Factor Analysis

Section 5.2 of Drton and Plummer (2017) considers a factor analysis model applied to the data analysed
by Lopes and West (2004) originally published in West and Harrison (1997, pp.610-618). The data concern
average monthly exchange rates of six currencies relative to the pound sterling (GBP) from January 1975 to
December 1986.

The data are read in as a data frame then converted to a matrix X containing only the currency values. The
data to be passed to the factor analysis model take the form of a matrix Y of lag-1 differences in which each
column is standardized to have mean 0 and standard deviation 1.

X = read.table("lopeswest.dat", header = TRUE)
X = as.matrix(X[, c("U.S.A.", "Canada", "Yen", "Franc", "Lira", "Mark")])
Y = scale(diff (X))

Under a factor analysis model Var(Y) = X + 837 where ¥ is a diagonal matrix (uniquenesses) and 3 is a
6 x i matrix (factor loadings). Model singularities occur when the rank of 3 is assumed to be ¢, but the true
data-generating model has rank j < <.

Factor analysis models are fitted with the stats::factanal() function. For example, the two-factor model
is given by

factanal(Y, factors=2)

##

## Call:

## factanal(x = Y, factors = 2)

##

## Uniquenesses:

## U.S.A. Canada Yen Franc Lira Mark
## 0.005 0.162 0.621 0.016 0.260 0.266

##

## Loadings:

## Factorl Factor2

## U.S.A. 0.216 0.974

## Canada 0.250 0.881

## Yen 0.503 0.354

## Franc 0.976 0.177

## Lira 0.829 0.229

## Mark 0.826 0.229

##

## Factorl Factor2
## SS loadings 2.685 1.985

## Proportion Var 0.448 0.331

## Cumulative Var 0.448 0.778

##

## Test of the hypothesis that 2 factors are sufficient.

## The chi square statistic is 2.05 on 4 degrees of freedom.
## The p-value is 0.727

The frequentist analysis suggests that 2 factors are sufficient for these data. For Bayesian model choice using
sBIC the FactorAnalyses() function creates an object representing a collection of factor analysis models



with a given number of covariates, up to a maximum number of factors. For the Lopes and West (2004) data,
the number of covariates is 6, i.e. the number of columns of Y. The maximum number of factors that can be
fitted to 6 variables is 3.

library(sBIC)

factorAnalyses = FactorAnalyses(numCovariates=ncol(Y), maxNumFactors=3)

The learning coefficients A;; can be extracted from the resulting object. Note that the minimal model is i = 0
corresponding to independence of the columns of Y.

lambda <- matrix("",
for (i in 1:4) {
for (j in 1:i) {
lambdal[i,j] <- factorAnalyses$learnCoef (i, j)$lambda

4, 4, dimnames=list(paste0("i=",0:3), paste0("j=",0:3)))

}
}
knitr::kable(lambda, caption="Learning coefficients $\\lambda_{ij}$ for sBIC")

Table 1: Learning coefficients A;; for sBIC

j:() j=1 j:2 j:3
i=0 3
i=1 45 6
i=2 6 7.25 8.5
i=3 75 85 9.5 105

Table 1 reproduces Table 2 of Drton and Plummer (2017) showing learning coefficients for model with j
factors embedded in a model with ¢ > j factors. The multiplicity is equal to 1 for all models (not shown).

The singular BIC is calculated by passing to the sBIC() function the data Y and the object factorAnalysis

representing the model collection.

results = sBIC(Y, factorAnalyses)
print(results)

## $logLike

## [1] -429.00000 -191.61082 -70.04375 -68.93844
##

## $sBIC

## [1] -443.8885 -221.3879 -112.2279 -116.1058
##

## $BIC

## [1] -443.8885 -221.3879 -112.2279 -121.0483
##

## $modelPoset

## [1] "FactorAnalyses: 0x7fdel170241c8"

If the singular BIC is considered to be an approximation to the log of the marginal likelihood, then it can be
converted to an approximate posterior distribution by exponentiating and then normalizing the sBIC values.
The convenience function BICpost carries out this transformation.



BICpost <- function(BIC) {
w = exp((BIC - max(BIC)))
zapsmall( w/ sum(w) )

}

The approximate posterior probabilities according to BIC and sBIC for models ¢ = 0 up to ¢ = 3 are as
follows.

BICpost(results$BIC)

## [1] 0.0000000 0.0000000 0.9998523 0.0001477

BICpost (results$sBIC)

## [1] 0.0000000 0.0000000 0.9797249 0.0202751

These values can be compared with the posterior distribution of the number of components derived by Lopes
and West (2004) using reversible jump MCMC. They give two posterior distributions based on two different
models.

Table 2: Posterior distributions for the number of classes (i) from
Lopes & West (2004)

Table 3 0.00 0.88 0.12
Table 5 0.00 0.98  0.02

The approximate posterior derived from sBIC resembles the posterior from Table 5 of Lopes and West (2004).
In contrast, the approximate posterior derived from BIC puts extremely low weight on the model i = 3.
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