
Package ‘secretbase’
March 4, 2025

Type Package

Title Cryptographic Hash, Extendable-Output and Base64 Functions

Version 1.0.5

Description Fast and memory-efficient streaming hash functions and base64
encoding / decoding. Hashes strings and raw vectors directly. Stream hashes
files which can be larger than memory, as well as in-memory objects through
R's serialization mechanism. Implementations include the SHA-256, SHA-3 and
'Keccak' cryptographic hash functions, SHAKE256 extendable-output function
(XOF), and 'SipHash' pseudo-random function.

License MIT + file LICENSE

BugReports https://github.com/shikokuchuo/secretbase/issues

URL https://shikokuchuo.net/secretbase/,

https://github.com/shikokuchuo/secretbase/

Encoding UTF-8

Depends R (>= 3.5)

RoxygenNote 7.3.2

Config/build/compilation-database true

NeedsCompilation yes

Author Charlie Gao [aut, cre] (<https://orcid.org/0000-0002-0750-061X>),
Hibiki AI Limited [cph]

Maintainer Charlie Gao <charlie.gao@shikokuchuo.net>

Repository CRAN

Date/Publication 2025-03-04 14:50:02 UTC

Contents
secretbase-package . 2
base64dec . 2
base64enc . 3
keccak . 4

1

https://github.com/shikokuchuo/secretbase/issues
https://shikokuchuo.net/secretbase/
https://github.com/shikokuchuo/secretbase/
https://orcid.org/0000-0002-0750-061X

2 base64dec

sha256 . 5
sha3 . 7
shake256 . 8
siphash13 . 9

Index 12

secretbase-package secretbase: Cryptographic Hash, Extendable-Output and Base64
Functions

Description

Fast and memory-efficient streaming hash functions and base64 encoding / decoding. Hashes
strings and raw vectors directly. Stream hashes files which can be larger than memory, as well
as in-memory objects through R’s serialization mechanism. Implementations include the SHA-256,
SHA-3 and ’Keccak’ cryptographic hash functions, SHAKE256 extendable-output function (XOF),
and ’SipHash’ pseudo-random function.

Author(s)

Charlie Gao <charlie.gao@shikokuchuo.net> (ORCID)

See Also

Useful links:

• https://shikokuchuo.net/secretbase/

• https://github.com/shikokuchuo/secretbase/

• Report bugs at https://github.com/shikokuchuo/secretbase/issues

base64dec Base64 Decode

Description

Decodes a character string, raw vector or other object from base64 encoding.

Usage

base64dec(x, convert = TRUE)

Arguments

x an object.

convert logical TRUE to convert back to a character string, FALSE to convert back to a
raw vector or NA to decode and then unserialize back to the original object.

https://orcid.org/0000-0002-0750-061X
https://shikokuchuo.net/secretbase/
https://github.com/shikokuchuo/secretbase/
https://github.com/shikokuchuo/secretbase/issues

base64enc 3

Details

The value of convert should be set to TRUE, FALSE or NA to be the reverse of the 3 encoding
operations (for strings, raw vectors and arbitrary objects), in order to return the original object.

Value

A character string, raw vector, or other object depending on the value of convert.

References

This implementation is based that by ’The Mbed TLS Contributors’ under the ’Mbed TLS’ Trusted
Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.

See Also

base64enc()

Examples

base64dec(base64enc("secret base"))
base64dec(base64enc(as.raw(c(1L, 2L, 4L))), convert = FALSE)
base64dec(base64enc(data.frame()), convert = NA)

base64enc Base64 Encode

Description

Encodes a character string, raw vector or other object to base64 encoding.

Usage

base64enc(x, convert = TRUE)

Arguments

x an object.

convert logical TRUE to encode to a character string or FALSE to a raw vector.

Details

A character string or raw vector (with no attributes) is encoded as is, whilst all other objects are first
serialized (using R serialisation version 3, big-endian representation).

Value

A character string or raw vector depending on the value of convert.

https://www.trustedfirmware.org/projects/mbed-tls

4 keccak

References

This implementation is based that by ’The Mbed TLS Contributors’ under the ’Mbed TLS’ Trusted
Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.

See Also

base64dec()

Examples

base64enc("secret base")
base64enc(as.raw(c(1L, 2L, 4L)), convert = FALSE)
base64enc(data.frame())

keccak Keccak Cryptographic Hash Algorithms

Description

Returns a Keccak hash of the supplied object or file.

Usage

keccak(x, bits = 256L, convert = TRUE, file)

Arguments

x object to hash. A character string or raw vector (without attributes) is hashed as
is. All other objects are stream hashed using native R serialization.

bits integer output size of the returned hash. Must be one of 224, 256, 384 or 512.
convert logical TRUE to convert the hash to its hex representation as a character string,

FALSE to return directly as a raw vector, or NA to return as a vector of (32-bit)
integers.

file character file name / path. If specified, x is ignored. The file is stream hashed,
and the file can be larger than memory.

