled estimates) will be F or ¢ statistics
with associated degrees of freedom (df). If TRUE, the (denominator) df are as-
sumed to be sufficiently large for a ¢ statistic to follow a normal distribution, so
it is printed as a z statisic; likewise, F times its numerator df is printed, assumed
to follow a 2 distribution.

fit.measures, baseline.model
See lavaan: : fitMeasures(). summary(object, fit.measures = TRUE) will
print (but not return) a table of fit measures to the console.

Additional arguments passed to lavTestLRT.mi(), or subsequently to lavaan: :lavTestLRT().

total logical (default: TRUE) indicating whether the nobs method should return the
total sample size or (if FALSE) a vector of group sample sizes.

type The meaning of this argument varies depending on which method it it used
for. Find detailed descriptions in the Value section under coef, vcov, and
residuals.

labels logical indicating whether the coef output should include parameter labels.

Default is TRUE.

Value

coef signature(object = "OLDlavaan.mi", type = "free”, labels = TRUE, omit.imps

=c("no.conv”,"no.se")): See lavaan::lavaan. Returns the pooled point esti-
mates (i.e., averaged across imputed data sets; see Rubin, 1987).
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vCoVv

fitted.values

fitted

residuals

resid

nobs

anova

fitMeasures

fitmeasures

show

summary
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signature(object = "OLDlavaan.mi"”, scale.W=TRUE, omit.imps =c("no.conv

n on non

type = c("pooled”, "between”, "within”, "ariv")): By default, returns the
pooled covariance matrix of parameter estimates (type = "pooled”), the within-
imputations covariance matrix (type = "within"), the between-imputations co-
variance matrix (type = "between"), or the average relative increase in variance
(type = "ariv") due to missing data.

non

signature(object = "OLDlavaan.mi"”, omit.imps = c("no.conv”,"no.se")):

See lavaan::lavaan. Returns model-implied moments, evaluated at the pooled
point estimates.

alias for fitted.values

signature(object = "OLDlavaan.mi", type = c("raw”,"cor"), omit.imps
=c("no.conv"”,"no.se")): See lavaan::lavaan. By default (type = "raw"), re-
turns the difference between the model-implied moments from fitted.values

and the pooled observed moments (i.e., averaged across imputed data sets).

n on
’

Standardized residuals are also available, using Bollen’s (type = "cor" or "cor.bollen")

or Bentler’s (type = "cor.bentler") formulas.
alias for residuals

signature(object = "OLDlavaan.mi", total = TRUE): either the total (default)
sample size or a vector of group sample sizes (total = FALSE).

signature(object = "OLDlavaan.mi"”, ...): Returns a test of model fit for a
single model (object) or test(s) of the difference(s) in fit between nested models
passed via . ... See lavTestLRT.mi() and compareFit() for details.

signature(object = "OLDlavaan.mi”, fit.measures = "all", baseline.model

n o n

=NULL, output = "vector”, omit.imps =c("no.conv”,"no.se"), ...): See
lavaan’s lavaan::fitMeasures() for details. Pass additional arguments to
lavTestLRT.mi() via . ...

alias for fitMeasures.

signature(object = "OLDlavaan.mi"): returns a message about convergence
rates and estimation problems (if applicable) across imputed data sets.

signature(object = "OLDlavaan.mi", se = TRUE, ci = FALSE, level = .95,

standardized = FALSE, rsquare = FALSE, fmi = FALSE, scale.W = !asymptotic,

omit.imps =c("no.conv”,"no.se"), asymptotic = FALSE, header = TRUE,

no.se"),

output = "text"”, fit.measures = FALSE, ...): See lavaan: :parameterEstimates()

for details. By default, summary () returns pooled point and SE estimates, along
with ¢ test statistics and their associated df and p values. If ci = TRUE, con-
fidence intervals are returned with the specified confidence level (default 95\
If asymptotic = TRUE, z instead of ¢ tests are returned. standardized solu-
tion(s) can also be requested by name ("std.1lv" or "std.all"”) or both are
returned with TRUE. R-squared for endogenous variables can be requested, as
well as the Fraction Missing Information (FMI) for parameter estimates. By de-
fault, the output will appear like lavaan’s summary () output, but if output ==

"data.frame”, the returned data. frame will resemble the parameterEstimates()

output. The scale.W argument is passed to vcov (see description above). Set-
ting fit.measures=TRUE will additionally print fit measures to the console,
but they will not be returned; additional arguments may be passed via ... to
lavaan: : fitMeasures() and subsequently to lavTestLRT.mi().
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Slots
coeflList list of estimated coefficients in matrix format (one per imputation) as output by lavInspect (fit,
n es t n )

phiList list of model-implied latent-variable covariance matrices (one per imputation) as output
by lavInspect(fit, "cov.1lv")

miList list of modification indices output by lavaan: :modindices()
seed integer seed set before running imputations

lavListCall call to lavaan::lavaanlList() used to fit the model to the list of imputed data sets
in @atalist, stored as a 1ist of arguments

imputeCall call to imputation function (if used), stored as a 1ist of arguments

convergence list of logical vectors indicating whether, for each imputed data set, (1) the model
converged on a solution, (2) SEs could be calculated, (3) the (residual) covariance matrix of
latent variables () is non-positive-definite, and (4) the residual covariance matrix of observed
variables (©) is non-positive-definite.

lavaanList_slots All remaining slots are from lavaan::lavaanList, but runMI () only populates a
subset of the 1ist slots, two of them with custom information:

DataList The list of imputed data sets

SampleStatsList Listof output from lavInspect(fit, "sampstat"”) applied to each fitted model
ParTablelList See lavaan::lavaanList

vcovList See lavaan::lavaanList

testList See lavaan::lavaanList

h1List See lavaan::lavaanList. An additional element is added to the 1ist: $PT is the "saturated"
model’s parameter table, returned by lavaan::lav_partable_unrestricted().

baselineList See lavaan::lavaanList

Objects from the Class

See the runMI () function for details.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References
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Report. Retrieved from http://www. statmodel.com/
Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.

Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from
repeated p-values with multiply-imputed data. Statistica Sinica, 1(1), 65-92. Retrieved from
https://www. jstor.org/stable/24303994

Meng, X.-L., & Rubin, D. B. (1992). Performing likelihood ratio tests with multiply-imputed data
sets. Biometrika, 79(1), 103—111. doi:10.2307/2337151

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York, NY: Wiley.
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## See the new lavaan.mi package

parcelAllocation

Random Allocation of Items to Parcels in a Structural Equation Model

Description

This function generates a given number of randomly generated item-to-parcel allocations, fits a
model to each allocation, and provides averaged results over all allocations.

Usage
parcelAllocation(model, data, parcel.names, item.syntax, nAlloc = 100,
fun = "sem"”, alpha = 0.05, fit.measures = c("chisq"”, "df", "cfi",
"tli", "rmsea”, "srmr"), ..., show.progress = FALSE, iseed = 12345,

do.fit = TRUE, return.fit = FALSE, warn = FALSE)

Arguments

model

data

parcel.names

item.syntax

nAlloc

fun

alpha

fit.measures

lavaan: :lavaan() model syntax specifying the model fit to (at least some)
parceled data. Note that there can be a mixture of items and parcels (even
within the same factor), in case certain items should never be parceled. Can
be a character string or parameter table. Also see lavaan::lavaanify() for
more details.

A data. frame containing all observed variables appearing in the model, as well
as those in the item. syntax used to create parcels. If the data have missing val-
ues, multiple imputation before parceling is recommended: submit a stacked
data set (with a variable for the imputation number, so they can be separateed
later) and set do. fit = FALSE to return the list of data. frames (one per alloca-
tion), each of which is a stacked, imputed data set with parcels.

character vector containing names of all parcels appearing as indicators in
model.

lavaan: :model.syntax() specifying the model that would be fit to all of the
unparceled items, including items that should be randomly allocated to parcels
appearing in model.

The number of random items-to-parcels allocations to generate.

character string indicating the name of the lavaan: :lavaan() function used
to fit model to data. Can only take the values "lavaan”, "sem”, "cfa”, or
"growth”.

n
>

Alpha level used as criterion for significance.

character vector containing names of fit measures to request from each fitted
lavaan: :lavaan() model. See the output of lavaan::fitMeasures() for a
list of available measures.
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show.progress

iseed

do.fit

return.fit

warn

Details
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Additional arguments to be passed to lavaan: : lavaanList(). See also lavaan

If TRUE, show a utils::txtProgressBar() indicating how fast the model-
fitting iterates over allocations.

(Optional) Random seed used for parceling items. When the same random seed
is specified and the program is re-run, the same allocations will be generated.
Using the same iseed argument will ensure the any model is fit to the same
parcel allocations. Note: When using parallel options, you must first type
RNGkind("L'Ecuyer-CMRG") into the R Console, so that the seed will be con-
trolled across cores.

If TRUE (default), the model is fitted to each parceled data set, and the summary
of results is returned (see the Value section below). If FALSE, the items are
randomly parceled, but the model is not fit; instead, the 1ist of data. frames is
returned (so assign it to an object).

If TRUE, a lavaan::lavaanList object is returned with the 1ist of results across
allocations

Whether to print warnings when fitting model to each allocation

This function implements the random item-to-parcel allocation procedure described in Sterba (2011)
and Sterba and MacCallum (2010). The function takes a single data set with item-level data,
randomly assigns items to parcels, fits a structural equation model to the parceled data using
lavaan: :lavaanList(), and repeats this process for a user-specified number of random alloca-
tions. Results from all fitted models are summarized in the output. For further details on the benefits
of randomly allocating items to parcels, see Sterba (2011) and Sterba and MacCallum (2010).

Value

Estimates

SE

Fit

Model

Author(s)

A data.frame containing results related to parameter estimates with columns
corresponding to their names; average and standard deviation across allocations;
minimum, maximum, and range across allocations; and the proportion of allo-
cations in which each parameter estimate was significant.

A data. frame containing results similar to Estimates, but related to the stan-
dard errors of parameter estimates.

A data. frame containing results related to model fit, with columns correspond-
ing to fit index names; their average and standard deviation across allocations;
the minimum, maximum, and range across allocations; and (if the test statistic
or RMSEA is included in fit.measures) the proportion of allocations in which
each test of (exact or close) fit was significant.

A lavaan::lavaanList object containing results of the model fitted to each parcel
allocation. Only returned if return.fit = TRUE.

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

::1lavOptions()
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See Also

PAVranking() for comparing 2 models, poolMAlloc() for choosing the number of allocations

Examples

## Fit 2-factor CFA to simulated data. Each factor has 9 indicators.

## Specify the item-level model (if NO parcels were created)
item.syntax <- c(paste@("f1 =~ flitem”, 1:9),

paste@("f2 =~ f2item”, 1:9))
cat(item.syntax, sep = "\n")
## Below, we reduce the size of this same model by
## applying different parceling schemes

## 3-indicator parcels
mod.parcels <- '

f1 =~ parl + par2 + par3
f2 =~ par4 + par5 + par6

## names of parcels
(parcel.names <- paste@("par”, 1:6))

## override default random-number generator to use parallel options
RNGkind("L'Ecuyer-CMRG")

parcelAllocation(mod.parcels, data = simParcel, nAlloc = 100,
parcel.names = parcel.names, item.syntax = item.syntax,
# parallel = "multicore”, # parallel available in Mac/Linux
std.lv = TRUE) # any addition lavaan arguments

## POOL RESULTS by treating parcel allocations as multiple imputations
## Details provided in Sterba & Rights (2016); see ?poolMAlloc.


https://doi.org/10.1080/10705511.2011.607073
https://doi.org/10.1080/00273171003680302
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## save list of data sets instead of fitting model yet

datalList <- parcelAllocation(mod.parcels, data = simParcel, nAlloc = 100,
parcel.names = parcel.names,
item.syntax = item.syntax,
do.fit = FALSE)

## now fit the model to each data set

library(lavaan.mi)

fit.parcels <- cfa.mi(mod.parcels, data = datalList, std.lv = TRUE)

summary (fit.parcels) # pooled using Rubin's rules
anova(fit.parcels) # pooled test statistic
help(package = "lavaan.mi”) # find more methods for pooling results

## multigroup example

simParcel$group <- 0:1 # arbitrary groups for example
mod.mg <- '

f1 =~ par1 + c(L2, L2)*par2 + par3

f2 =~ par4 + par5 + par6

## names of parcels
(parcel.names <- paste@("par"”, 1:6))

parcelAllocation(mod.mg, data = simParcel, parcel.names, item.syntax,
std.lv = TRUE, group = "group”, group.equal = "loadings”,
nAlloc = 20, show.progress = TRUE)

## parcels for first factor, items for second factor
mod.items <- '

f1 =~ parl + par2 + par3

f2 =~ f2item2 + f2item7 + f2item8

## names of parcels

(parcel.names <- paste@("par”, 1:3))

parcelAllocation(mod.items, data = simParcel, parcel.names, item.syntax,
nAlloc = 20, std.lv = TRUE)

## mixture of 1- and 3-indicator parcels for second factor
mod.mix <- '

f1 =~ parl + par2 + par3

f2 =~ fitem2 + f2item7 + f2item8 + par4 + par5 + par6

## names of parcels

(parcel.names <- paste@("par"”, 1:6))

parcelAllocation(mod.mix, data = simParcel, parcel.names, item.syntax,
nAlloc = 20, std.lv = TRUE)
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partiallInvariance

Partial Measurement Invariance Testing Across Groups

Description

This test will provide partial invariance testing by (a) freeing a parameter one-by-one from nested
model and compare with the original nested model or (b) fixing (or constraining) a parameter one-
by-one from the parent model and compare with the original parent model. This function only
works with congeneric models. The partialInvariance is used for continuous variable. The
partialInvarianceCat is used for categorical variables.

Usage

partialInvariance(fit, type, free = NULL, fix = NULL, refgroup = 1,

poolvar

TRUE, p.adjust = "none”, fbound = 2, return.fit = FALSE,

method = "satorra.bentler.2001")

partiallnvarianceCat(fit, type, free = NULL, fix = NULL, refgroup = 1,

poolvar

TRUE, p.adjust = "none”, return.fit = FALSE,

method = "satorra.bentler.2001")

Arguments

fit

type
free

fix

refgroup

poolvar

p.adjust

fbound

return.fit
method

A list of models for invariance testing. Each model should be assigned by ap-
propriate names (see details). The result from measurementInvariance() or
measurementInvarianceCat() could be used in this argument directly.

non "non

The types of invariance testing: "metric", "scalar", "strict", or "means"

A vector of variable names that are free across groups in advance. If partial
mean invariance is tested, this argument represents a vector of factor names that
are free across groups.

A vector of variable names that are constrained to be equal across groups in
advance. If partial mean invariance is tested, this argument represents a vector
of factor names that are fixed across groups.

The reference group used to make the effect size comparison with the other
groups.

If TRUE, the variances are pooled across group for standardization. Otherwise,
the variances of the reference group are used for standardization.

The method used to adjust p values. See stats::p.adjust() for the options
for adjusting p values. The default is to not use any corrections.

The z-scores of factor that is used to calculate the effect size of the loading
difference proposed by Millsap and Olivera-Aguilar (2012).

Return the submodels fitted by this function

The method used to calculate likelihood ratio test. See lavaan: :lavTestLRT()
for available options
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Details

There are four types of partial invariance testing:

* Partial weak invariance. The model named ’fit.configural’ from the list of models is compared
with the model named ’fit.loadings’. Each loading will be freed or fixed from the metric and
configural invariance models respectively. The modified models are compared with the origi-
nal model. Note that the objects in the list of models must have the names of "fit.configural”
and "fit.loadings". Users may use "metric", "weak", "loading", or "loadings" in the type ar-
gument. Note that, for testing invariance on marker variables, other variables will be assigned

as marker variables automatically.

* Partial strong invariance. The model named ’fit.loadings’ from the list of models is compared
with the model named either *fit.intercepts’ or ’fit.thresholds’. Each intercept will be freed
or fixed from the scalar and metric invariance models respectively. The modified models are
compared with the original model. Note that the objects in the list of models must have the
names of "fit.loadings" and either "fit.intercepts" or "fit.thresholds". Users may use "scalar",
"strong", "intercept”, "intercepts”, "threshold", or "thresholds" in the type argument. Note
that, for testing invariance on marker variables, other variables will be assigned as marker
variables automatically. Note that if all variables are dichotomous, scalar invariance testing is
not available.

* Partial strict invariance. The model named either ’fit.intercepts’ or *fit.thresholds’ (or ’fit.loadings’)
from the list of models is compared with the model named ’fit.residuals’. Each residual vari-
ance will be freed or fixed from the strict and scalar (or metric) invariance models respectively.
The modified models are compared with the original model. Note that the objects in the list
of models must have the names of "fit.residuals" and either "fit.intercepts”, "fit.thresholds", or

"fit.loadings". Users may use "strict", "residual”, "residuals", "error", or "errors" in the type
argument.

* Partial mean invariance. The model named either ’fit.intercepts’ or ’fit.thresholds’ (or ’fit.residuals’
or ’fit.loadings’) from the list of models is compared with the model named ’fit.means’. Each
factor mean will be freed or fixed from the means and scalar (or strict or metric) invariance
models respectively. The modified models are compared with the original model. Note that
the objects in the list of models must have the names of "fit.means" and either "fit.residuals",
"fit.intercepts”, "fit.thresholds", or "fit.loadings". Users may use "means" or "mean" in the
type argument.

Two types of comparisons are used in this function:

1. free: The nested model is used as a template. Then, one parameter indicating the differences
between two models is free. The new model is compared with the nested model. This process
is repeated for all differences between two models. The likelihood-ratio test and the difference
in CFI are provided.

2. fix: The parent model is used as a template. Then, one parameter indicating the differences
between two models is fixed or constrained to be equal to other parameters. The new model
is then compared with the parent model. This process is repeated for all differences between
two models. The likelihood-ratio test and the difference in CFI are provided.

3. wald: This method is similar to the fix method. However, instead of building a new model
and compare them with likelihood-ratio test, multivariate wald test is used to compare equality
between parameter estimates. See lavaan::lavTestWald() for further details. Note that
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if any rows of the contrast cannot be summed to 0, the Wald test is not provided, such as
comparing two means where one of the means is fixed as 0. This test statistic is not as accurate
as likelihood-ratio test provided in fix. I provide it here in case that likelihood-ratio test fails
to converge.

