## ---- include = FALSE--------------------------------------------------------- library(knitr) knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- set.seed(1) library(rwicc) theta_true = c(0.986, -3.88) hazard_alpha = 1 hazard_beta = 0.5 sim_data = simulate_interval_censoring( "theta" = theta_true, "study_cohort_size" = 4500, "preconversion_interval_length" = 365, "hazard_alpha" = hazard_alpha, "hazard_beta" = hazard_beta) # extract the participant-level and observation-level simulated data: sim_participant_data = sim_data$pt_data sim_obs_data = sim_data$obs_data rm(sim_data) ## ----------------------------------------------------------------------------- library(pander) pander(head(sim_participant_data)) ## ----------------------------------------------------------------------------- pander(head(sim_obs_data)) ## ----------------------------------------------------------------------------- EM_algorithm_outputs = fit_joint_model( obs_level_data = sim_obs_data, participant_level_data = sim_participant_data, bin_width = 7, verbose = FALSE) ## ----------------------------------------------------------------------------- names(EM_algorithm_outputs) ## ----------------------------------------------------------------------------- pander(EM_algorithm_outputs$Theta) ## ----------------------------------------------------------------------------- mu_est_EM = EM_algorithm_outputs$Mu print(mu_est_EM) ## ----------------------------------------------------------------------------- EM_algorithm_outputs$converged ## ----------------------------------------------------------------------------- EM_algorithm_outputs$iterations ## ----------------------------------------------------------------------------- pander(EM_algorithm_outputs$convergence_metrics) ## ----------------------------------------------------------------------------- theta_est_midpoint = fit_midpoint_model( obs_level_data = sim_obs_data, participant_level_data = sim_participant_data ) pander(theta_est_midpoint) ## ----------------------------------------------------------------------------- # uniform imputation: theta_est_uniform = fit_uniform_model( obs_level_data = sim_obs_data, participant_level_data = sim_participant_data ) pander(theta_est_uniform) ## ---- fig.width = 6, fig.asp = .75-------------------------------------------- plot1 = plot_CDF( true_hazard_alpha = hazard_alpha, true_hazard_beta = hazard_beta, omega.hat = EM_algorithm_outputs$Omega) print(plot1) ## ---- fig.width = 6, fig.asp = .8--------------------------------------------- plot2 = plot_phi_curves( theta_true = theta_true, theta.hat_uniform = theta_est_uniform, theta.hat_midpoint = theta_est_midpoint, theta.hat_joint = EM_algorithm_outputs$Theta) print(plot2)