Value

A character string, raw or integer vector depending on convert.

R Serialization Stream Hashing

Where this is used, serialization is always version 3 big-endian representation and the headers (con-
taining R version and native encoding information) are skipped to ensure portability across plat-
forms.

As hashing is performed in a streaming fashion, there is no materialization of, or memory allocation
for, the serialized object.

https://www.trustedfirmware.org/projects/mbed-tls

sha256 5

References

Keccak is the underlying algorithm for SHA-3, and is identical apart from the value of the padding
parameter.

The Keccak algorithm was designed by G. Bertoni, J. Daemen, M. Peeters and G. Van Assche.

This implementation is based on one by ’The Mbed TLS Contributors’ under the ’Mbed TLS’
Trusted Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.

Examples

Keccak-256 hash as character string:
keccak("secret base")

Keccak-256 hash as raw vector:
keccak("secret base", convert = FALSE)

Keccak-224 hash as character string:
keccak("secret base", bits = 224)

Keccak-384 hash as character string:
keccak("secret base", bits = 384)

Keccak-512 hash as character string:
keccak("secret base", bits = 512)

Keccak-256 hash a file:
file <- tempfile(); cat("secret base", file = file)
keccak(file = file)
unlink(file)

sha256 SHA-256 Cryptographic Hash Algorithm

Description

Returns a SHA-256 hash of the supplied object or file, or HMAC if a secret key is supplied.

Usage

sha256(x, key = NULL, convert = TRUE, file)

Arguments

x object to hash. A character string or raw vector (without attributes) is hashed as
is. All other objects are stream hashed using native R serialization.

key if NULL, the SHA-256 hash of x is returned. If a character string or raw vector,
this is used as a secret key to generate an HMAC. Note: for character vectors,
only the first element is used.

https://www.trustedfirmware.org/projects/mbed-tls

6 sha256

convert logical TRUE to convert the hash to its hex representation as a character string,
FALSE to return directly as a raw vector, or NA to return as a vector of (32-bit)
integers.

file character file name / path. If specified, x is ignored. The file is stream hashed,
and the file can be larger than memory.

Value

A character string, raw or integer vector depending on convert.

R Serialization Stream Hashing

Where this is used, serialization is always version 3 big-endian representation and the headers (con-
taining R version and native encoding information) are skipped to ensure portability across plat-
forms.

As hashing is performed in a streaming fashion, there is no materialization of, or memory allocation
for, the serialized object.

References

The SHA-256 Secure Hash Standard was published by the National Institute of Standards and Tech-
nology (NIST) in 2002 at https://csrc.nist.gov/publications/fips/fips180-2/fips180-2.
pdf.

This implementation is based on one by ’The Mbed TLS Contributors’ under the ’Mbed TLS’
Trusted Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.

Examples

SHA-256 hash as character string:
sha256("secret base")

SHA-256 hash as raw vector:
sha256("secret base", convert = FALSE)

SHA-256 hash a file:
file <- tempfile(); cat("secret base", file = file)
sha256(file = file)
unlink(file)

SHA-256 HMAC using a character string secret key:
sha256("secret", key = "base")

SHA-256 HMAC using a raw vector secret key:
sha256("secret", key = charToRaw("base"))

https://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
https://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
https://www.trustedfirmware.org/projects/mbed-tls

sha3 7

sha3 SHA-3 Cryptographic Hash Algorithms

Description

Returns a SHA-3 hash of the supplied object or file.

Usage

sha3(x, bits = 256L, convert = TRUE, file)

Arguments

x object to hash. A character string or raw vector (without attributes) is hashed as
is. All other objects are stream hashed using native R serialization.

bits integer output size of the returned hash. Must be one of 224, 256, 384 or 512.

convert logical TRUE to convert the hash to its hex representation as a character string,
FALSE to return directly as a raw vector, or NA to return as a vector of (32-bit)
integers.

file character file name / path. If specified, x is ignored. The file is stream hashed,
and the file can be larger than memory.

Value

A character string, raw or integer vector depending on convert.

R Serialization Stream Hashing

Where this is used, serialization is always version 3 big-endian representation and the headers (con-
taining R version and native encoding information) are skipped to ensure portability across plat-
forms.

As hashing is performed in a streaming fashion, there is no materialization of, or memory allocation
for, the serialized object.

References

The SHA-3 Secure Hash Standard was published by the National Institute of Standards and Tech-
nology (NIST) in 2015 at doi:10.6028/NIST.FIPS.202.

This implementation is based on one by ’The Mbed TLS Contributors’ under the ’Mbed TLS’
Trusted Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.

https://doi.org/10.6028/NIST.FIPS.202
https://www.trustedfirmware.org/projects/mbed-tls

8 shake256

Examples

SHA3-256 hash as character string:
sha3("secret base")

SHA3-256 hash as raw vector:
sha3("secret base", convert = FALSE)

SHA3-224 hash as character string:
sha3("secret base", bits = 224)

SHA3-384 hash as character string:
sha3("secret base", bits = 384)

SHA3-512 hash as character string:
sha3("secret base", bits = 512)

SHA3-256 hash a file:
file <- tempfile(); cat("secret base", file = file)
sha3(file = file)
unlink(file)

shake256 SHAKE256 Extendable Output Function

Description

Returns a SHAKE256 hash of the supplied object or file.