Note that this function does not adjust for the inflated Type I error rate from multiple tests. The
degree of freedom of all tests would be the number of groups minus 1.

The details of standardized estimates and the effect size used for each parameters are provided in
the vignettes by running vignette("partiallnvariance”).

Value

A list of results are provided. The list will consists of at least two elements:

1. estimates: The results of parameter estimates including pooled estimates (poolest), the es-
timates for each group, standardized estimates for each group (std), the difference in standard-
ized values, and the effect size statistic (g for factor loading difference and % for error variance
difference). See the details of this effect size statistic by running vignette("partialInvariance”).
In the partialInvariance function, the additional effect statistics proposed by Millsap and
Olivera-Aguilar (2012) are provided. For factor loading, the additional outputs are the ob-
served mean difference (diff_mean), the mean difference if factor scores are low (Low_f'score),
and the mean difference if factor scores are high (high_fscore). The low factor score is cal-
culated by (a) finding the factor scores that its z score equals -bound (the default is —2) from
all groups and (b) picking the minimum value among the factor scores. The high factor score
is calculated by (a) finding the factor scores that its z score equals bound (default = 2) from
all groups and (b) picking the maximum value among the factor scores. For measurement
intercepts, the additional outputs are the observed means difference (diff_mean) and the pro-
portion of the differences in the intercepts over the observed means differences (propdiff).
For error variances, the additional outputs are the proportion of the difference in error vari-
ances over the difference in observed variances (propdiff).

2. results: Statistical tests as well as the change in CFI are provided. x? and p value are
provided for all methods.

3. models: The submodels used in the free and fix methods, as well as the nested and parent
models. The nested and parent models will be changed from the original models if free or
fit arguments are specified.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

References

Millsap, R. E., & Olivera-Aguilar, M. (2012). Investigating measurement invariance using con-
firmatory factor analysis. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp.
380-392). New York, NY: Guilford.
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See Also

measurementInvariance () for measurement invariance for continuous variables; measurementInvarianceCat()
for measurement invariance for categorical variables; lavaan::lavTestWald() for multivariate
Wald test

Examples

## Conduct weak invariance testing manually by using fixed-factor
## method of scale identification

library(lavaan)
conf <- "

f1 =~ NAxx1 + x2 + x3
f2 =~ NAxx4 + x5 + x6
f1 ~~ c(1, 1)*f1

f2 ~~ c(1, 1)*f2

n

n

weak <-
f1 =~ NA*x1 + x2 + x3
f2 =~ NA*x4 + x5 + x6
f1 ~~ c(1, NA)*f1
£2 ~~ c(1, NA)*f2

n

configural <- cfa(conf, data = HolzingerSwineford1939, std.lv = TRUE, group="school")
weak <- cfa(weak, data = HolzingerSwineford1939, group="school”, group.equal="loadings")
models <- list(fit.configural = configural, fit.loadings = weak)
partialInvariance(models, "metric")

partiallnvariance(models, "metric"”, free = "x5") # "x5" is free across groups in advance
artiallnvariance(models, "metric”, fix = "x4") # "x4" is fixed across groups in advance
’ ’

## Use the result from the measurementInvariance function

HW.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

models2 <- measurementInvariance(model = HW.model, data=HolzingerSwineford1939,
group="school")
partiallnvariance(models2, "scalar"”)

## Conduct weak invariance testing manually by using fixed-factor
## method of scale identification for dichotomous variables

f <= rnorm(1000, 0, 1)

ul <= 0.9%f + rnorm(1000, 1, sqrt(0.19))

1
u2 <- 0.8xf + rnorm(1000, 1, sqrt(0.36))
u3 <- 0.6xf + rnorm(1000, 1, sqrt(0.64))
u4 <- 0.7xf + rnorm(1000, 1, sqrt(0.51))
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ul <- as.numeric(cut(ul, breaks = c(-Inf, @, Inf)))
u2 <- as.numeric(cut(u2, breaks = c(-Inf, 0.5, Inf)))
u3 <- as.numeric(cut(u3, breaks = c(-Inf, 0, Inf)))
u4 <- as.numeric(cut(u4, breaks = c(-Inf, -0.5, Inf)))

g <- rep(c(1, 2), 500)

dat2 <- data.frame(ul, u2, u3, u4, g)
configural2 <- "

f1 =~ NA*ul + u2 + u3 + u4

ul | c(t11, t11)*t1
u2 | c(t21, t21)*t1
ud | c(t31, t31)*t1
u4 | c(t41, t41)=*t1

f1 ~~ c(1, 1)*f1
f1 ~ c(0, NA)Y*1
ul ~~ c(1, 1)=*ul
u2 ~~ c(1, NA)Y*u2
u3 ~~ c(1, NA)*u3
ud ~~ c(1, NA)*xu4

n

outConfigural2 <- cfa(configural2, data
parameterization = "theta”, estimator = "wlsmv",

"non

= dat2, group = "g",

ordered = c("ul”, "u2”, "u3”, "u4"))

weak2 <- "

f1 =~ NA*ul + c(F11, F11)%ul + c(f21, F21)%u2 + c(f31, f31)xu3 + c(f41, f41)xud

ul | c(t11, t11)*t1
u2 | c(t21, t21)*t1
u3 | c(t31, t31)=*t1
ud4 | c(t41, t41)*t1
f1 ~~ c(1, NA)Y*f1
f1 ~ c(0, NA)*1

ul ~~ c(1, 1)*ul

u2 ~~ c(1, NA)Y*u2
u3 ~~ c(1, NA)*u3
u4 ~~ c(1, NA)Y*u4

n

outWeak?2 <- cfa(weak2, data = dat2, group = "g", parameterization = "theta”,
estimator = "wlsmv”, ordered = c("ul”, "u2", "u3", "u4"))
modelsCat <- list(fit.configural = outConfigural2, fit.loadings = outWeak2)

partiallnvarianceCat(modelsCat, type

partialInvarianceCat(modelsCat, type
partiallnvarianceCat(modelsCat, type

"non

"metric")
"metric”, free = "u2")
"metric”, fix = "u3")

## Use the result from the measurementInvarianceCat function

model <- ' f1 =~ ul + u2 + u3 + u4
f2 =~ u5 + u6 + u7 + u8'

107
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modelsCat2 <- measurementInvarianceCat(model = model, data = datCat, group = "g",
parameterization = "theta”,
estimator = "wlsmv”, strict = TRUE)
partialInvarianceCat(modelsCat2, type = "scalar")
PAVranking Parcel-Allocation Variability in Model Ranking
Description

This function quantifies and assesses the consequences of parcel-allocation variability for model
ranking of structural equation models (SEMs) that differ in their structural specification but share
the same parcel-level measurement specification (see Sterba & Rights, 2016). This function calls
parcelAllocation()—which can be used with only one SEM in isolation—to fit two (assumed)
nested models to each of a specified number of random item-to-parcel allocations. Output includes
summary information about the distribution of model selection results (including plots) and the
distribution of results for each model individually, across allocations within-sample. Note that this
function can be used when selecting among more than two competing structural models as well (see
instructions below involving the seed= argument).

Usage
PAVranking(model®, modell, data, parcel.names, item.syntax, nAlloc = 100,
fun = "sem”, alpha = 0.05, bic.crit = 10, fit.measures = c("chisq",
”df‘ll’ IIC_F:i-IIy Iltlill’ Ilr.mseally ”Srmr"’ ”]_Og]_", llaicll’ Ilbicll, Ilbiczll)’ cee,

show.progress = FALSE, iseed = 12345, warn = FALSE)

Arguments

model®@, model1 lavaan::lavaan() model syntax specifying nested models (model® within model1)
to be fitted to the same parceled data. Note that there can be a mixture of
items and parcels (even within the same factor), in case certain items should
never be parceled. Can be a character string or parameter table. Also see
lavaan::lavaanify() for more details.

data A data. frame containing all observed variables appearing in mode10= and model1=,
as well as those in the item.syntax= used to create parcels. If the data have
missing values, multiple imputation before parceling is recommended: submit a
stacked data set (with a variable for the imputation number, so they can be sep-
arated later) and set do.fit=FALSE to return the list of data.frames (one per
allocation), each of which is a stacked, multiply imputed data set with parcels
created using the same allocation scheme.

parcel.names character vector containing names of all parcels appearing as indicators in
model®@= or model1=.
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item.syntax

nAlloc

fun

alpha

bic.crit

fit.measures

show.progress

iseed

warn
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lavaan: :lavaan() model syntax specifying the model that would be fit to all
of the unparceled items, including items that should be randomly allocated to
parcels appearing in model@= and model1=.

The number of random items-to-parcels allocations to generate.

character string indicating the name of the lavaan: :lavaan() function used
to fit model@= and modell= to data=. Can only take the values "lavaan”,

n n o n

sem”, "cfa”, or "growth”.
Alpha level used as criterion for significance.

Criterion for assessing evidence in favor of one model over another. See Rafferty
(1995) for guidelines (default is "very strong evidence" in favor of the model
with lower BIC).

character vector containing names of fit measures to request from each fitted
lavaan::lavaan model. See the output of lavaan: :fitMeasures() for a list of
available measures.

Additional arguments to be passed to lavaan: : lavaanList(). See also lavaan

If TRUE, show a utils::txtProgressBar() indicating how fast each model-
fitting iterates over allocations.

(Optional) Random seed used for parceling items. When the same random
seed is specified and the program is re-run, the same allocations will be gen-
erated. The seed argument can be used to assess parcel-allocation variability
in model ranking when considering more than two models. For each pair of
models under comparison, the program should be rerun using the same random
seed. Doing so ensures that multiple model comparisons will employ the same
set of parcel datasets. Note: When using parallel options, you must first type
RNGkind("L'Ecuyer-CMRG") into the R Console, so that the seed will be con-
trolled across cores.

Whether to print warnings when fitting models to each allocation

This is based on a SAS macro ParcelAlloc (Sterba & MacCallum, 2010). The PAVranking()
function produces results discussed in Sterba and Rights (2016) relevant to the assessment of parcel-
allocation variability in model selection and model ranking. Specifically, the PAVranking() func-
tion first calls parcelAllocation() to generate a given number (nAlloc=) of item-to-parcel allo-
cations, fitting both specified models to each allocation, and providing summaryies of PAV for each
model. Additionally, PAVranking() provides the following new summaries:

::lavOptions()

* PAV in model selection index values and model ranking between Models mode1@=and model1=.

* The proportion of allocations that converged and the proportion of proper solutions (results
are summarized for allocations with both converged and proper allocations only).

For further details on the benefits of the random allocation of items to parcels, see Sterba (2011)
and Sterba and MacCallum (2010).

To test whether nested models have equivalent fit, results can be pooled across allocations using
the same methods available for pooling results across multiple imputations of missing data (see

Examples).
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Note: This function requires the 1lavaan package. Missing data must be coded as NA. If the function
returns "Error in plot.new() : figure margins too large”, the user may need to increase size
of the plot window (e.g., in RStudio) and rerun the function.

Value

A list with 3 elements. The first two (model@.results and model1l.results) are results returned
by parcelAllocation() for model® and model1, respectively. The third element (model@.v.model1)
is a list of model-comparison results, including the following:

\verb{LRT_Summary:}
The average likelihood ratio test across allocations, as well as the SD, mini-
mum, maximum, range, and the proportion of allocations for which the test was
significant.

\verb{Fit_Index_Differences:}
Differences in fit indices, organized by what proportion favored each model and
among those, what the average difference was.

\verb{Favored_by_BIC:}
The proportion of allocations in which each model met the criterion (bic.crit)

for a substantial difference in fit.
\verb{Convergence_Summary:}

The proportion of allocations in which each model (and both models) converged
on a solution.

Histograms are also printed to the current plot-output device.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
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See Also

parcelAllocation() for fitting a single model, poolMAlloc() for choosing the number of alloca-
tions
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Examples

## Specify the item-level model (if NO parcels were created)
## This must apply to BOTH competing models

item.syntax <- c(paste@("f1 =~ flitem”, 1:9),
paste@("f2 =~ f2item", 1:9))

cat(item.syntax, sep = "\n")

## Below, we reduce the size of this same model by

## applying different parceling schemes

## Specify a 2-factor CFA with correlated factors, using 3-indicator parcels
modl <- '

f1 =~ parl + par2 + par3

f2 =~ par4 + par5 + par6

## Specify a more restricted model with orthogonal factors
mod@ <- '

f1 =~ parl + par2 + par3

f2 =~ par4 + par5 + par6

f1 ~~ 0xf2

## names of parcels (must apply to BOTH models)
(parcel.names <- paste@("par"”, 1:6))

## override default random-number generator to use parallel options
RNGkind("L'Ecuyer-CMRG")

PAVranking(model® = mod@, modell = modl, data = simParcel, nAlloc = 100,
parcel.names = parcel.names, item.syntax = item.syntax,
# parallel = "multicore”, # parallel available on Mac/Linux
std.lv = TRUE) # any addition lavaan arguments

## POOL RESULTS by treating parcel allocations as multiple imputations.
## Details provided in Sterba & Rights (2016); see ?poolMAlloc.

## save list of data sets instead of fitting model yet
datalList <- parcelAllocation(mod@, # or modl (either uses same allocations)
data = simParcel, nAlloc = 100,
parcel.names = parcel.names,
item.syntax = item.syntax,
do.fit = FALSE)
## now fit each model to each data set
if(requireNamespace("lavaan.mi”)){
library(lavaan.mi)
fit@ <- cfa.mi(mod@, data = datalList, std.lv = TRUE)
fitl <- cfa.mi(mod1, data = datalList, std.lv = TRUE)
anova(fite, fit1) # Pooled test statistic comparing models.
help(package = "lavaan.mi”) # Find more methods for pooling results.
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permuteMeaskq Permutation Randomization Tests of Measurement Equivalence and
Differential Item Functioning (DIF)

Description

The function permuteMeasEq provides tests of hypotheses involving measurement equivalence, in
one of two frameworks: multigroup CFA or MIMIC models.

Usage

permuteMeasEq(nPermute, modelType = c("mgcfa”, "mimic"), con, uncon = NULL,
null = NULL, param = NULL, freeParam = NULL, covariates = NULL,
AFIs = NULL, moreAFIs = NULL, maxSparse = 10, maxNonconv = 10,
showProgress = TRUE, warn = -1, datafun, extra,
parallelType = c("none”, "multicore”, "snow"), ncpus = NULL, cl = NULL,
iseed = 12345)

Arguments

nPermute An integer indicating the number of random permutations used to form empirical
distributions under the null hypothesis.

modelType A character string indicating type of model employed: multiple-group CFA
("mgcfa") or MIMIC ("mimic").

con The constrained lavaan object, in which the parameters specified in param are
constrained to equality across all groups when modelType = "mgcfa”, or which
regression paths are fixed to zero when modelType = "mimic”. In the case of
testing configural invariance when modelType = "mgcfa”, con is the configural
model (implicitly, the unconstrained model is the saturated model, so use the
defaults uncon = NULL and param = NULL). When modelType = "mimic”, con is
the MIMIC model in which the covariate predicts the latent construct(s) but no
indicators (unless they have already been identified as DIF items).

uncon Optional. The unconstrained lavaan object, in which the parameters specified in
param are freely estimated in all groups. When modelType = "mgcfa”, only in
the case of testing configural invariance should uncon = NULL. When modelType
= "mimic", any non-NULL uncon is silently set to NULL.

null Optional. A lavaan object, in which an alternative null model is fit (besides
the default independence model specified by 1lavaan) for the calculation of in-
cremental fit indices. See Widamin & Thompson (2003) for details. If NULL,
lavaan’s default independence model is used.
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param

freeParam

covariates

AFIs
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An optional character vector or list of character vectors indicating which pa-
rameters the user would test for DIF following a rejection of the omnibus null
hypothesis tested using (more)AFIs. Note that param does not guarantee cer-
tain parameters are constrained in con; that is for the user to specify when fit-
ting the model. If users have any "anchor items" that they would never intend
to free across groups (or levels of a covariate), these should be excluded from
param; exceptions to a type of parameter can be specified in freeParam. When
modelType = "mgcfa”, param indicates which parameters of interest are con-
strained across groups in con and are unconstrained in uncon. Parameter names
must match those returned by names(coef(con)), but omitting any group-
specific suffixes (e.g., "f1~1" rather than "f1~1.g2") or user-specified labels

(that is, the parameter names must follow the rules of lavaan’s lavaan: :model. syntax()).

Alternatively (or additionally), to test all constraints of a certain type (or multi-
ple types) of parameter in con, param may take any combination of the following
values: "loadings”, "intercepts”, "thresholds”, "residuals”, "residual
"means”, "lv.variances”, and/or "lv.covariances”. When modelType =
"mimic"”, param must be a vector of individual parameters or a list of character
strings to be passed one-at-a-time to lavaan::lavTestScore(object = con,
add = param[i]), indicating which (sets of) regression paths fixed to zero in con
that the user would consider freeing (i.e., exclude anchor items). If modelType
= "mimic" and param is a list of character strings, the multivariate test statistic
will be saved for each list element instead of 1-df modification indices for each
individual parameter, and names (param) will name the rows of the MI.obs slot
(see permuteMeasEq). Set param = NULL (default) to avoid collecting modifica-
tion indices for any follow-up tests.

An optional character vector, silently ignored when modelType = "mimic”. If
param includes a type of parameter (e.g., "loadings"), freeParam indicates
exceptions (i.e., anchor items) that the user would not intend to free across
groups and should therefore be ignored when calculating p values adjusted for
the number of follow-up tests. Parameter types that are already unconstrained
across groups in the fitted con model (i.e., a partial invariance model) will
automatically be ignored, so they do not need to be specified in freeParam.
Parameter names must match those returned by names(coef (con)), but omit-
ting any group-specific suffixes (e.g., "f1~1" rather than "f1~1.g2") or user-
specified labels (that is, the parameter names must follow the rules of lavaan
lavaan: :model.syntax()).

An optional character vector, only applicable when modelType = "mimic"”. The
observed data are partitioned into columns indicated by covariates, and the
rows are permuted simultaneously for the entire set before being merged with
the remaining data. Thus, the covariance structure is preserved among the co-
variates, which is necessary when (e.g.) multiple dummy codes are used to rep-
resent a discrete covariate or when covariates interact. If covariates = NULL
when modelType = "mimic”, the value of covariates is inferred by searching
param for predictors (i.e., variables appearing after the "~" operator).

A character vector indicating which alternative fit indices (or chi-squared it-
self) are to be used to test the multiparameter omnibus null hypothesis that
the constraints specified in con hold in the population. Any fit measures re-
turned by lavaan: : fitMeasures() may be specified (including constants like

.covariances”,
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"df", which would be nonsensical). If both AFIs and moreAFIs are NULL, only
"chisqg" will be returned.

moreAFIs Optional. A character vector indicating which (if any) alternative fit indices re-
turned by moreFitIndices() are to be used to test the multiparameter omnibus
null hypothesis that the constraints specified in con hold in the population.

maxSparse Only applicable when modelType = "mgcfa” and at least one indicator is ordered.

An integer indicating the maximum number of consecutive times that randomly
permuted group assignment can yield a sample in which at least one category (of
an ordered indicator) is unobserved in at least one group, such that the same set
of parameters cannot be estimated in each group. If such a sample occurs, group
assignment is randomly permuted again, repeatedly until a sample is obtained
with all categories observed in all groups. If maxSparse is exceeded, NA will be
returned for that iteration of the permutation distribution.

maxNonconv An integer indicating the maximum number of consecutive times that a random
permutation can yield a sample for which the model does not converge on a
solution. If such a sample occurs, permutation is attempted repeatedly until
a sample is obtained for which the model does converge. If maxNonconv is
exceeded, NA will be returned for that iteration of the permutation distribution,
and a warning will be printed when using show or summary.

showProgress Logical. Indicating whether to display a progress bar while permuting. Silently
set to FALSE when using parallel options.

warn Sets the handling of warning messages when fitting model(s) to permuted data
sets. See base: :options().

datafun An optional function that can be applied to the data (extracted from con) af-
ter each permutation, but before fitting the model(s) to each permutation. The
datafun function must have an argument named data that accepts a data. frame,
and it must return a data. frame containing the same column names. The col-
umn order may differ, the values of those columns may differ (so be careful!),
and any additional columns will be ignored when fitting the model, but an er-
ror will result if any column names required by the model syntax do not appear
in the transformed data set. Although available for any modelType, datafun
may be useful when using the MIMIC method to test for nonuniform DIF (met-
ric/weak invariance) by using product indicators for a latent factor represent-
ing the interaction between a factor and one of the covariates, in which case
the product indicators would need to be recalculated after each permutation of
the covariates. To access other R objects used within permuteMeasEq, the

J n

arguments to datafun may also contain any subset of the following: "con”,

non

"uncon”, "null”, "param”, "freeParam”, "covariates”, "AFIs", "moreAFIs”,
n n

"maxSparse”, "maxNonconv", and/or "iseed". The values for those arguments
will be the same as the values supplied to permuteMeasEq.

extra An optional function that can be applied to any (or all) of the fitted lavaan ob-
jects (con, uncon, and/or null). This function will also be applied after fitting
the model(s) to each permuted data set. To access the R objects used within
permuteMeasEq, the arguments to extra must be any subset of the following:

n non non non

con”, "uncon”, "null”, "param”, "freeParam”, "covariates”, "AFIs", "moreAFIs”,
n n

"maxSparse”, "maxNonconv", and/or "iseed". The values for those arguments
will be the same as the values supplied to permuteMeasEq. The extra function
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must return a named numeric vector or a named 1ist of scalars (i.e., a list of
numeric vectors of length == 1). Any unnamed elements (e.g., "" or NULL) of
the returned object will result in an error.

parallelType  The type of parallel operation to be used (if any). The defaultis "none”. Forking
is not possible on Windows, so if "multicore” is requested on a Windows
machine, the request will be changed to "snow” with a message.

ncpus Integer: number of processes to be used in parallel operation. If NULL (the de-
fault) and parallelType %in% c("multicore”,"snow"), the defaultis one less
than the maximum number of processors detected by parallel: :detectCores().
This default is also silently set if the user specifies more than the number of pro-
cessors detected.

cl An optional parallel or snow cluster for use when parallelType = "snow". If
NULL, a "PSOCK" cluster on the local machine is created for the duration of the
permuteMeasEq call. If a valid parallel: :makeCluster() object is supplied,
parallelType is silently set to "snow”, and ncpus is silently set to length(cl).

iseed Integer: Only used to set the states of the RNG when using parallel options, in
which case base: :RNGkind() is set to "L'Ecuyer-CMRG" with a message. See
parallel::clusterSetRNGStream() and Section 6 of vignette("parallel”,
"parallel™) for more details. If user supplies an invalid value, iseed is silently
set to the default (12345). To set the state of the RNG when not using parallel
options, call base: :set.seed() before calling permuteMeasEq.

Details

The function permuteMeasEq provides tests of hypotheses involving measurement equivalence, in
one of two frameworks:

1. 1 For multiple-group CFA models, provide a pair of nested lavaan objects, the less constrained
of which (uncon) freely estimates a set of measurement parameters (e.g., factor loadings,
intercepts, or thresholds; specified in param) in all groups, and the more constrained of which
(con) constrains those measurement parameters to equality across groups. Group assignment
is repeatedly permuted and the models are fit to each permutation, in order to produce an
empirical distribution under the null hypothesis of no group differences, both for (a) changes
in user-specified fit measures (see AFILs and moreAFIs) and for (b) the maximum modification
index among the user-specified equality constraints. Configural invariance can also be tested
by providing that fitted lavaan object to con and leaving uncon = NULL, in which case param
must be NULL as well.

2. 2 In MIMIC models, one or a set of continuous and/or discrete covariates can be permuted,
and a constrained model is fit to each permutation in order to provide a distribution of any fit
measures (namely, the maximum modification index among fixed parameters in param) under
the null hypothesis of measurement equivalence across levels of those covariates.

In either framework, modification indices for equality constraints or fixed parameters specified in
param are calculated from the constrained model (con) using the function lavaan: : lavTestScore().

For multiple-group CFA models, the multiparameter omnibus null hypothesis of measurement
equivalence/invariance is that there are no group differences in any measurement parameters (of
a particular type). This can be tested using the anova method on nested lavaan objects, as seen
in the output of measurementInvariance(), or by inspecting the change in alternative fit indices
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(AFIs) such as the CFI. The permutation randomization method employed by permuteMeasEq gen-
erates an empirical distribution of any AFIs under the null hypothesis, so the user is not restricted
to using fixed cutoffs proposed by Cheung & Rensvold (2002), Chen (2007), or Meade, Johnson, &
Braddy (2008).

If the multiparameter omnibus null hypothesis is rejected, partial invariance can still be established
by freeing invalid equality constraints, as long as equality constraints are valid for at least two
indicators per factor. Modification indices can be calculated from the constrained model (con), but
multiple testing leads to inflation of Type I error rates. The permutation randomization method
employed by permuteMeasEq creates a distribution of the maximum modification index if the null
hypothesis is true, which allows the user to control the familywise Type I error rate in a manner
similar to Tukey’s ¢ (studentized range) distribution for the Honestly Significant Difference (HSD)
post hoc test.

For MIMIC models, DIF can be tested by comparing modification indices of regression paths to
the permutation distribution of the maximum modification index, which controls the familywise
Type I error rate. The MIMIC approach could also be applied with multiple-group models, but
the grouping variable would not be permuted; rather, the covariates would be permuted separately
within each group to preserve between-group differences. So whether parameters are constrained
or unconstrained across groups, the MIMIC approach is only for testing null hypotheses about the
effects of covariates on indicators, controlling for common factors.

In either framework, lavaan: :lavaan()’s group.label argument is used to preserve the order of
groups seen in con when permuting the data.

Value

The permuteMeasEq object representing the results of testing measurement equivalence (the mul-
tiparameter omnibus test) and DIF (modification indices), as well as diagnostics and any extra
output.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
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See Also

stats::TukeyHSD(), lavaan: :1lavTestScore(), measurementInvariance(), measurementInvarianceCat()

Examples

HHHHHHEHEEE A
## Multiple-Group CFA ##
SR

## create 3-group data in lavaan example(cfa) data
HS <- lavaan::HolzingerSwineford1939
HS$ageGroup <- ifelse(HS$ageyr < 13, "preteen”,
ifelse(HS$ageyr > 13, "teen”, "thirteen"))

## specify and fit an appropriate null model for incremental fit indices

mod.null <- c(paste@("x", 1:9, " ~ c(T", 1:9, ", T", 1:9, ", T", 1:9, ")*1"),
paste@("x", 1:9, " ~~ c(L", 1:9, ", L", 1:9, ", L", 1:9, ")*x", 1:9))

fit.null <- cfa(mod.null, data = HS, group = "ageGroup")

## fit target model with varying levels of measurement equivalence
mod.config <- '

visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

fit.config <- cfa(mod.config, data = HS, std.lv = TRUE, group = "ageGroup")

fit.metric <- cfa(mod.config, data = HS, std.lv = TRUE, group = "ageGroup”,
group.equal = "loadings")

fit.scalar <- cfa(mod.config, data = HS, std.lv = TRUE, group = "ageGroup”,

nons

group.equal = c("loadings”,"intercepts”))

HHHHHHRHAAEAEAEAHA Permutation Method

## fit indices of interest for multiparameter omnibus test

myAFIs <- c("chisq”,"cfi","rmsea"”,"mfi"”, "aic")
moreAFIs <- c("gammaHat","adjGammaHat")

## Use only 20 permutations for a demo. In practice,
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## use > 1000 to reduce sampling variability of estimated p values

## test configural invariance

set.seed(12345)

out.config <- permuteMeasEq(nPermute = 20, con = fit.config)
out.config

## test metric equivalence

set.seed(12345) # same permutations

out.metric <- permuteMeasEq(nPermute = 20, uncon = fit.config, con = fit.metric,
param = "loadings"”, AFIs = myAFIs,
moreAFIs = moreAFIs, null = fit.null)

summary (out.metric, nd = 4)

## test scalar equivalence

set.seed(12345) # same permutations

out.scalar <- permuteMeasEq(nPermute = 20, uncon = fit.metric, con = fit.scalar,
param = "intercepts”, AFIs = myAFIs,
moreAFIs = moreAFIs, null = fit.null)

summary (out.scalar)

## Not much to see without significant DIF.
## Try using an absurdly high alpha level for illustration.
outsum <- summary(out.scalar, alpha = .50)

## notice that the returned object is the table of DIF tests
outsum

## visualize permutation distribution

hist(out.config, AFI = "chisq")

hist(out.metric, AFI = "chisq”, nd = 2, alpha = .01,
legendArgs = list(x = "topright"))

hist(out.scalar, AFI = "cfi", printLegend = FALSE)

HHEHHEHRHHAAEHAEEAE Extra Output

## function to calculate expected change of Group-2 and -3 latent means if
## each intercept constraint were released
extra <- function(con) {
output <- list()
output["x1.vis2"] <- lavTestScore(con, release = 19:20, univariate = FALSE,
epc = TRUE, warn = FALSE)$epc$epc[70]
output["”x1.vis3"] <- lavTestScore(con, release = 19:20, univariate = FALSE,
epc = TRUE, warn = FALSE)$epc$epc[106]
output["”x2.vis2"] <- lavTestScore(con, release = 21:22, univariate = FALSE,
epc = TRUE, warn = FALSE)S$epc$epc[70]
output["x2.vis3"] <- lavTestScore(con, release = 21:22, univariate = FALSE,
epc = TRUE, warn = FALSE)$epc$epc[106]
output["”x3.vis2"] <- lavTestScore(con, release = 23:24, univariate = FALSE,
epc = TRUE, warn = FALSE)S$epc$epc[70]
output["”x3.vis3"] <- lavTestScore(con, release = 23:24, univariate = FALSE,
epc = TRUE, warn = FALSE)S$epc$epc[106]
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output["x4.txt2"] <- lavTestScore(con, release = 25:26, univariate = FALSE,
epc = TRUE, warn = FALSE)$epc$epc[71]
output["x4.txt3"] <- lavTestScore(con, release = 25:26, univariate = FALSE,
epc = TRUE, warn = FALSE)S$epc$epc[107]
output["x5.txt2"] <- lavTestScore(con, release = 27:28, univariate = FALSE,
epc = TRUE, warn = FALSE)$epc$epc[71]
output["x5.txt3"] <- lavTestScore(con, release = 27:28, univariate = FALSE,
epc = TRUE, warn = FALSE)S$epc$epc[107]
output["x6.txt2"] <- lavTestScore(con, release = 29:30, univariate = FALSE,
epc = TRUE, warn = FALSE)S$epc$epc[71]
output["x6.txt3"] <- lavTestScore(con, release = 29:30, univariate = FALSE,
epc = TRUE, warn = FALSE)$epc$epc[107]
output["x7.spd2"] <- lavTestScore(con, release = 31:32, univariate = FALSE,
epc = TRUE, warn = FALSE)S$epc$epc[72]
output["x7.spd3"] <- lavTestScore(con, release = 31:32, univariate = FALSE,
epc = TRUE, warn = FALSE)$epc$epc[108]
output["x8.spd2"] <- lavTestScore(con, release = 33:34, univariate = FALSE,
epc = TRUE, warn = FALSE)$epc$epc[72]
output["x8.spd3"] <- lavTestScore(con, release = 33:34, univariate = FALSE,
epc = TRUE, warn = FALSE)S$epc$epc[108]
output["x9.spd2"] <- lavTestScore(con, release = 35:36, univariate = FALSE,
epc = TRUE, warn = FALSE)S$epc$epc[72]
output["x9.spd3"] <- lavTestScore(con, release = 35:36, univariate = FALSE,
epc = TRUE, warn = FALSE)$epc$epc[108]
output
3

## observed EPC
extra(fit.scalar)

## permutation results, including extra output
set.seed(12345) # same permutations
out.scalar <- permuteMeasEq(nPermute = 20, uncon = fit.metric, con = fit.scalar,
param = "intercepts”, AFIs = myAFIs,
moreAFIs = moreAFIs, null = fit.null, extra = extra)
## summarize extra output
summary (out.scalar, extra = TRUE)

I
## MIMIC ##
T

## Specify Restricted Factor Analysis (RFA) model, equivalent to MIMIC, but
## the factor covaries with the covariate instead of being regressed on it.
## The covariate defines a single-indicator construct, and the

## double-mean-centered products of the indicators define a latent

## interaction between the factor and the covariate.

mod.mimic <- '

visual =~ x1 + x2 + x3

age =~ ageyr

age.by.vis =~ x1.ageyr + x2.ageyr + x3.ageyr
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x1 ~~ x1.ageyr
X2 ~~ X2.ageyr
x3 ~~ x3.ageyr

HS.orth <- indProd(var1l = paste@(”"x", 1:3), var2 = "ageyr"”, match = FALSE,
data = HS[ , c("ageyr"”, paste@("x", 1:3))1 )

fit.mimic <- cfa(mod.mimic, data = HS.orth, meanstructure = TRUE)

summary (fit.mimic, stand = TRUE)

## Whereas MIMIC models specify direct effects of the covariate on an indicator,
## DIF can be tested in RFA models by specifying free loadings of an indicator
## on the covariate's construct (uniform DIF, scalar invariance) and the

## interaction construct (nonuniform DIF, metric invariance).

param <- as.list(paste@("age + age.by.vis =~ x", 1:3))

names(param) <- paste@(”"x", 1:3)

# param <- as.list(paste@("x", 1:3, " ~ age + age.by.vis")) # equivalent

## test both parameters simultaneously for each indicator

do.call(rbind, lapply(param, function(x) lavTestScore(fit.mimic, add = x)$test))
## or test each parameter individually

lavTestScore(fit.mimic, add = as.character(param))

HEHHHHREHREHREHRAHHY Permutation Method

## function to recalculate interaction terms after permuting the covariate
datafun <- function(data) {

d <- datal, c(paste@(”"x", 1:3), "ageyr")]

indProd(varl = paste@(”x", 1:3), var2 = "ageyr"”, match = FALSE, data = d)
}

set.seed(12345)

perm.mimic <- permuteMeasEq(nPermute = 20, modelType = "mimic”,
con = fit.mimic, param = param,
covariates = "ageyr", datafun = datafun)

summary (perm.mimic)

permuteMeasEg-class Class for the Results of Permutation Randomization Tests of Measure-
ment Equivalence and DIF

Description

This class contains the results of tests of Measurement Equivalence and Differential Item Function-
ing (DIF).
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Usage

## S4 method for signature 'permuteMeasEq'
show(object)

## S4 method for signature 'permuteMeasEq'
summary (object, alpha = 0.05, nd = 3,
extra = FALSE)

## S4 method for signature 'permuteMeasEq'
hist(x, ..., AFI, alpha = 0.05, nd = 3,
printLegend = TRUE, legendArgs = list(x = "topleft”))

Arguments

object, x object of class permuteMeasEq

alpha alpha level used to draw confidence limits in hist and flag significant statistics
in summary output

nd number of digits to display

extra logical indicating whether the summary output should return permutation-based
p values for each statistic returned by the extra function. If FALSE (default),
summary will return permutation-based p values for each modification index.
Additional arguments to pass to graphics: :hist()

AFI character indicating the fit measure whose permutation distribution should be

plotted

printLegend logical. If TRUE (default), a legend will be printed with the histogram

legendArgs list of arguments passed to the graphics::legend() function. The default

Value

argument is a list placing the legend at the top-left of the figure.

* The show method prints a summary of the multiparameter omnibus test results, using the user-

specified AFIs. The parametric (A)y? test is also displayed.