Usage

shake256(x, bits = 256L, convert = TRUE, file)

Arguments

x object to hash. A character string or raw vector (without attributes) is hashed as
is. All other objects are stream hashed using native R serialization.

bits integer output size of the returned hash. Value must be between 8 and 2^24.

convert logical TRUE to convert the hash to its hex representation as a character string,
FALSE to return directly as a raw vector, or NA to return as a vector of (32-bit)
integers.

file character file name / path. If specified, x is ignored. The file is stream hashed,
and the file can be larger than memory.

Details

To produce single integer values suitable for use as random seeds for R’s pseudo random number
generators (RNGs), set ‘bits’ to 32 and ‘convert’ to NA.

siphash13 9

Value

A character string, raw or integer vector depending on convert.

R Serialization Stream Hashing

Where this is used, serialization is always version 3 big-endian representation and the headers (con-
taining R version and native encoding information) are skipped to ensure portability across plat-
forms.

As hashing is performed in a streaming fashion, there is no materialization of, or memory allocation
for, the serialized object.

References

This implementation is based on one by ’The Mbed TLS Contributors’ under the ’Mbed TLS’
Trusted Firmware Project at https://www.trustedfirmware.org/projects/mbed-tls.

Examples

SHAKE256 hash as character string:
shake256("secret base")

SHAKE256 hash as raw vector:
shake256("secret base", convert = FALSE)

SHAKE256 hash to integer:
shake256("secret base", bits = 32L, convert = NA)

SHAKE256 hash a file:
file <- tempfile(); cat("secret base", file = file)
shake256(file = file)
unlink(file)

siphash13 SipHash Pseudorandom Function

Description

Returns a fast, cryptographically-strong SipHash keyed hash of the supplied object or file. SipHash-
1-3 is optimised for performance. Note: SipHash is not a cryptographic hash algorithm.

Usage

siphash13(x, key = NULL, convert = TRUE, file)

https://www.trustedfirmware.org/projects/mbed-tls

10 siphash13

Arguments

x object to hash. A character string or raw vector (without attributes) is hashed as
is. All other objects are stream hashed using native R serialization.

key a character string or raw vector comprising the 16 byte (128 bit) key data, or
else NULL which is equivalent to ’0’. If a longer vector is supplied, only the first
16 bytes are used, and if shorter, padded with trailing ’0’. Note: for character
vectors, only the first element is used.

convert logical TRUE to convert the hash to its hex representation as a character string,
FALSE to return directly as a raw vector, or NA to return as a vector of (32-bit)
integers.

file character file name / path. If specified, x is ignored. The file is stream hashed,
and the file can be larger than memory.

Value

A character string, raw or integer vector depending on convert.

R Serialization Stream Hashing

Where this is used, serialization is always version 3 big-endian representation and the headers (con-
taining R version and native encoding information) are skipped to ensure portability across plat-
forms.

As hashing is performed in a streaming fashion, there is no materialization of, or memory allocation
for, the serialized object.

References

The SipHash family of cryptographically-strong pseudorandom functions (PRFs) are described
in ’SipHash: a fast short-input PRF’, Jean-Philippe Aumasson and Daniel J. Bernstein, Paper
2012/351, 2012, Cryptology ePrint Archive at https://ia.cr/2012/351.

This implementation is based on the SipHash streaming implementation by Daniele Nicolodi, David
Rheinsberg and Tom Gundersen at https://github.com/c-util/c-siphash. This is in turn
based on the SipHash reference implementation by Jean-Philippe Aumasson and Daniel J. Bern-
stein released to the public domain at https://github.com/veorq/SipHash.

Examples

SipHash-1-3 hash as character string:
siphash13("secret base")

SipHash-1-3 hash as raw vector:
siphash13("secret base", convert = FALSE)

SipHash-1-3 hash using a character string key:
siphash13("secret", key = "base")

SipHash-1-3 hash using a raw vector key:
siphash13("secret", key = charToRaw("base"))

https://ia.cr/2012/351
https://github.com/c-util/c-siphash
https://github.com/veorq/SipHash

siphash13 11

SipHash-1-3 hash a file:
file <- tempfile(); cat("secret base", file = file)
siphash13(file = file)
unlink(file)

Index

base64dec, 2
base64dec(), 4
base64enc, 3
base64enc(), 3

keccak, 4

secretbase (secretbase-package), 2
secretbase-package, 2
sha256, 5
sha3, 7
shake256, 8
siphash13, 9

12

	secretbase-package
	base64dec
	base64enc
	keccak
	sha256
	sha3
	shake256
	siphash13
	Index