The summary method prints the same information from the show method, but when extra
= FALSE (the default) it also provides a table summarizing any requested follow-up tests of
DIF using modification indices in slot MI.obs. The user can also specify an alpha level for
flagging modification indices as significant, as well as nd (the number of digits displayed).
For each modification index, the p value is displayed using a central x? distribution with the
df shown in that column. Additionally, a p value is displayed using the permutation dis-
tribution of the maximum index, which controls the familywise Type I error rate in a man-
ner similar to Tukey’s studentized range test. If any indices are flagged as significant using
the tukey.p.value, then a message is displayed for each flagged index. The invisibly re-
turned data.frame is the displayed table of modification indices, unless permuteMeasEq()
was called with param = NULL, in which case the invisibly returned object is object. If extra
= TRUE, the permutation-based p values for each statistic returned by the extra function are
displayed and returned in a data.frame instead of the modification indices requested in the
param argument.
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* The hist method returns a list of length == 2, containing the arguments for the call to hist
and the arguments to the call for legend, respectively. This list may facilitate creating a
customized histogram of AFI.dist, MI.dist, or extra.dist

Slots

PT A data.frame returned by a call to lavaan: :parTable() on the constrained model
modelType A character indicating the specified modelType in the call to permuteMeasEq

ANOVA A numeric vector indicating the results of the observed (A)y? test, based on the central 2
distribution

AFI.obs A vector of observed (changes in) user-selected fit measures

AFI.dist The permutation distribution(s) of user-selected fit measures. A data.frame withn.Permutations
rows and one column for each AFI.obs.

AFI.pval A vector of p values (one for each element in slot AFI . obs) calculated using slot AFI.dist,
indicating the probability of observing a change at least as extreme as AFI.obs if the null hy-
pothesis were true

MI.obs A data.frame of observed Lagrange Multipliers (modification indices) associated with
the equality constraints or fixed parameters specified in the param argument. This is a subset
of the output returned by a call to lavaan: : lavTestScore() on the constrained model.

MI.dist The permutation distribution of the maximum modification index (among those seen in
slot MI.obs$X2) at each permutation of group assignment or of covariates

extra.obs If permuteMeasEq was called with an extra function, the output when applied to the
original data is concatenated into this vector

extra.dist A data.frame, each column of which contains the permutation distribution of the
corresponding statistic in slot extra.obs

n.Permutations An integer indicating the number of permutations requested by the user

n.Converged An integer indicating the number of permuation iterations which yielded a con-
verged solution

n.nonConverged An integer vector of length n.Permutations indicating how many times group
assignment was randomly permuted (at each iteration) before converging on a solution

n.Sparse Only relevant with ordered indicators when modelType == "mgcfa”. An integer vec-
tor of length n.Permutations indicating how many times group assignment was randomly
permuted (at each iteration) before obtaining a sample with all categories observed in all
groups.

oldSeed An integer vector storing the value of .Random. seed before running permuteMeasEq.
Only relevant when using a parallel/multicore option and the original RNGkind() != "L'Ecuyer-CMRG".
This enables users to restore their previous . Random. seed state, if desired, by running: .Random. seed[-1]
<- permutedResults@oldSeed[-1]

Objects from the Class

Objects can be created via the permuteMeasEq() function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
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See Also

permuteMeaskEq()

Examples

# See the example from the permuteMeasEq function

plausibleValues Plausible-Values Imputation of Factor Scores Estimated from a lavaan
Model

Description

Draw plausible values of factor scores estimated from a fitted lavaan: : lavaan() model, then treat
them as multiple imputations of missing data using lavaan.mi: :lavaan.mi().

Usage
plausibleValues(object, nDraws = 20L, seed = 12345,
omit.imps = c("no.conv”, "no.se"), ...)
Arguments
object A fitted model of class lavaan::lavaan, blavaan::blavaan, or lavaan.mi::lavaan.mi
nDraws integer specifying the number of draws, analogous to the number of imputed

data sets. If object is of class lavaan.mi::lavaan.mi, this will be the number of
draws taken per imputation. If object is of class blavaan::blavaan, nDraws can-

not exceed blavInspect(object, "niter"”) x blavInspect(bfitc, "n.chains”)
(number of MCMC samples from the posterior). The drawn samples will be
evenly spaced (after permutation for target="stan"), using ceiling() to re-
solve decimals.

seed integer passed to set.seed().

omit.imps character vector specifying criteria for omitting imputations when object
is of class lavaan.mi::lavaan.mi. Can include any of c("no.conv”, "no.se",
"no.npd").

Optional arguments to pass to lavaan: :lavPredict(). assemble will be ig-
nored because multiple groups are always assembled into a single data.frame
per draw. type will be ignored because it is set internally to type="1v".
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Details

Because latent variables are unobserved, they can be considered as missing data, which can be im-
puted using Monte Carlo methods. This may be of interest to researchers with sample sizes too small
to fit their complex structural models. Fitting a factor model as a first step, lavaan: : lavPredict ()
provides factor-score estimates, which can be treated as observed values in a path analysis (Step 2).
However, the resulting standard errors and test statistics could not be trusted because the Step-2
analysis would not take into account the uncertainty about the estimated factor scores. Using the
asymptotic sampling covariance matrix of the factor scores provided by lavaan: :lavPredict(),
plausibleValues draws a set of nDraws imputations from the sampling distribution of each factor
score, returning a list of data sets that can be treated like multiple imputations of incomplete data.
If the data were already imputed to handle missing data, plausibleValues also accepts an object
of class lavaan.mi::lavaan.mi, and will draw nDraws plausible values from each imputation. Step
2 would then take into account uncertainty about both missing values and factor scores. Bayesian
methods can also be used to generate factor scores, as available with the blavaan package, in which
case plausible values are simply saved parameters from the posterior distribution. See Asparouhov
and Muthen (2010) for further technical details and references.

Each returned data. frame includes a case. idx column that indicates the corresponding rows in the
data set to which the model was originally fitted (unless the user requests only Level-2 variables).
This can be used to merge the plausible values with the original observed data, but users should
note that including any new variables in a Step-2 model might not accurately account for their
relationship(s) with factor scores because they were not accounted for in the Step-1 model from
which factor scores were estimated.

If object is a multilevel 1avaan model, users can request plausible values for latent variables at
particular levels of analysis by setting the lavaan: : lavPredict () argument level=1 or level=2.
If the level argument is not passed via ..., then both levels are returned in a single merged data
set per draw. For multilevel models, each returned data. frame also includes a column indicating
to which cluster each row belongs (unless the user requests only Level-2 variables).

Value

A list of length nDraws, each of which is a data. frame containing plausible values, which can be
treated as a 1ist of imputed data sets to be passed to runMI() (see Examples). If object is of class
lavaan.mi::lavaan.mi, the 1ist will be of length nDraws*m, where m is the number of imputations.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Asparouhov, T. & Muthen, B. O. (2010). Plausible values for latent variables using Mplus. Tech-
nical Report. Retrieved from www.statmodel.com/download/Plausible.pdf

See Also

lavaan.mi: :lavaan.mi(), lavaan.mi::lavaan.mi
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Examples

## example from ?cfa and ?lavPredict help pages

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit1 <- cfa(HS.model, data = HolzingerSwineford1939)

fs1 <- plausibleValues(fit1l, nDraws = 3,
## lavPredict() can add only the modeled data
append.data = TRUE)

lapply(fs1, head)

## To merge factor scores to original data.frame (not just modeled data)
fs1 <- plausibleValues(fit1, nDraws = 3)

idx <- lavInspect(fit1, "case.idx") # row index for each case
if (is.list(idx)) idx <- do.call(c, idx) # for multigroup models
data(HolzingerSwineford1939) # copy data to workspace

HolzingerSwineford1939$case.idx <- idx # add row index as variable
## loop over draws to merge original data with factor scores
for (i in seqg_along(fs1)) {

fs1[[i]] <- merge(fs1[[i]], HolzingerSwineford1939, by = "case.idx")
3
lapply(fs1, head)

## multiple-group analysis, in 2 steps
stepl <- cfa(HS.model, data = HolzingerSwineford1939, group = "school”,

group.equal = c("loadings”,"intercepts”))
PV.list <- plausibleValues(stepl)

## subsequent path analysis
path.model <- ' visual ~ c(t1, t2)*textual + c(s1, s2)*speed '
if(requireNamespace("lavaan.mi"”)){
library(lavaan.mi)
step2 <- sem.mi(path.model, data = PV.list, group = "school”)
## test equivalence of both slopes across groups
lavTestWald.mi(step2, constraints = 't1 == t2 ; s1 == s2')
3

## multilevel example from ?Demo.twolevel help page
model <- '
level: 1
fw =~ yl + y2 + y3
fw ~ x1 + x2 + x3

level: 2
fb =~ y1 + y2 +y3
fb ~ wl + w2
msem <- sem(model, data = Demo.twolevel, cluster = "cluster"”)

mlPVs <- plausibleValues(msem, nDraws = 3) # both levels by default
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lapply(mlPVs, head, n = 10)

## only Level 1

mlPV1 <- plausibleValues(msem, nDraws = 3, level = 1)
lapply(mlPV1, head)

## only Level 2

mlPV2 <- plausibleValues(msem, nDraws = 3, level
lapply(mlPV2, head)

2)

## example with 20 multiple imputations of missing data:
nPVs <- 5
nImps <- 20

if(requireNamespace("lavaan.mi”)){
data(HS20imps, package = "lavaan.mi")

## specify CFA model from lavaan's ?cfa help page

HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

out2 <- cfa.mi(HS.model, data = HS2@imps)
PVs <- plausibleValues(out2, nDraws = nPVs)

idx <- out2@Data@case.idx # can't use lavInspect() on lavaan.mi
## empty list to hold expanded imputations
impPVs <- list()
for (m in 1:nImps) {

HS20imps[[m]]["case.idx"] <- idx

for (i in 1:nPVs) {

impPVs[[ nPVsx(m - 1) + i ]] <- merge(HS2@imps[[m]],
PVsS[[ nPVsx(m - 1) + i 17,

by = "case.idx")
}
}
lapply(impPVs, head)
3
plotProbe Plot a latent interaction
Description

This function will plot the line graphs representing the simple effect of the independent variable
given the values of the moderator. For multigroup models, it will only generate a plot for 1 group,
as specified in the function used to obtain the first argument.
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Usage
plotProbe(object, xlim, xlab = "Indepedent Variable”,
ylab = "Dependent Variable”, legend = TRUE, legendArgs = list(), ...)
Arguments
object A list, typically the result of probing a latent 2-way or 3-way interaction ob-
tained from the probe2WayMC (), probe2WayRC(), probe3WayMC(), or probe3WayRC()
functions.
x1lim The vector of two numbers: the minimum and maximum values of the indepen-
dent variable
xlab The label of the x-axis
ylab The label of the y-axis
legend logical. If TRUE (default), a legend is printed.
legendArgs list of arguments passed to legend() function if legend=TRUE.

Any additional argument for the plot () function

Value

None. This function will plot the simple main effect only.

Note

If the object does not contain simple intercepts (i.e., if the object$SimpleIntcept element is
NULL), then all simple intercepts are arbitrarily set to zero in order to plot the simple slopes. This
may not be consistent with the fitted model, but was (up until version 0.5-7) the default behavior
when the y-intercept was fixed to 0. In this case, although the relative steepness of simple slopes
can still meaningfully be compared, the relative vertical positions of lines at any point along the
x-axis should not be interpreted.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Schoemann, A. M., & Jorgensen, T. D. (2021). Testing and interpreting latent variable interactions
using the semTools package. Psych, 3(3), 322-335. doi:10.3390/psych3030024

See Also

e indProd() For creating the indicator products with no centering, mean centering, double-
mean centering, or residual centering.

* probe2WayMC() For probing the two-way latent interaction when the results are obtained from
mean-centering, or double-mean centering


https://doi.org/10.3390/psych3030024
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* probe3WayMC() For probing the three-way latent interaction when the results are obtained
from mean-centering, or double-mean centering

* probe2WayRC() For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

* probe3WayRC() For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

Examples

library(lavaan)
dat2wayMC <- indProd(dat2way, 1:3, 4:6)

modell <- "

f1 =~ x1 + x2 + x3

f2 =~ x4 + x5 + x6

f12 =~ x1.x4 + x2.x5 + x3.x6
f3 =~ x7 + x8 + x9

f3 ~f1 + 2+ f12

f12 ~~ 0%f1
f12 ~~ 0%f2
x1 ~ 0x%1

x4 ~ 0%
x1.x4 ~ 0%1
X7 ~ 0x1

f1 ~ NA%1
2 ~ NAx1
f12 ~ NA%1
3 ~ NA%1

n

fitMC2way <- sem(modell, data = dat2wayMC, meanstructure = TRUE)
result2wayMC <- probe2WayMC(fitMC2way, nameX = c("f1", "f2", "f12"),

nameY = "f3", modVar = "f2", valProbe = c(-1, 0, 1))
plotProbe(result2wayMC, xlim = c(-2, 2))

dat3wayMC <- indProd(dat3way, 1:3, 4:6, 7:9)

model3 <- "

f1 =~ x1 + x2 + x3

f2 =~ x4 + x5 + x6

f3 =~ x7 + x8 + x9

f12 =~ x1.x4 + x2.x5 + x3.%x6

f13 =~ x1.x7 + x2.x8 + x3.x9

23 =~ x4.x7 + x5.x8 + x6.x9

123 =~ x1.x4.x7 + x2.x5.x8 + x3.x6.x9
f4 =~ x10 + x11 + x12

f4a ~f1 + f2 + f3 + 12 + f13 + f23 + 123
f1 ~~ 0xf12

f1 ~~ 0%f13

f1 ~~ 0%f123



plotRMSEAdist 129

f2 ~~ 0xf12
f2 ~~ 0xf23
f2 ~~ 0xf123
3 ~~ 0xf13
3 ~~ 0xf23
f3 ~~ 0xf123
f12 ~~ 0%f123
f13 ~~ 0%f123
23 ~~ 0%f123
x1 ~ 0x1

x4 ~ 0x1

X7 ~ 0x*1

x10 ~ 0x1
x1.x4 ~ 0%1
x1.x7 ~ 0%1
x4.x7 ~ 0x1
x1.x4.x7 ~ 01
f1 ~ NA%1

2 ~ NAx1

3 ~ NA%1

12 ~ NAx1
13 ~ NA%1
23 ~ NAX1
123 ~ NA*1
f4 ~ NAx1

n

fitMC3way <- sem(model3, data = dat3wayMC, std.lv = FALSE,
meanstructure = TRUE)
result3wayMC <- probe3WayMC(fitMC3way, nameX = c("f1", "f2",6 "f3", "f12",
llf“l3rl, llf23ll’ Ilf_‘123“),
nameY = "f4", modvar = c("f1", "f2"),
valProbel = c(-1, @, 1), valProbe2 = c(-1, 0, 1))
plotProbe(result3wayMC, xlim = c(-2, 2))

plotRMSEAdist Plot the sampling distributions of RMSEA

Description

Plots the sampling distributions of RMSEA based on the noncentral chi-square distributions

Usage

plotRMSEAdist(rmsea, n, df, ptile = NULL, caption = NULL,
rmseaScale = TRUE, group = 1)
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Arguments
rmsea The vector of RMSEA values to be plotted
n Sample size of a dataset
df Model degrees of freedom
ptile The percentile rank of the distribution of the first RMSEA that users wish to plot
a vertical line in the resulting graph
caption The name vector of each element of rmsea
rmseaScale If TRUE, the RMSEA scale is used in the x-axis. If FALSE, the chi-square scale
is used in the x-axis.
group The number of group that is used to calculate RMSEA.
Details

This function creates overlappling plots of the sampling distribution of RMSEA based on noncentral
x? distribution (MacCallum, Browne, & Suguwara, 1996). First, the noncentrality parameter () is
calculated from RMSEA (Steiger, 1998; Dudgeon, 2004) by

A= (N —1)de?/K,

where N is sample size, d is the model degree of freedom, K is the number of group, and ¢ is
the population RMSEA. Next, the noncentral x? distribution with a specified df and noncentrality
parameter is plotted. Thus, the x-axis represents the sample 2 value. The sample x2 value can be
transformed to the sample RMSEA scale (€) by

where 2 is the x? value obtained from the noncentral x? distribution.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)

References

Dudgeon, P. (2004). A note on extending Steiger’s (1998) multiple sample RMSEA adjustment
to other noncentrality parameter-based statistic. Structural Equation Modeling, 11(3), 305-319.
doi:10.1207/s15328007sem1103_1

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determi-
nation of sample size for covariance structure modeling. Psychological Methods, 1(2), 130-149.
doi:10.1037/1082989X.1.2.130

Steiger, J. H. (1998). A note on multiple sample extensions of the RMSEA fit index. Structural
Equation Modeling, 5(4), 411-419. doi:10.1080/10705519809540115
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https://doi.org/10.1037/1082-989X.1.2.130
https://doi.org/10.1080/10705519809540115

plotRMSEApower 131

See Also

* plotRMSEApower () to plot the statistical power based on population RMSEA given the sam-
ple size

* findRMSEApower () to find the statistical power based on population RMSEA given a sample
size

* findRMSEAsamplesize() to find the minium sample size for a given statistical power based

on population RMSEA
Examples
plotRMSEAdist(c(.05, .08), n = 200, df = 20, ptile = .95, rmseaScale = TRUE)
plotRMSEAdist(c(.05, .01), n = 200, df = 20, ptile = .05, rmseaScale = FALSE)
plotRMSEApower Plot power curves for RMSEA

Description

Plots power of RMSEA over a range of sample sizes

Usage
plotRMSEApower (rmsea@, rmseaA, df, nlow, nhigh, steps = 1, alpha = 0.05,
group = 1, ...)
Arguments
rmsea@ Null RMSEA
rmseaA Alternative RMSEA
df Model degrees of freedom
nlow Lower sample size
nhigh Upper sample size
steps Increase in sample size for each iteration. Smaller values of steps will lead to

more precise plots. However, smaller step sizes means a longer run time.
alpha Alpha level used in power calculations
group The number of group that is used to calculate RMSEA.

The additional arguments for the plot function.
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Details

This function creates plot of power for RMSEA against a range of sample sizes. The plot places
sample size on the horizontal axis and power on the vertical axis. The user should indicate the
lower and upper values for sample size and the sample size between each estimate ("step size") We
strongly urge the user to read the sources below (see References) before proceeding. A web ver-
sion of this function is available at: http://quantpsy.org/rmsea/rmseaplot.htm. This func-
tion is also implemented in the web application "powerdSEM": https://sjak.shinyapps.io/
power4SEM/

Value

Plot of power for RMSEA against a range of sample sizes

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>)
Kristopher J. Preacher (Vanderbilt University; <kris.preacher@vanderbilt.edu>)

Donna L. Coffman (Pennsylvania State University; <d1c30@psu.edu>)

References

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covari-
ance structure models: Power analysis and null hypotheses. Psychological Methods, 11(1), 19-35.
doi:10.1037/1082989X.11.1.19

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determi-
nation of sample size for covariance structure modeling. Psychological Methods, 1(2), 130-149.
doi:10.1037/1082989X.1.2.130

MacCallum, R. C., Lee, T., & Browne, M. W. (2010). The issue of isopower in power analysis
for tests of structural equation models. Structural Equation Modeling, 17(1), 23-41. doi:10.1080/
10705510903438906

Preacher, K. J., Cai, L., & MacCallum, R. C. (2007). Alternatives to traditional model comparison
strategies for covariance structure models. In T. D. Little, J. A. Bovaird, & N. A. Card (Eds.),
Modeling contextual effects in longitudinal studies (pp. 33—62). Mahwah, NJ: Lawrence Erlbaum
Associates.

Steiger, J. H. (1998). A note on multiple sample extensions of the RMSEA fit index. Structural
Equation Modeling, 5(4), 411-419. doi:10.1080/10705519809540115

Steiger, J. H., & Lind, J. C. (1980, June). Statistically based tests for the number of factors. Paper
presented at the annual meeting of the Psychometric Society, Iowa City, IA.

Jak, S., Jorgensen, T. D., Verdam, M. G., Oort, F. J., & Elffers, L. (2021). Analytical power cal-
culations for structural equation modeling: A tutorial and Shiny app. Behavior Research Methods,
53, 1385-1406. doi:10.3758/s13428020014790

See Also

¢ plotRMSEAdist () to visualize the RMSEA distributions
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* findRMSEApower () to find the statistical power based on population RMSEA given a sample
size

* findRMSEAsamplesize() to find the minium sample size for a given statistical power based
on population RMSEA

Examples

plotRMSEApower (rmsea@ = .025, rmseaA = .075, df = 23,
nlow = 100, nhigh = 500, steps = 10)

plotRMSEApowernested  Plot power of nested model RMSEA

Description

Plot power of nested model RMSEA over a range of possible sample sizes.

Usage

plotRMSEApowernested(rmsea®A = NULL, rmsea®B = NULL, rmsealA,
rmsealB = NULL, dfA, dfB, nlow, nhigh, steps = 1, alpha = 0.05,

group = 1, ...)
Arguments
rmseadA The H, baseline RMSEA
rmseaoB The H alternative RMSEA (trivial misfit)
rmsealA The H; baseline RMSEA
rmsealB The H; alternative RMSEA (target misfit to be rejected)
dfA degree of freedom of the more-restricted model
dfB degree of freedom of the less-restricted model
nlow Lower bound of sample size
nhigh Upper bound of sample size
steps Step size
alpha The alpha level
group The number of group in calculating RMSEA

The additional arguments for the plot function.

Author(s)

Bell Clinton
Pavel Panko (Texas Tech University; <pavel.panko@ttu.edu>)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)
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References

MacCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covari-
ance structure models: Power analysis and null hypotheses. Psychological Methods, 11(1), 19-35.
doi:10.1037/1082989X.11.1.19

See Also

* findRMSEApowernested() to find the power for a given sample size in nested model compar-
ison based on population RMSEA

* findRMSEAsamplesizenested() to find the minium sample size for a given statistical power
in nested model comparison based on population RMSEA

Examples

plotRMSEApowernested(rmseadA = @, rmseadB = @, rmsealA = 0.06,
rmsealB = .05, dfA = 22, dfB = 20, nlow = 50,
nhigh = 500, steps = 1, alpha = .05, group = 1)

poolMAlloc Combine sampling variability with parcel-allocation variability by
pooling results across M parcel-allocations

Description

This function employs an iterative algorithm to pick the number of random item-to-parcel alloca-
tions needed to meet user-defined stability criteria for a fitted structural equation model (SEM) (see
Details below for more information). Pooled point and standard-error estimates from this SEM can
be outputted at this final selected number of allocations (however, it is more efficient to save the
allocations and treat them as multiple imputations using lavaan.mi: :lavaan.mi(); see See Also
for links with examples). Additionally, new indices (see Sterba & Rights, 2016) are outputted for
assessing the relative contributions of parcel-allocation variability vs. sampling variability in each
estimate. At each iteration, this function generates a given number of random item-to-parcel alloca-
tions, fits a SEM to each allocation, pools estimates across allocations from that iteration, and then
assesses whether stopping criteria are met. If stopping criteria are not met, the algorithm increments
the number of allocations used (generating all new allocations).

Usage

poolMAlloc(nPerPar, facPlc, nAllocStart, nAllocAdd = 0,
parceloutput = NULL, syntax, dataset, stopProp, stopValue,
selectParam = NULL, indices = "default”, double = FALSE,
checkConv = FALSE, names = "default”, leaveout = 0,
useTotalAlloc = FALSE, ...)


https://doi.org/10.1037/1082-989X.11.1.19
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Arguments

nPerPar

facPlc

nAllocStart

nAllocAdd

parceloutput

syntax
dataset

stopProp

stopValue

selectParam

135

A list in which each element is a vector, corresponding to each factor, indicat-
ing sizes of parcels. If variables are left out of parceling, they should not be
accounted for here (i.e., there should not be parcels of size "1").

A list of vectors, each corresponding to a factor, specifying the item indicators
of that factor (whether included in parceling or not). Either variable names or
column numbers. Variables not listed will not be modeled or included in output
datasets.

The number of random allocations of items to parcels to generate in the first
iteration of the algorithm.

The number of allocations to add with each iteration of the algorithm. Note that
if only one iteration is desired, nAllocAdd can be set to O and results will be
output for nAllocStart allocations only.

Optional character. Path (folder/directory) where M (the final selected number
of allocations) parceled data sets will be outputted from the iteration where the
algorithm met stopping criteria. Note for Windows users: file path must be spec-
ified using forward slashes (/), not backslashes (\\). See base: : path.expand()
for details. If NULL (default), nothing is saved to disk.

lavaan syntax that defines the model.
Item-level dataset

Value used in defining stopping criteria of the algorithm (d,, in Sterba & Rights,
2016). This is the minimum proportion of change (in any pooled parameter or
pooled standard error estimate listed in selectParam) that is allowable from
one iteration of the algorithm to the next. That is, change in pooled estimates
and pooled standard errors from one iteration to the next must all be less than
(stopProp) x (value from former iteration). Note that stopValue can override
this criterion (see below). Also note that values less than .01 are unlikely to lead
to more substantively meaningful precision. Also note that if only stopValue is
a desired criterion, stopProp can be set to 0.

Value used in defining stopping criteria of the algorithm (J;, in Sterba & Rights,
2016). stopValue is a minimum allowable amount of absolute change (in any
pooled parameter or pooled standard error estimate listed in selectParam) from
one iteration of the algorithm to the next. For a given pooled estimate or pooled
standard error, stopValue is only invoked as a stopping criteria when the min-
imum change required by stopProp is less than stopValue. Note that values
less than .01 are unlikely to lead to more substantively meaningful precision.
Also note that if only stopProp is a desired criterion, stopValue can be set to
0.

(Optional) A list of the pooled parameters to be used in defining stopping cri-
teria (i.e., stopProp and stopValue). These parameters should appear in the
order they are listed in the lavaan syntax. By default, all pooled parameters are
used. Note that selectParam should only contain freely-estimated parameters.
In one example from Sterba & Rights (2016) selectParam included all free pa-
rameters except item intercepts and in another example selectParam included
only structural parameters.
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indices Optional character vector indicating the names of available lavaan: : fitMeasures()

to be included in the output. The first and second elements should be a chi-

squared test statistic and its associated degrees of freedom, both of which will

be added if missing. If "default”, the indices will be c("chisq"”, "df",
"cfi”, "tli", "rmsea”,"srmr"). If a robust test statistic is requested (see
lavaan::lavOptions()), c("chisq”, "df") will be replaced by c("chisq.scaled”, "df.scaled").
For the output to include both the naive and robust test statistics, indices should
include both, but put the scaled test statistics first, asin indices = c("chisq.scaled”,

"df.scaled”, "chisq”, "df")

double (Optional) If set to TRUE, requires stopping criteria (stopProp and stopValue)
to be met for all parameters (in selectParam) for two consecutive iterations of
the algorithm. By default, this is set to FALSE, meaning stopping criteria need
only be met at one iteration of the algorithm.

checkConv (Optional) If set to TRUE, function will output pooled estimates and standard
errors from 10 iterations post-convergence.

names (Optional) A character vector containing the names of parceled variables.

leaveout (Optional) A vector of variables to be left out of randomized parceling. Either

variable names or column numbers are allowed.

useTotalAlloc (Optional) If set to TRUE, function will output a separate set of results that uses all
allocations created by the algorithm, rather than M allocations (see "Allocations
needed for stability" below). This distinction is further discussed in Sterba and
Rights (2016).

Additional arguments to be passed to lavaan: : lavaan(). See also lavaan: : lavOptions()

Details

This function implements an algorithm for choosing the number of allocations (M; described in
Sterba & Rights, 2016), pools point and standard-error estimates across these M allocations, and
produces indices for assessing the relative contributions of parcel-allocation variability vs. sampling
variability in each estimate.

To obtain pooled test statistics for model fit or model comparison, the 1ist or parcel allocations can
be passed to lavaan.mi: : lavaan.mi() (find Examples on the help pages for parcelAllocation()
and PAVranking()).

This function randomly generates a given number (nAllocStart) of item-to-parcel allocations, fits
a SEM to each allocation, and then increments the number of allocations used (by nAllocAdd) until
the pooled point and standard-error estimates fulfill stopping criteria (stopProp and stopValue,
defined above). A summary of results from the model that was fit to the M allocations are returned.

Additionally, this function outputs the proportion of allocations with solutions that converged (using
a maximum likelihood estimator) as well as the proportion of allocations with solutions that were
converged and proper. The converged and proper solutions among the final M allocations are used
in computing pooled results.

Additionally, after each iteration of the algorithm, information useful in monitoring the algorithm
is outputted. The number of allocations used at that iteration, the proportion of pooled parameter
estimates meeting stopping criteria at the previous iteration, the proportion of pooled standard errors
meeting stopping criteria at the previous iteration, and the runtime of that iteration are outputted.
When stopping criteria are satisfied, the full set of results are outputted.
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For further details on the benefits of the random allocation of items to parcels, see Sterba (2011)
and Sterba & MacCallum (2010).

Value

Estimates A table containing pooled results across M allocations at the iteration where
stopping criteria were met. Columns correspond to individual parameter name,
pooled estimate, pooled standard error, p value for a z test of the parameter,
normal-theory 95% CI, p value for a 7 test of the parameter (using df described
in Sterba & Rights, 2016), and ¢-based 95% CI for the parameter.

Fit A table containing results related to model fit from the M allocations at the iter-
ation where stopping criteria were met. Columns correspond to fit index names,
the mean of each index across allocations, the SD of each fit index across allo-
cations, the minimum, maximum and range of each fit index across allocations,
and the percent of the M allocations where the chi-square test of absolute fit was
significant.

Proportions A table containing the proportion of the final M allocations that (a) met the
optimizer convergence criteria) and (b) converged to proper solutions. Note that
pooled estimates, pooled standard errors, and other results are computed using
only the converged, proper allocations.

Stability The number of allocations (M) needed for stability, at which point the algo-
rithm’s stopping criteria (defined above) were met.

Uncertainty Indices used to quantify uncertainty in estimates due to sample vs. allocation
variability. A table containing individual parameter names, an estimate of the
proportion of total variance of a pooled parameter estimate that is attributable to
parcel-allocation variability (PPAV), and an estimate of the ratio of the between-
allocation variance of a pooled parameter estimate to the within-allocation vari-
ance (RPAV). See Sterba & Rights (2016) for more detail.

Time The total runtime of the function, in minutes. Note that the total runtime will
be greater when the specified model encounters convergence problems for some
allocations, as is the case with the simParcel () dataset used below.

Author(s)

Jason D. Rights (Vanderbilt University; <jason.d.rights@vanderbilt.edu>)

The author would also like to credit Corbin Quick and Alexander Schoemann for providing the
original parcelAllocation() function (prior to its revision by Terrence D. Jorgensen) on which
this function is based.

References
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and parcel-solutions. Structural Equation Modeling, 18(4), 554-577. doi:10.1080/10705511.2011.607073

Sterba, S. K., & MacCallum, R. C. (2010). Variability in parameter estimates and model fit
across random allocations of items to parcels. Multivariate Behavioral Research, 45(2), 322-358.
doi:10.1080/00273171003680302
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Sterba, S. K., & Rights, J. D. (2016). Accounting for parcel-allocation variability in practice:
Combining sources of uncertainty and choosing the number of allocations. Multivariate Behavioral
Research, 51(2-3), 296-313. doi:10.1080/00273171.2016.1144502

Sterba, S. K., & Rights, J. D. (2017). Effects of parceling on model selection: Parcel-allocation
variability in model ranking. Psychological Methods, 22(1), 47-68. doi:10.1037/met0000067

See Also

lavaan.mi::lavaan.mi() for treating allocations as multiple imputations to pool results across
allocations. See Examples on help pages for parcelAllocation() (when fitting a single model)
and PAVranking() (when comparing 2 models).

Examples

## lavaan syntax: A 2 Correlated
## factor CFA model to be fit to parceled data

parmodel <-

f1 =~ NA*p1f1 + p2f1 + p3f1
f2 =~ NA*p1f2 + p2f2 + p3f2

p1f1 ~ 1
p2f1 ~ 1
p3fl ~ 1
p1f2 ~ 1
p2f2 ~ 1
p3f2 ~ 1
p1f1 ~~ pi1fi
p2f1 ~~ p2f1
p3f1 ~~ p3f1
p1f2 ~~ pi1f2
p2f2 ~~ p2f2
p3f2 ~~ p3f2
f1 ~~ 1%f1
f2 ~~ 1%xf2
f1 ~~ f2

## specify items for each factor
f1name <- colnames(simParcel)[1:9]
f2name <- colnames(simParcel)[10:18]

## run function
poolMAlloc(nPerPar = 1list(c(3,3,3), c(3,3,3)),

facPlc = list(flname, f2name), nAllocStart = 10, nAllocAdd = 10,
syntax = parmodel, dataset = simParcel, stopProp = .03,
stopValue = .03, selectParam = c(1:6, 13:18, 21),

names = list("p1f1”,"p2f1","p3f1","p1f2",  p2f2", "p3f2"),

double = FALSE, useTotalAlloc = FALSE)

## See examples on ?parcelAllocation and ?PAVranking for how to obtain
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## pooled test statistics and other pooled lavaan output.
## Details provided in Sterba & Rights (2016).

probe2WayMC

Probing two-way interaction on the no-centered or mean-centered la-
tent interaction

Description

Probing interaction for simple intercept and simple slope for the no-centered or mean-centered
latent two-way interaction

Usage
probe2WayMC(fit, nameX, nameY, modVar, valProbe, group = 1L,
omit.imps = c("no.conv”, "no.se"))
Arguments
fit A fitted lavaan::lavaan or lavaan.mi::lavaan.mi object with a latent 2-way inter-
action.
nameX character vector of all 3 factor names used as the predictors. The lower-order
factors must be listed first, and the final name must be the latent interaction
factor.
nameY The name of factor that is used as the dependent variable.
modVar The name of factor that is used as a moderator. The effect of the other inde-
pendent factor will be probed at each value of the moderator variable listed in
valProbe.
valProbe The values of the moderator that will be used to probe the effect of the focal
predictor.
group In multigroup models, the label of the group for which the results will be re-
turned. Must correspond to one of lavInspect(fit, "group.label”), or an
integer corresponding to which of those group labels.
omit.imps character vector specifying criteria for omitting imputations from pooled re-

sults. Ignored unless fit is of class lavaan.mi::lavaan.mi. Can include any of
c("no.conv”, "no.se”, "no.npd"), the first 2 of which are the default set-
ting, which excludes any imputations that did not converge or for which stan-
dard errors could not be computed. The last option ("no.npd") would exclude
any imputations which yielded a nonpositive definite covariance matrix for ob-
served or latent variables, which would include any "improper solutions" such
as Heywood cases. NPD solutions are not excluded by default because they are
likely to occur due to sampling error, especially in small samples. However,
gross model misspecification could also cause NPD solutions, users can com-
pare pooled results with and without this setting as a sensitivity analysis to see
whether some imputations warrant further investigation.
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Details

Before using this function, researchers need to make the products of the indicators between the
first-order factors using mean centering (Marsh, Wen, & Hau, 2004). Note that the double-mean
centering may not be appropriate for probing interaction if researchers are interested in simple
intercepts. The mean or double-mean centering can be done by the indProd() function. The
indicator products can be made for all possible combination or matched-pair approach (Marsh et
al., 2004). Next, the hypothesized model with the regression with latent interaction will be used
to fit all original indicators and the product terms. See the example for how to fit the product term
below. Once the lavaan result is obtained, this function will be used to probe the interaction.

Let that the latent interaction model regressing the dependent variable (Y') on the independent vari-
able (X)) and the moderator (Z) be

Y:b0+b1X+bQZ+b3XZ+T,

where by is the estimated intercept or the expected value of Y when both X and Z are 0, b; is the
effect of X when Z is 0, b is the effect of Z when X is 0, b3 is the interaction effect between X
and Z, and r is the residual term.

To probe a two-way interaction, the simple intercept of the independent variable at each value of the
moderator (Aiken & West, 1991; Cohen, Cohen, West, & Aiken, 2003; Preacher, Curran, & Bauer,
2006) can be obtained by

bo|x=0,7z = bo + b2 Z.

The simple slope of the independent varaible at each value of the moderator can be obtained by

bX|Z =b; +b3Z.

The variance of the simple intercept formula is
Var (boyx—0,7) = Var (by) + 2Z x Cov (b, bs) + Z* x Var (by)

, where Var denotes the variance of a parameter estimate and C'ov denotes the covariance of two
parameter estimates.

The variance of the simple slope formula is

Var (bx|z) = Var (b1) +2Z x Cov (b1, b3) + Z* x Var (bs)
Wald z statistic is used for test statistic (even for objects of class lavaan.mi::lavaan.mi).

Value
A list with two elements:

1. SimpleIntercept: The simple intercepts given each value of the moderator.

2. SimpleSlope: The simple slopes given each value of the moderator.

In each element, the first column represents the values of the moderator specified in the valProbe
argument. The second column is the simple intercept or simple slope. The third column is the SE
of the simple intercept or simple slope. The fourth column is the Wald (z) statistic, and the fifth
column is the associated p value testing the null hypothesis that each simple intercept or slope is O.
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Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Tutorial:

Schoemann, A. M., & Jorgensen, T. D. (2021). Testing and interpreting latent variable interactions
using the semTools package. Psych, 3(3), 322-335. doi:10.3390/psych3030024

Background literature:

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions.
Newbury Park, CA: Sage.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation
analysis for the behavioral sciences (3rd ed.). New York, NY: Routledge.

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions:
Evaluation of alternative estimation strategies and indicator construction. Psychological Methods,
9(3), 275-300. doi:10.1037/1082989X.9.3.275

Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in
multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational
and Behavioral Statistics, 31(4), 437-448. doi:10.3102/10769986031004437

See Also

e indProd() For creating the indicator products with no centering, mean centering, double-
mean centering, or residual centering.

* probe3WayMC() For probing the three-way latent interaction when the results are obtained
from mean-centering, or double-mean centering

* probe2WayRC() For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

* probe3WayRC() For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

* plotProbe() Plot the simple intercepts and slopes of the latent interaction.

Examples

dat2wayMC <- indProd(dat2way, 1:3, 4:6) # double mean centered by default

modell <- "

f1 =~ x1 + x2 + x3

f2 =~ x4 + x5 + x6

f12 =~ x1.x4 + x2.x5 + x3.x6

f3 =~ x7 + x8 + x9

f3 ~f1 + f2+ f12

f12 ~~ 0xf1 + @*f2 # not necessary, but implied by double mean centering

n
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fitMC2way <- sem(modell, data = dat2wayMC, meanstructure = TRUE)
summary (fitMC2way)

probe2WayMC(fitMC2way, nameX = c("f1", "f2", "f12"), nameY = "f3",
modVar = "f2", valProbe = c(-1, 0, 1))

## can probe multigroup models, one group at a time
dat2wayMC$g <- 1:2

model2 <- "
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f12 =~ x1.x4 + x2.x5 + x3.x6
f3 =~ x7 + x8 + x9
f3 ~ c(bl.g1, bl.g2)*f1 + c(b2.g1, b2.g2)*xf2 + c(b12.g1, b12.g2)*f12
f12 ~~ oxf1 + @xf2
fit2 <- sem(model2, data = dat2wayMC, group = "g")
probe2WayMC(fit2, nameX = c("f1", "f2", "f12"), nameY = "f3",
modVar = "f2", valProbe = c(-1, @, 1)) # group = 1 by default
probe2WayMC(fit2, nameX = c("f1", "f2", "f12"), nameY = "f3",
modVar = "f2", valProbe = c(-1, @, 1), group = 2)

probe2WayRC Probing two-way interaction on the residual-centered latent interac-
tion

Description

Probing interaction for simple intercept and simple slope for the residual-centered latent two-way
interaction (Geldhof et al., 2013)

Usage
probe2WayRC(fit, nameX, nameY, modVar, valProbe, group = 1L,
omit.imps = c("no.conv”, "no.se"))
Arguments
fit A fitted lavaan::lavaan or lavaan.mi::lavaan.mi object with a latent 2-way inter-
action.
nameX character vector of all 3 factor names used as the predictors. The lower-order
factors must be listed first, and the final name must be the latent interaction
factor.

nameY The name of factor that is used as the dependent variable.
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modVar The name of factor that is used as a moderator. The effect of the other inde-
pendent factor will be probed at each value of the moderator variable listed in
valProbe.

valProbe The values of the moderator that will be used to probe the effect of the focal
predictor.

group In multigroup models, the label of the group for which the results will be re-

turned. Must correspond to one of lavInspect(fit, "group.label™), or an
integer corresponding to which of those group labels.

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Ignored unless fit is of class lavaan.mi::lavaan.mi. Can include any of
c("no.conv”, "no.se”, "no.npd"), the first 2 of which are the default set-
ting, which excludes any imputations that did not converge or for which stan-
dard errors could not be computed. The last option ("no.npd") would exclude
any imputations which yielded a nonpositive definite covariance matrix for ob-
served or latent variables, which would include any "improper solutions" such
as Heywood cases. NPD solutions are not excluded by default because they are
likely to occur due to sampling error, especially in small samples. However,
gross model misspecification could also cause NPD solutions, users can com-
pare pooled results with and without this setting as a sensitivity analysis to see
whether some imputations warrant further investigation.

Details

Before using this function, researchers need to make the products of the indicators between the first-
order factors and residualize the products by the original indicators (Lance, 1988; Little, Bovaird,
& Widaman, 2006). The process can be automated by the indProd() function. Note that the
indicator products can be made for all possible combination or matched-pair approach (Marsh et
al., 2004). Next, the hypothesized model with the regression with latent interaction will be used to
fit all original indicators and the product terms. To use this function the model must be fit with a
mean structure. See the example for how to fit the product term below. Once the lavaan result is
obtained, this function will be used to probe the interaction.

The probing process on residual-centered latent interaction is based on transforming the residual-
centered result into the no-centered result. See Geldhof et al. (2013) for further details. Note
that this approach is based on a strong assumption that the first-order latent variables are normally
distributed. The probing process is applied after the no-centered result (parameter estimates and
their covariance matrix among parameter estimates) has been computed. See the probe2WayMC()
for further details.

Value

A list with two elements:

1. SimpleIntercept: The simple intercepts given each value of the moderator.
2. SimpleSlope: The simple slopes given each value of the moderator.
In each element, the first column represents the values of the moderators specified in the valProbe

argument. The second column is the simple intercept or simple slope. The third column is the
standard error of the simple intercept or slope. The fourth column is the Wald (z) statistic, and the
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fifth column is the associated p value testing the null hypothesis that each simple intercept or slope
is 0.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Tutorial:

Schoemann, A. M., & Jorgensen, T. D. (2021). Testing and interpreting latent variable interactions
using the semTools package. Psych, 3(3), 322-335. doi:10.3390/psych3030024

Background literature:

Lance, C. E. (1988). Residual centering, exploratory and confirmatory moderator analysis, and de-
composition of effects in path models containing interactions. Applied Psychological Measurement,
12(2), 163-175. doi:10.1177/014662168801200205

Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered
and product terms: Implications for modeling interactions. Structural Equation Modeling, 13(4),
497-519. doi:10.1207/s15328007sem1304_1

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions:
Evaluation of alternative estimation strategies and indicator construction. Psychological Methods,
9(3), 275-300. doi:10.1037/1082989X.9.3.275

Geldhof, G. J., Pornprasertmanit, S., Schoemann, A. M., & Little, T. D. (2013). Orthogonalizing
through residual centering: Extended applications and caveats. Educational and Psychological
Measurement, 73(1), 27-46. doi:10.1177/0013164412445473

See Also

indProd() For creating the indicator products with no centering, mean centering, double-
mean centering, or residual centering.

* probe2WayMC () For probing the two-way latent interaction when the results are obtained from
mean-centering, or double-mean centering

* probe3WayMC() For probing the three-way latent interaction when the results are obtained
from mean-centering, or double-mean centering

* probe3WayRC() For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

* plotProbe() Plot the simple intercepts and slopes of the latent interaction.

Examples
dat2wayRC <- orthogonalize(dat2way, 1:3, 4:6)
modell <- "

f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6


https://doi.org/10.3390/psych3030024
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f12 =~ x1.x4 + x2.x5 + x3.%x6

f3 =~ x7 + x8 + x9

f3 ~f1 + 2+ f12

f12 ~~ 0xf1 + 0*f2

x1 + x4 + x1.x4 + x7 ~ 0x1 # identify latent means
f1 + f2 + f12 + f3 ~ NAx1

"

fitRC2way <- sem(modell, data = dat2wayRC, meanstructure = TRUE)
summary (fitRC2way)

probe2WayRC(fitRC2way, nameX = c("f1", "f2", "f12"), nameY = "f3",
modVar = "f2", valProbe = c(-1, 0, 1))

## can probe multigroup models, one group at a time
dat2wayRC$g <- 1:2

model2 <- "

f1 =~ x1 + x2 + x3

f2 =~ x4 + x5 + x6

f12 =~ x1.x4 + x2.x5 + x3.%x6
f3 =~ x7 + x8 + x9

f3 ~ c(bl.g1, bl.g2)*f1 + c(b2.g1, b2.g2)*xf2 + c(b12.g1, bl12.g2)*f12
f12 ~~ 0xf1 + 0%f2
x1 + x4 + x1.x4 + x7 ~ 0*1 # identify latent means
f1 + f2 + f12 ~ NA%1
f3 ~ NA*1 + c(b@.g1, bo.g2)*1
fit2 <- sem(model2, data = dat2wayRC, group = "g")
probe2WayRC(fit2, nameX = c("f1", "f2", "f12"), nameY = "f3",
modVar = "f2", valProbe = c(-1, @, 1)) # group = 1 by default
probe2WayRC(fit2, nameX = c("f1", "f2", "f12"), nameY = "f3",
modVar = "f2", valProbe = c(-1, @, 1), group = 2)

probe3WayMC Probing three-way interaction on the no-centered or mean-centered
latent interaction

Description

Probing interaction for simple intercept and simple slope for the no-centered or mean-centered
latent two-way interaction

Usage

probe3WayMC(fit, nameX, nameY, modVar, valProbel, valProbe2, group = 1L,
omit.imps = c("no.conv”, "no.se"))
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Arguments

fit

nameX

nameY

modVar

valProbel

valProbe?2

group

omit.imps

Details

probe3WayMC

A fitted lavaan::lavaan or lavaan.mi::lavaan.mi object with a latent 2-way inter-
action.

character vector of all 7 factor names used as the predictors. The 3 lower-order
factors must be listed first, followed by the 3 second-order factors (specifically,
the 4th element must be the interaction between the factors listed first and sec-
ond, the 5th element must be the interaction between the factors listed first and
third, and the 6th element must be the interaction between the factors listed
second and third). The final name will be the factor representing the 3-way
interaction.

The name of factor that is used as the dependent variable.

The name of two factors that are used as the moderators. The effect of the inde-
pendent factor will be probed at each combination of the moderator variables’
chosen values.

The values of the first moderator that will be used to probe the effect of the
independent factor.

The values of the second moderator that will be used to probe the effect of the
independent factor.

In multigroup models, the label of the group for which the results will be re-
turned. Must correspond to one of lavInspect(fit, "group.label”).

character vector specifying criteria for omitting imputations from pooled re-
sults. Ignored unless fit is of class lavaan.mi::lavaan.mi. Can include any of
c("no.conv”, "no.se”, "no.npd"), the first 2 of which are the default set-
ting, which excludes any imputations that did not converge or for which stan-
dard errors could not be computed. The last option ("no.npd") would exclude
any imputations which yielded a nonpositive definite covariance matrix for ob-
served or latent variables, which would include any "improper solutions" such
as Heywood cases. NPD solutions are not excluded by default because they are
likely to occur due to sampling error, especially in small samples. However,
gross model misspecification could also cause NPD solutions, users can com-
pare pooled results with and without this setting as a sensitivity analysis to see
whether some imputations warrant further investigation.

Before using this function, researchers need to make the products of the indicators between the
first-order factors using mean centering (Marsh, Wen, & Hau, 2004). Note that the double-mean
centering may not be appropriate for probing interaction if researchers are interested in simple
intercepts. The mean or double-mean centering can be done by the indProd() function. The
indicator products can be made for all possible combination or matched-pair approach (Marsh et
al., 2004). Next, the hypothesized model with the regression with latent interaction will be used
to fit all original indicators and the product terms. See the example for how to fit the product term
below. Once the lavaan result is obtained, this function will be used to probe the interaction.

Let that the latent interaction model regressing the dependent variable (Y") on the independent vari-
able (X)) and two moderators (Z and W) be

Y =bo+ 01X +b2Z +bsW + by XZ + bs XW + b ZW + b XZW +r,



probe3WayMC 147

where by is the estimated intercept or the expected value of Y when X, Z, and W are 0, by is the
effect of X when Z and W are 0, b is the effect of Z when X and W is 0, b5 is the effect of W
when X and Z are 0, by is the interaction effect between X and Z when W is 0, b is the interaction
effect between X and W when Z is 0, bg is the interaction effect between Z and W when X is 0,
b is the three-way interaction effect between X, Z, and W, and r is the residual term.

To probe a three-way interaction, the simple intercept of the independent variable at the specific
values of the moderators (Aiken & West, 1991) can be obtained by

bo|x=0,z,w = bo + b2 Z + bsW + bg ZW.

The simple slope of the independent variable at the specific values of the moderators can be obtained
by
bx|zw = b1+ b3Z + bW + by ZW.

The variance of the simple intercept formula is
Var (boyx—o,zw) = Var (by) + Z*Var (bs) + W*Var (b3) + Z*W?Var (bg)

+2ZCov (bo, bg)—‘rQWCOU (bo, b3)+2ZWCOU (bo7 b6)+QZWCO’U (b2, b3)+2Z2WCOU (bg, b6)+QZW2COU (bg, b6) R

where Var denotes the variance of a parameter estimate and C'ov denotes the covariance of two
parameter estimates.

The variance of the simple slope formula is
Var (bxzw) = Var (b1) + Z*Var (by) + W?Var (bs) + Z*°W?Var (br)
+2ZCov (b1, bg)+2W Cov (b1, bs)+2ZW Cov (b1, b7)+2ZW Cov (bs, bs)+2Z*W Cov (bs, b7)+2ZW2Couv (bs, b7) .

Wald z statistics are calculated (even for objects of class lavaan.mi::lavaan.mi) to test null hypothe-
ses that simple intercepts or slopes are 0.

Value

A list with two elements:

1. SimpleIntercept: The model-implied intercepts given each combination of moderator val-

ues.

2. SimpleSlope: The model-implied slopes given each combination of moderator values.
In each element, the first column represents values of the first moderator specified in the valProbeT
argument. The second column represents values of the second moderator specified in the valProbe?2
argument. The third column is the simple intercept or simple slope. The fourth column is the
standard error of the simple intercept or simple slope. The fifth column is the Wald (z) statistic, and

the sixth column is its associated p value to test the null hypothesis that each simple intercept or
simple slope equals O.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
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See Also

indProd() For creating the indicator products with no centering, mean centering, double-
mean centering, or residual centering.

* probe2WayMC () For probing the two-way latent interaction when the results are obtained from
mean-centering, or double-mean centering

* probe2WayRC() For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

* probe3WayRC() For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

* plotProbe() Plot the simple intercepts and slopes of the latent interaction.

Examples

dat3wayMC <- indProd(dat3way, 1:3, 4:6, 7:9)

model3 <- " ## define latent variables
f1 =~ x1 + x2 + x3

f2 =~ x4 + x5 + x6

f3 =~ x7 + x8 + x9

## 2-way interactions

f12 =~ x1.x4 + x2.x5 + x3.x6

f13 =~ x1.x7 + x2.x8 + x3.x9

23 =~ x4.x7 + x5.x8 + x6.x9

## 3-way interaction

123 =~ x1.x4.x7 + x2.x5.x8 + x3.x6.x9
## outcome variable

f4 =~ x10 + x11 + x12

## latent regression model
f4 ~ b1*f1 + b2%f2 + b3xf3 + b12xf12 + b13%f13 + b23xf23 + b123%f123

## orthogonal terms among predictors

## (not necessary, but implied by double mean centering)
f1 ~~ 0*xf12 + 0*xf13 + 0xf123

f2 ~~ 0*xf12 + 0*f23 + 0xf123

3 ~~ 0*%f13 + 0%f23 + 0xf123


https://doi.org/10.3390/psych3030024
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f12 + f13 + 23 ~~ 0xf123

n

fitMC3way <- sem(model3, data = dat3wayMC, meanstructure = TRUE)
summary (fitMC3way)

probe3WayMC(fitMC3way, nameX = c("f1" ,"f2" ,"f3",
"f12","f13","f23", # this order matters!
"f123"), # 3-way interaction
nameY = "f4", modVar = c("f1", "f2"),
valProbel = c(-1, @, 1), valProbe2 = c(-1, @, 1))

probe3WayRC Probing three-way interaction on the residual-centered latent interac-
tion

Description

Probing interaction for simple intercept and simple slope for the residual-centered latent three-way
interaction (Geldhof et al., 2013)

Usage
probe3WayRC(fit, nameX, nameY, modVar, valProbel, valProbe2, group = 1L,
omit.imps = c("no.conv”, "no.se"))
Arguments
fit A fitted lavaan::lavaan or lavaan.mi::lavaan.mi object with a latent 2-way inter-
action.
nameX character vector of all 7 factor names used as the predictors. The 3 lower-order

factors must be listed first, followed by the 3 second-order factors (specifically,
the 4th element must be the interaction between the factors listed first and sec-
ond, the 5th element must be the interaction between the factors listed first and
third, and the 6th element must be the interaction between the factors listed
second and third). The final name will be the factor representing the 3-way

interaction.

nameY The name of factor that is used as the dependent variable.

modVar The name of two factors that are used as the moderators. The effect of the
independent factor on each combination of the moderator variable values will
be probed.

valProbel The values of the first moderator that will be used to probe the effect of the

independent factor.

valProbe?2 The values of the second moderator that will be used to probe the effect of the
independent factor.
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group In multigroup models, the label of the group for which the results will be re-
turned. Must correspond to one of lavInspect(fit, "group.label"”).

omit.imps character vector specifying criteria for omitting imputations from pooled re-
sults. Ignored unless fit is of class lavaan.mi::lavaan.mi. Can include any of
c("no.conv”, "no.se”, "no.npd"), the first 2 of which are the default set-
ting, which excludes any imputations that did not converge or for which stan-
dard errors could not be computed. The last option ("no.npd") would exclude
any imputations which yielded a nonpositive definite covariance matrix for ob-
served or latent variables, which would include any "improper solutions" such
as Heywood cases. NPD solutions are not excluded by default because they are
likely to occur due to sampling error, especially in small samples. However,
gross model misspecification could also cause NPD solutions, users can com-
pare pooled results with and without this setting as a sensitivity analysis to see
whether some imputations warrant further investigation.

Details

Before using this function, researchers need to make the products of the indicators between the first-
order factors and residualize the products by the original indicators (Lance, 1988; Little, Bovaird,
& Widaman, 2006). The process can be automated by the indProd() function. Note that the
indicator products can be made for all possible combination or matched-pair approach (Marsh et
al., 2004). Next, the hypothesized model with the regression with latent interaction will be used
to fit all original indicators and the product terms (Geldhof et al., 2013). To use this function the
model must be fit with a mean structure. See the example for how to fit the product term below.
Once the lavaan result is obtained, this function will be used to probe the interaction.

The probing process on residual-centered latent interaction is based on transforming the residual-
centered result into the no-centered result. See Geldhof et al. (2013) for further details. Note
that this approach based on a strong assumption that the first-order latent variables are normally
distributed. The probing process is applied after the no-centered result (parameter estimates and
their covariance matrix among parameter estimates) has been computed. See the probe3WayMC()
for further details.

Value

A list with two elements:

1. SimpleIntercept: The model-implied intercepts given each combination of moderator val-
ues.

2. SimpleSlope: The model-implied slopes given each combination of moderator values.

In each element, the first column represents values of the first moderator specified in the valProbe1
argument. The second column represents values of the second moderator specified in the valProbe2
argument. The third column is the simple intercept or simple slope. The fourth column is the SE of
the simple intercept or simple slope. The fifth column is the Wald (z) statistic, and the sixth column
is its associated p value to test the null hypothesis that each simple intercept or simple slope equals
0.
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Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References
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through residual centering: Extended applications and caveats. Educational and Psychological
Measurement, 73(1), 27-46. doi:10.1177/0013164412445473
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composition of effects in path models containing interactions. Applied Psychological Measurement,
12(2), 163-175. doi:10.1177/014662168801200205

Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered
and product terms: Implications for modeling interactions. Structural Equation Modeling, 13(4),
497-519. doi:10.1207/s15328007sem1304_1

Marsh, H. W., Wen, Z., & Hau, K. T. (2004). Structural equation models of latent interactions:
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interaction estimated with a residual centering approach.

See Also

* indProd() For creating the indicator products with no centering, mean centering, double-
mean centering, or residual centering.

* probe2WayMC () For probing the two-way latent interaction when the results are obtained from
mean-centering, or double-mean centering

* probe3WayMC() For probing the three-way latent interaction when the results are obtained
from mean-centering, or double-mean centering

* probe2WayRC() For probing the two-way latent interaction when the results are obtained from
residual-centering approach.

* plotProbe() Plot the simple intercepts and slopes of the latent interaction.

Examples

dat3wayRC <- orthogonalize(dat3way, 1:3, 4:6, 7:9)

model3 <- " ## define latent variables
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f3 =~ x7 + x8 + x9


https://doi.org/10.3390/psych3030024
https://doi.org/10.1177/0013164412445473
https://doi.org/10.1177/014662168801200205
https://doi.org/10.1207/s15328007sem1304_1
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## 2-way interactions

f12 =~ x1.x4 + x2.x5 + x3.x6

f13 =~ x1.x7 + x2.x8 + x3.x9

23 =~ x4.x7 + x5.x8 + x6.x9

## 3-way interaction

123 =~ x1.x4.x7 + x2.x5.x8 + x3.x6.x9
## outcome variable

f4 =~ x10 + x11 + x12

## latent regression model
f4 ~ b1xf1 + b2xf2 + b3xf3 + b12%f12 + b13xf13 + b23%f23 + b123%f123

## orthogonal terms among predictors
f1 ~~ 0xf12 + 0xf13 + 0*xf123

f2 ~~ 0xf12 + 0xf23 + 0*xf123

f3 ~~ 0*xf13 + 0*f23 + 0xf123

f12 + f13 + 23 ~~ 0%f123

## identify latent means
x1 + x4 + x7 + x1.x4 + x1.x7 + x4.x7 + x1.x4.x7 + x10 ~ 0x*1
f1 + f2 + f3 + f12 + f13 + 23 + f123 + f4 ~ NA*1

n

fitRC3way <- sem(model3, data = dat3wayRC, meanstructure = TRUE)
summary (fitRC3way)

probe3WayMC(fitRC3way, nameX = c("f1" ,"f2" ,"f3",
"f12","f13","f23", # this order matters!
"f123"), # 3-way interaction
nameY = "f4", modVar = c("f1", "f2"),

valProbel = c(-1, @, 1), valProbe2 = c(-1, @, 1))

quark Quark

Description

The quark function provides researchers with the ability to calculate and include component scores
calculated by taking into account the variance in the original dataset and all of the interaction and
polynomial effects of the data in the dataset.

Usage
quark(data, id, order = 1, silent = FALSE, ...)
Arguments
data The data frame is a required component for quark. In order for quark to process

a data frame, it must not contain any factors or text-based variables. All variables
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must be in numeric format. Identifiers and dates can be left in the data; however,
they will need to be identified under the id argument.

id Identifiers and dates within the dataset will need to be acknowledged as quark
cannot process these. By acknowledging the identifiers and dates as a vector
of column numbers or variable names, quark will remove them from the data
temporarily to complete its main processes. Among many potential issues of not
acknowledging identifiers and dates are issues involved with imputation, product
and polynomial effects, and principal component analysis.

order Order is an optional argument provided by quark that can be used when the
imputation procedures in mice fail. Under some circumstances, mice cannot
calculate missing values due to issues with extreme missingness. Should an
error present itself stating a failure due to not having any columns selected, set
the argument order = 2 in order to reorder the imputation method procedure.
Otherwise, use the default order = 1.

silent If FALSE, the details of the quark process are printed.
additional arguments to pass to mice: :mice().

Details

The quark function calculates these component scores by first filling in the data via means of mul-
tiple imputation methods and then expanding the dataset by aggregating the non-overlapping inter-
action effects between variables by calculating the mean of the interactions and polynomial effects.
The multiple imputation methods include one of iterative sampling and group mean substitution and
multiple imputation using a polytomous regression algorithm (mice). During the expansion process,
the dataset is expanded to three times its normal size (in width). The first third of the dataset con-
tains all of the original data post imputation, the second third contains the means of the polynomial
effects (squares and cubes), and the final third contains the means of the non-overlapping interac-
tion effects. A full principal componenent analysis is conducted and the individual components are
retained. The subsequent combinequark() function provides researchers the control in determin-
ing how many components to extract and retain. The function returns the dataset as submitted (with
missing values) and the component scores as requested for a more accurate multiple imputation in
subsequent steps.

Value

The output value from using the quark function is a list. It will return a list with 7 components.

ID Columns Is a vector of the identifier columns entered when running quark.

ID Variables Is a subset of the dataset that contains the identifiers as acknowledged when
running quark.

Used Data Is a matrix / dataframe of the data provided by user as the basis for quark to
process.

Imputed Data Is a matrix / dataframe of the data after the multiple method imputation process.

Big Matrix Is the expanded product and polynomial matrix.

Principal Components
Is the entire dataframe of principal components for the dataset. This dataset will
have the same number of rows of the big matrix, but will have 1 less column (as
is the case with principal component analyses).
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Percent Variance Explained
Is a vector of the percent variance explained with each column of principal com-
ponents.

Author(s)

Steven R. Chesnut (University of Southern Mississippi; <Steven.Chesnut@usm.edu>)
Danny Squire (Texas Tech University)
Terrence D. Jorgensen (University of Amsterdam)

The PCA code is copied and modified from the FactoMineR package.

References

Howard, W. J., Rhemtulla, M., & Little, T. D. (2015). Using Principal Components as Auxil-
iary Variables in Missing Data Estimation. Multivariate Behavioral Research, 50(3), 285-299.
doi:10.1080/00273171.2014.999267

See Also

combinequark()

Examples

set.seed(123321)

dat <- HolzingerSwineford1939[,7:15]

misspat <- matrix(runif(nrow(dat) * 9) < 0.3, nrow(dat))
dat[misspat] <- NA

dat <- cbhind(HolzingerSwineford1939[,1:3], dat)
quark.list <- quark(data = dat, id = c(1, 2))

final.data <- combinequark(quark = quark.list, percent = 80)

## Example to rerun quark after imputation failure:
quark.list <- quark(data = dat, id = c(1, 2), order = 2)

residualCovariate Residual-center all target indicators by covariates

Description

This function will regress target variables on the covariate and replace the target variables by the
residual of the regression analysis. This procedure is useful to control the covariate from the analysis
model (Geldhof, Pornprasertmanit, Schoemann, & Little, 2013).


https://doi.org/10.1080/00273171.2014.999267
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Usage

residualCovariate(data, targetVar, covVar)

Arguments
data The desired data to be transformed.
targetVar Varible names or the position of indicators that users wish to be residual centered
(as dependent variables)
covVar Covariate names or the position of the covariates using for residual centering (as
independent variables) onto target variables
Value

The data that the target variables replaced by the residuals

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail. com>)

References

Geldhof, G. J., Pornprasertmanit, S., Schoemann, A. M., & Little, T. D. (2013). Orthogonalizing
through residual centering: Extended applications and caveats. Educational and Psychological
Measurement, 73(1), 27-46. doi:10.1177/0013164412445473

See Also
indProd() For creating the indicator products with no centering, mean centering, double-mean

centering, or residual centering.

Examples

dat <- residualCovariate(attitude, 2:7, 1)

semTools semTools: Useful Tools for Structural Equation Modeling

Description

The semTools package provides many miscellaneous functions that are useful for statistical analysis
involving SEM in R. Many functions extend the funtionality of the lavaan package. Some sets of
functions in semTools correspond to the same theme. We call such a collection of functions a suite.
Our suites include:

e Model Fit Evaluation: moreFitIndices(), nul1RMSEA(), singleParamTest (), miPowerFit(),
and chisqSmallN()


https://doi.org/10.1177/0013164412445473
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simParcel

Measurement Invariance: measEq. syntax (), partialInvariance(), partiallnvarianceCat(),
and permuteMeasEq()

Power Analysis: SSpower (), findRMSEApower (), plotRMSEApower (), plotRMSEAdist(),
findRMSEAsamplesize(), findRMSEApowernested(), plotRMSEApowernested(), and findRMSEAsamplesizeneste

Missing Data Analysis: auxiliary(), twostage(), fmi(), bsBootMiss(), quark(), and
combinequark()

Latent Interactions: indProd(), orthogonalize(), probe2WayMC(), probe3wWayMC(), probe2WayRC(),
probe3WayRC(), and plotProbe()

Exploratory Factor Analysis (EFA): efa.ekc()
Reliability Estimation: compRelSEM() and maximalRelia() (see also AVE())
Parceling: parcelAllocation(), PAVranking(), and poolMAlloc()

Non-Normality: skew(), kurtosis(), mardiaSkew(), mardiaKurtosis(), and mvrnonnorm()

All users of R (or SEM) are invited to submit functions or ideas for functions by contacting the
maintainer, Terrence Jorgensen (<TJorgensen314@gmail.com>). Contributors are encouraged to
use Roxygen comments to document their contributed code, which is consistent with the rest of
semTools. Read the vignette from the roxygen2 package for details: vignette("rd"”, package =
"roxygen2")

simParcel Simulated Data set to Demonstrate Random Allocations of Parcels

Description

A simulated data set with 2 factors with 9 indicators for each factor

Usage

simParcel

Format

A data. frame with 800 observations of 18 variables.

flitem1 Item 1 loading on factor 1

flitem2 Item 2 loading on factor 1

flitem3 Item 3 loading on factor 1

flitem4 Item 4 loading on factor 1

flitem5 Item 5 loading on factor 1

flitem6 Item 6 loading on factor 1

flitem?7 Item 7 loading on factor 1

flitem8 Item 8 loading on factor 1

flitem9 Item 9 loading on factor 1
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f2item1
f2item2
f2item3
f2item4
f2item5S
f2item6
f2item7
f2item8
f2item9

Source

Item 1 loading on factor 2
Item 2 loading on factor 2
Item 3 loading on factor 2
Item 4 loading on factor 2
Item 5 loading on factor 2
Item 6 loading on factor 2
Item 7 loading on factor 2
Item 8 loading on factor 2

Item 9 loading on factor 2

Data were generated using the simsem package.

Examples

head(simParcel)

singleParamTest Single Parameter Test Divided from Nested Model Comparison

Description

In comparing two nested models, Ay? test may indicate that two models are different. However,
like other omnibus tests, researchers do not know which fixed parameters or constraints make these
two models different. This function will help researchers identify the significant parameter.

Usage

singleParamTest(modell, model2, return.fit = FALSE,
method = "satorra.bentler.2001")

Arguments
model1 Model 1.
model?2 Model 2. Note that two models must be nested models. Further, the order of
parameters in their parameter tables are the same. That is, nested models with
different scale identifications may not be able to test by this function.
return.fit Return the submodels fitted by this function
method The method used to calculate likelihood ratio test. See lavaan: :lavTestLRT()

for available options
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Details

This function first identifies the differences between these two models. The model with more free
parameters is referred to as parent model and the model with fewer free parameters is referred to as
nested model. Two tests are implemented here:

1. free: The nested model is used as a template. Then, one parameter indicating the differences
between two models is freed. The new model is compared with the nested model. This process
is repeated for all differences between two models.

2. fix: The parent model is used as a template. Then, one parameter indicating the differences
between two models is fixed or constrained to be equal to other parameters. The new model
is then compared with the parent model. This process is repeated for all differences between
two models.

3. mi: No longer available because the test of modification indices is not consistent. For example,
if two parameters are equality constrained, the modification index from the first parameter is
not equal to the second parameter.

Note that this function does not adjust for the inflated Type I error rate from multiple tests.

Value

If return. fit = FALSE, the result tables are provided. x? and p value are provided for all methods.
Note that the 2 is all based on 1 df. Expected parameter changes and their standardized forms are
also provided.

If return.fit = TRUE, a list with two elements are provided. The first element is the tabular result.
The second element is the submodels used in the free and fix methods.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)

Examples

library(lavaan)

# Nested model comparison by hand

HS.model1l <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6'
HS.model2 <- ' visual =~ a*x1 + a*x2 + a*x3

textual =~ b*x4 + b*x5 + b*xx6'

ml <- cfa(HS.modell, data = HolzingerSwineford1939, std.lv = TRUE,
estimator = "MLR")

m2 <- cfa(HS.model2, data = HolzingerSwineford1939, std.lv = TRUE,
estimator = "MLR")

anova(ml, m2)

singleParamTest(m1, m2)

## Nested model comparison from the measurementInvariance function
HW.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
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speed =~ x7 + x8 + x9 '

models <- measurementInvariance(model = HW.model, data = HolzingerSwineford1939,
group = "school"”)
singleParamTest(models[[1]1], models[[2]1])

## Note that the comparison between metric (Model 2) and scalar invariance
## (Model 3) cannot be done by this function because the metric invariance
## model fixes factor means as @ in Group 2 but the strong invariance model
## frees the factor means in Group 2. Users may use this function to compare
## scalar invariance (Model 3) to a homogeneous-means model.

skew Finding skewness

Description

Finding skewness (g1) of an object

Usage

skew(object, population = FALSE)

Arguments
object A vector used to find a skewness
population TRUE to compute the parameter formula. FALSE to compute the sample statistic
formula.
Details

The skewness computed by default is g;, the third standardized moment of the empirical distribution
of object. The population parameter skewness ~y; formula is

M= /;732,
Ho

where y; denotes the ¢ order central moment.
The skewness formula for sample statistic g; is

— ks

g1 = k%v

where k; are the 7 order k-statistic.
The standard error of the skewness is

N 6

Var(g) = N

where N is the sample size.
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Value

A value of a skewness with a test statistic if the population is specified as FALSE

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail . com>)

References

Weisstein, Eric W. (n.d.). Skewness. Retrived from MathWorld—A Wolfram Web Resource: http:
//mathworld.wolfram.com/Skewness.html

See Also

¢ kurtosis() Find the univariate excessive kurtosis of a variable
* mardiaSkew() Find Mardia’s multivariate skewness of a set of variables

e mardiaKurtosis() Find the Mardia’s multivariate kurtosis of a set of variables

Examples

skew(1:5)

splitSample Randomly Split a Data Set into Halves

Description

This function randomly splits a data set into two halves, and saves the resulting data sets to the same
folder as the original.

Usage

splitSample(dataset, path = "default”, div = 2, type = "default”,
name = "splitSample”)

Arguments
dataset The original data set to be divided. Can be a file path to a *.csv or *.dat file
(headers will automatically be detected) or an R object (matrix or dataframe).
(Windows users: file path must be specified using FORWARD SLASHES (/)
ONLY.)
path File path to folder for output data sets. NOT REQUIRED if dataset is a filename.

Specify ONLY if dataset is an R object, or desired output folder is not that of
original data set. If path is specified as "object", output data sets will be returned
as a list, and not saved to hard drive.


http://mathworld.wolfram.com/Skewness.html
http://mathworld.wolfram.com/Skewness.html
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div Number of output data sets. NOT REQUIRED if default, 2 halves.

type Output file format ("dat" or "csv"). NOT REQUIRED unless desired output
formatting differs from that of input, or dataset is an R object and csv formatting
is desired.

name Output file name. NOT REQUIRED unless desired output name differs from

that of input, or input dataset is an R object. (If input is an R object and name is
not specified, name will be "splitSample".)

Details

This function randomly orders the rows of a data set, divides the data set into two halves, and saves
the halves to the same folder as the original data set, preserving the original formatting. Data set
type (*.csv or .dat) and formatting (headers) are automatically detected, and output data sets will
preserve input type and formatting unless specified otherwise. Input can be in the form of a file
path (.dat or *.csv), or an R object (matrix or dataframe). If input is an R object and path is default,
output data sets will be returned as a list object.

Value

If path = "object"”, list of output data sets. Otherwise, output will saved to hard drive in the
same format as input.

Author(s)

Corbin Quick (University of Michigan; <corbing@umich.edu>)

Examples

###H# Input is .dat file
#splitSample("C:/Users/Default/Desktop/MYDATA.dat")

#### Output saved to "C:/Users/Default/Desktop/"” in .dat format
#### Names are "MYDATA_s1.dat” and "MYDATA_s2.dat”

#### Input is R object

## Split C02 dataset from the datasets package
library(datasets)

splitMyData <- splitSample(C02, path = "object”)

summary (splitMyDatal[[1]]1)

summary (splitMyDatal[[2]])

#### Output object splitMyData becomes list of output data sets

#### Input is .dat file in "C:/" folder

#splitSample("C:/testdata.dat”, path = "C:/Users/Default/Desktop/", type = "csv")
#i##H# Output saved to "C:/Users/Default/Desktop/” in x.csv format

#### Names are "testdata_s1.csv” and "testdata_s2.csv"

#### Input is R object

#splitSample(myData, path = "C:/Users/Default/Desktop/", name = "splitdata")
#### Output saved to "C:/Users/Default/Desktop/"” in x.dat format

#### Names are "splitdata_s1.dat” and "splitdata_s2.dat”
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SSpower Power for model parameters

Description

Apply Satorra & Saris (1985) method for chi-squared power analysis.

Usage
SSpower (powerModel, n, nparam, popModel, mu, Sigma, fun = "sem”,
alpha = 0.05, ...)
Arguments
powerModel lavaan lavaan::model.syntax() for the model to be analyzed. This syntax
should constrain at least one nonzero parameter to O (or another number).
n integer. Sample size used in power calculation, or a vector of sample sizes if
analyzing a multigroup model. If length(n) < length(Sigma) when Sigma is
a list, n will be recycled. If popModel is used instead of Sigma, n must specify a
sample size for each group, because that is used to infer the number of groups.
nparam integer. Number of invalid constraints in powerModel.
popModel lavaan lavaan: :model.syntax() specifying the data-generating model. This
syntax should specify values for all nonzero parameters in the model. If length(n)
> 1, the same population values will be used for each group, unless different pop-
ulation values are specified per group, either in the lavaan lavaan: :model.syntax()
or by utilizing a list of Sigma (and optionally mu).
mu numeric or list. For a single-group model, a vector of population means. For
a multigroup model, a list of vectors (one per group). If mu and popModel are
missing, mean structure will be excluded from the analysis.
Sigma matrix or list. For a single-group model, a population covariance matrix. For
a multigroup model, a list of matrices (one per group). If missing, popModel
will be used to generate a model-implied Sigma.
fun character. Name of 1lavaan function used to fit powerModel (i.e., "cfa”, "sem”,
"growth”, or "lavaan”).
alpha Type I error rate used to set a criterion for rejecting HO.
additional arguments to pass to lavaan: : lavaan(). See also lavaan: : lavOptions().
Details

Specify all non-zero parameters in a population model, either by using lavaan syntax (popModel) or
by submitting a population covariance matrix (Sigma) and optional mean vector (mu) implied by the
population model. Then specify an analysis model that places at least one invalid constraint (note
the number in the nparam argument).

There is also a Shiny app called "powerdSEM" that provides a graphical user interface for this func-
tionality (Jak et al., in press). It can be accessed at https://sjak.shinyapps.io/power4SEM/.


https://sjak.shinyapps.io/power4SEM/
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Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu. edu>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Satorra, A., & Saris, W. E. (1985). Power of the likelihood ratio test in covariance structure analysis.
Psychometrika, 50(1), 83-90. doi:10.1007/BF02294150

Jak, S., Jorgensen, T. D., Verdam, M. G., Oort, F. J., & Elffers, L. (2021). Analytical power cal-
culations for structural equation modeling: A tutorial and Shiny app. Behavior Research Methods,
53, 1385-1406. doi:10.3758/s13428020014790

Examples

## Specify population values. Note every parameter has a fixed value.

modelP <- '

f1 =~ 7%Vl + 7%xV2 + . 7xV3 + .7xV4
f2 =~ .7xV5 + .7xV6 + .7*%V7 + .7%V8
f1 ~~ .3%f2

f1 ~~ 1%xf1

f2 ~~ 1%f2

V1 ~~ .51%V1

V2 ~~ .51%V2

V3 ~~ .51%V3

V4 ~~ 51xV4

V5 ~~ .51%V5

V6 ~~ .51*V6

V7 ~~ .51%xV7

V8 ~~ .51%xV8

## Specify analysis model. Note parameter of interest f1~~f2 is fixed to 0.
modelA <- '

f1 =~ V1 + V2 + V3 + V4

f2 =~ V5 + V6 + V7 + V8

f1 ~~ 0xf2
## Calculate power
SSpower (powerModel = modelA, popModel = modelP, n = 150, nparam = 1,

std.lv = TRUE)

## Get power for a range of sample sizes
Ns <- seq(100, 500, 40)
Power <- rep(NA, length(Ns))
for(i in 1:length(Ns)) {
Power[i] <- SSpower (powerModel = modelA, popModel = modelP,
n = Ns[i], nparam = 1, std.lv = TRUE)

3
plot(x = Ns, y = Power, type = "1", xlab = "Sample Size")

## Optionally specify different values for multiple populations


https://doi.org/10.1007/BF02294150
https://doi.org/10.3758/s13428-020-01479-0
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modelP2 <- '
f1 =~ .7%xV1 + .7%V2 + .7%V3 + .7%V4
f2 =~ .7%xV5 + .7xV6 + .7xV7 + ,7xV8
f1 ~~ c(-.3, .3)*f2 # DIFFERENT ACROSS GROUPS
f1 ~~ 1%f1
f2 ~~ 1xf2
V1 ~~ .51%xV1
V2 ~~ .51%V2
V3 ~~ .51%V3
V4 ~~ . 51xV4
V5 ~~ .51%xV5
V6 ~~ .51*V6
V7 ~~ .51xV7
V8 ~~ .51*xV8
modelA2 <- '

f1 =~ V1 + V2 + V3 + V4
f2 =~ V5 + V6 + V7 + V8
f1 ~~ c(psi21, psi21)*f2 # EQUALITY CONSTRAINT ACROSS GROUPS
## Calculate power
SSpower (powerModel = modelA2, popModel = modelP2, n = c(100, 100), nparam = 1,
std.lv = TRUE)
## Get power for a range of sample sizes
Ns2 <- cbind(Groupl = seq(10, 100, 10), Group2 = seq(10, 100, 10))
Power2 <- apply(Ns2, MARGIN = 1, FUN = function(nn) {
SSpower (powerModel = modelA2, popModel = modelP2, n = nn,
nparam = 1, std.lv = TRUE)
»
plot(x = rowSums(Ns2), y = Power2, type = "1"”, xlab = "Total Sample Size",
ylim = 0:1)
abline(h = c(.8, .9), 1ty = c("dotted"”,"dashed"))
legend("bottomright”, c("80% Power"”,"90% Power"), lty = c("dotted”,"dashed"))

tukeySEM Tukey’s WSD post-hoc test of means for unequal variance and sample
size

Description

This function computes Tukey’s WSD post hoc test of means when variances and sample sizes are
not equal across groups. It can be used as a post hoc test when comparing latent means in multiple
group SEM.

Usage

tukeySEM(m1, m2, varl, var2, nl, n2, ng)
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Arguments
m1
m2
vari
var2
nl

n2
ng

Details
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Mean of group 1.
Mean of group 2.
Variance of group 1.
Variance of group 2.
Sample size of group 1.
Sample size of group 2.

Total number of groups to be compared (i.e., the number of groups compared in
the omnibus test).

After conducting an omnibus test of means across three of more groups, researchers often wish
to know which sets of means differ at a particular Type I error rate. Tukey’s WSD test holds the
error rate stable across multiple comparisons of means. This function implements an adaptation of
Tukey’s WSD test from Maxwell & Delaney (2004), that allows variances and sample sizes to differ

across groups.

Value

A vector with three elements:

1. g: The g statistic

2. df: The degrees of freedom for the g statistic

3. p: A p value based on the g statistic, df, and the total number of groups to be compared

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu. edu>)

References

Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model
comparison perspective (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

Examples

## For a case where three groups have been compared:

## Group 1: mean
## Group 2: mean
## Group 3: mean

## compare group
tukeySEM(3.91, 3

## compare group

tukeySEM(3.91, 2.

= 3.91, var = 0.46, n = 246
3.96, var .62, n = 465
=2.94, var = 1.07, n = 64

1
(S

1 and group 2

.96, 0.46, 0.62, 246, 425, 3)

1 and group 3
94, 0.46, 1.07, 246, 64, 3)
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## compare group 2 and group 3
tukeySEM(3.96, 2.94, 0.62, 1.07, 465, 64, 3)

twostage

Fit a lavaan model using 2-Stage Maximum Likelihood (TSML) esti-
mation for missing data.

Description

This function automates 2-Stage Maximum Likelihood (TSML) estimation, optionally with auxil-
iary variables. Step 1 involves fitting a saturated model to the partially observed data set (to variables
in the hypothesized model as well as auxiliary variables related to missingness). Step 2 involves
fitting the hypothesized model to the model-implied means and covariance matrix (also called the
"EM" means and covariance matrix) as if they were complete data. Step 3 involves correcting the
Step-2 standard errors (SEs) and chi-squared statistic to account for additional uncertainty due to
missing data (using information from Step 1; see References section for sources with formulas).

Usage
twostage(..., aux, fun, baseline.model = NULL)
lavaan.2stage(..., aux = NULL, baseline.model = NULL)
cfa.2stage(..., aux = NULL, baseline.model = NULL)
sem.2stage(..., aux = NULL, baseline.model = NULL)

growth.2stage(.

Arguments

aux

fun

baseline.model

.., aux = NULL, baseline.model = NULL)

Arguments passed to the 1avaan: : lavaan() function specified in the fun argu-
ment. See also lavaan::lavOptions(). At a minimum, the user must supply
the first two named arguments to lavaan: :lavaan() (i.e., model and data).

An optional character vector naming auxiliary variable(s) in data

The character string naming the lavaan function used to fit the Step-2 hypothe-

n o n

sized model ("cfa”, "sem"”, "growth”, or "lavaan").

An optional character string, specifying the lavaan lavaan: :model.syntax()
for a user-specified baseline model. Interested users can use the fitted base-
line model to calculate incremental fit indices (e.g., CFI and TLI) using the
corrected chi-squared values (see the anova method in twostage). If NULL, the
default "independence model" (i.e., freely estimated means and variances, but
all covariances constrained to zero) will be specified internally.
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Details

All variables (including auxiliary variables) are treated as endogenous varaibles in the Step-1 sat-
urated model (fixed.x = FALSE), so data are assumed continuous, although not necessarily mul-
tivariate normal (dummy-coded auxiliary variables may be included in Step 1, but categorical
endogenous variables in the Step-2 hypothesized model are not allowed). To avoid assuming
multivariate normality, request se = "robust.huber.white”. CAUTION: In addition to setting
fixed.x = FALSE and conditional.x = FALSE in lavaan: : lavaan(), this function will automati-
cally set meanstructure = TRUE, estimator = "ML"”, missing = "fiml", and test = "standard".
lavaan: :1lavaan()’s se option can only be set to "standard” to assume multivariate normality or
to "robust.huber.white” to relax that assumption.

Value

The twostage object contains 3 fitted lavaan models (saturated, target/hypothesized, and baseline)
as well as the names of auxiliary variables. None of the individual models provide the correct model
results (except the point estimates in the target model are unbiased). Use the methods in twostage
to extract corrected SEs and test statistics.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Savalei, V., & Bentler, P. M. (2009). A two-stage approach to missing data: Theory and ap-
plication to auxiliary variables. Structural Equation Modeling, 16(3), 477-497. doi:10.1080/
10705510903008238

Savalei, V., & Falk, C. F. (2014). Robust two-stage approach outperforms robust full information
maximum likelihood with incomplete nonnormal data. Structural Equation Modeling, 21(2), 280—
302. doi:10.1080/10705511.2014.882692

See Also

twostage

Examples

## impose missing data for example

HSMiss <- HolzingerSwineford1939[ , c(paste("x", 1:9, sep = ""),
"ageyr","agemo","school")]

set.seed(12345)

HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)

age <- HSMiss$ageyr + HSMiss$agemo/12

HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

## specify CFA model from lavaan's ?cfa help page

HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6

speed =~ x7 + x8 + x9


https://doi.org/10.1080/10705510903008238
https://doi.org/10.1080/10705510903008238
https://doi.org/10.1080/10705511.2014.882692
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## use ageyr and agemo as auxiliary variables

out <- cfa.2stage(model = HS.model, data = HSMiss, aux = c("ageyr"”,"agemo"))
## two versions of a corrected chi-squared test results are shown

out

## see Savalei & Bentler (2009) and Savalei & Falk (2014) for details

## the summary additionally provides the parameter estimates with corrected
## standard errors, test statistics, and confidence intervals, along with
## any other options that can be passed to parameterEstimates()

summary (out, standardized = TRUE)

## use parameter labels to fit a more constrained model

modc <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + axx8 + a*x9

outc <- cfa.2stage(model = modc, data = HSMiss, aux = c("ageyr","agemo"))

## use the anova() method to test this constraint
anova(out, outc)
## like for a single model, two corrected statistics are provided

twostage-class Class for the Results of 2-Stage Maximum Likelihood (TSML) Estima-
tion for Missing Data

Description

This class contains the results of 2-Stage Maximum Likelihood (TSML) estimation for missing
data. The summary, anova, vcov methods return corrected SEs and test statistics. Other methods
are simply wrappers around the corresponding lavaan::lavaan methods.

Usage

## S4 method for signature 'twostage'
show(object)

## S4 method for signature 'twostage'
summary (object, ...)

## S4 method for signature 'twostage'
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anova(object, h1 = NULL, baseline = FALSE)

## S4 method for signature 'twostage'
nobs(object, type = c("ntotal”, "ngroups”,
"n.per.group”, "norig"”, "patterns”, "coverage"))

## S4 method for signature 'twostage'
coef(object, type = c("free”, "user"))

## S4 method for signature 'twostage'
vcov(object, baseline = FALSE)

## S4 method for signature 'twostage'
fitted.values(object, model = c("target”, "saturated”,
"baseline”), type = "moments”, labels = TRUE)

## S4 method for signature 'twostage'
fitted(object, model = c("target”, "saturated”,
"baseline”), type = "moments”, labels = TRUE)

## S4 method for signature 'twostage'

residuals(object, type = c("raw”, "cor”, "normalized”,
"standardized"))

## S4 method for signature 'twostage'
resid(object, type = c("raw”, "cor”, "normalized”,
"standardized"))

Arguments

object

h1

baseline

type

model

labels

Value

show

An object of class twostage.
arguments passed to lavaan: :parameterEstimates().

An object of class twostage in which object is nested, so that their difference
in fit can be tested using anova (see Value section for details).

logical indicating whether to return results for the baseline model, rather than
the default target (hypothesized) model.

The meaning of this argument varies depending on which method it it used
for. Find detailed descriptions in the Value section under coef, nobs, and
residuals.

character naming the slot for which to return the model-implied sample mo-
ments (see fitted.values description.)

logical indicating whether the model-implied sample moments should have
(row/column) labels.

signature(object = "twostage"): The show function is used to display the
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results of the anova method, as well as the header of the (uncorrected) target
model results.

summary signature(object = "twostage”, ...): The summary function prints
the same information from the show method, but also provides (and returns)
the output of parameterEstimates(object@target, ...) with corrected SEs,
test statistics, and confidence intervals. Additional arguments can be passed to
lavaan: :parameterEstimates(), including fmi = TRUE to provide an estimate
of the fraction of missing information.

anova signature(object = "twostage"”, h1 = NULL, baseline = FALSE):
The anova function returns the residual-based 2 test statistic result, as well
as the scaled X2 test statistic result, for the model in the target slot, or for
the model in the baseline slot if baseline = TRUE. The user can also provide
a single additional twostage object to the h1 argument, in which case anova
returns residual-based and scaled (A)x? test results, under the assumption that
the models are nested. The models will be automatically sorted according their
degrees of freedom.

nobs signature(object = "twostage"”, type = c("ntotal”, "ngroups”, "n.per.group”, "norig", "r
The nobs function will return the total sample sized used in the analysis by de-
fault. Also available are the number of groups or the sample size per group,
the original sample size (if any rows were deleted because all variables were
missing), the missing data patterns, and the matrix of coverage (diagonal is the
proportion of sample observed on each variable, and off-diagonal is the propor-
tion observed for both of each pair of variables).

coef signature(object = "twostage”, type = c("free”, "user")): Thisis
simply a wrapper around the corresponding lavaan::lavaan method, providing
point estimates from the target slot.

vcov signature(object = "twostage"”, baseline = FALSE): Returns the asymp-
totic covariance matrix of the estimated parameters (corrected for additional un-
certainty due to missing data) for the model in the target slot, or for the model
in the baseline slot if baseline = TRUE.
fitted.values, fitted
signature(object = "twostage”, model = c("target"”, "saturated”, "baseline")):
This is simply a wrapper around the corresponding lavaan::lavaan method, pro-
viding model-implied sample moments from the slot specified in the model ar-
gument.
residuals, resid
signature(object = "twostage”, type = c("raw”, "cor”, "normalized”, "standardized")):
This is simply a wrapper around the corresponding lavaan::lavaan method, pro-
viding residuals of the specified type from the target slot.

Slots

saturated A fitted lavaan::lavaan object containing the saturated model results
target A fitted lavaan::lavaan object containing the target/hypothesized model results
baseline A fitted lavaan::lavaan object containing the baseline/null model results

auxNames A character string (potentially of length == @) of any auxiliary variable names, if used
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Objects from the Class

Objects can be created via the twostage () function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

See Also

twostage()

Examples

# See the example from the twostage function
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