Neural Text Models with R package ruimtehol

Jan Wijffels

Abstract

Ruimtehol is a comprehensive R package which wraps the StarSpace C++ library
(https://github.com/facebookresearch/StarSpace). Starspace is a neural natural
language modelling toolkit which allows you to calculate word, sentence, article, doc-
ument, webpage, link and entity ’embeddings’. By using the ’embeddings’, you can
perform text based multi-label classification, find similarities between texts and cate-
gories, do collaborative-filtering based recommendation as well as content-based recom-
mendation, find out relations between entities, calculate graph ’embeddings’ as well as
perform semi-supervised learning and multi-task learning on plain text. The techniques
are explained in detail in the paper: StarSpace: Embed All The Things!, available at
(https://arxiv.org/abs/1709.03856).

Keywords: Starspace, NLP, embed, embedding, neural, text.

1. Ground control to ruimtehol

1.1. Overview

The ruimtehol R package which wraps the StarSpace C++ library (https://github.com/
facebookresearch/StarSpace), focussing on building and utilising embedding models for
natural language. It allows you to do the following Natural Language Processing tasks

Text classification

Learning word, sentence or document level embeddings

Finding sentence or document similarity

Ranking web documents

Content-based recommendation (e.g. recommend text/music based on the content)

Collaborative filtering based recommendation (e.g. recommend text/music based on
interest)

Identification of entity relationships

Source code repository

The source code of the package is on github at https://github.com/bnosac/ruimtehol.
It uses Starspace version 'STARSPACE-2017-2’ cloned in September 2018 to https://github.

https://github.com/facebookresearch/StarSpace
https://arxiv.org/abs/1709.03856
https://github.com/facebookresearch/StarSpace
https://github.com/facebookresearch/StarSpace
https://github.com/bnosac/ruimtehol
https://github.com/bnosac-dev/StarSpace

2 Neural Text Models with R package ruimtehol

com/bnosac-dev/StarSpace. Modifications were done in order to make it CRAN compliant
and to make the usage more straightforward for R users. The R package is distributed under
the Mozilla Public License version 2.0.

1.2. Functionalities

The R package allows you to have a low-level access to the C++ library for fine-grained control
and provides as well high-level interfaces for commonly used tasks. Functionalities are also
included for saving and loading models, using the models to predict and general embedding
similarity and ranking functions.

starspace Low-level interface to build a Starspace model

starspace_load_model Load a pre-trained model or a tab-separated file

starspace_save_model Save a Starspace model

starspace_embedding Get embeddings of documents/words/ngrams/labels

starspace_knn Find k-nearest neighbouring information for new text

starspace_dictonary Get words/labels part of the model dictionary

predict.textspace Get predictions along a Starspace model

as.matrix Get words and label embeddings

embedding_similarity Cosine/dot product similarity between embeddings - top-n most similar text
embed_wordspace Build a Starspace model which calculates word /ngram embeddings
embed_sentencespace Build a Starspace model which calculates sentence embeddings
embed_articlespace Build a Starspace model for embedding articles - sentence-article similarities
embed_tagspace Build a Starspace model for multi-label classification

embed_docspace Build a Starspace model for content-based recommendation
embed_pagespace Build a Starspace model for interest-based recommendation
embed_entityrelationspace | Build a Starspace model for entity relationship completion

DOCSPACE
TAGSPACE
,-'Cl'u'.:l.. {:.L : .;.n.: T sndick
great \\l’uod restaurant > hus. — s \ i
| Gocumen_1 documest 2 ducument_ documsss_3
bt fmbm e\ fri e
i) Ll i ing \nm: ?xdu canmin, ﬁ:leev
PAGESPAC RAPHSPACE
e Entity: Barack Obama Relation: was_bom_in

N

Entity: Hawarii

https://github.com/bnosac-dev/StarSpace
https://github.com/bnosac-dev/StarSpace

1.3. Example data

Jan Wijffels 3

In what follows below, we showcase some of the use cases of the R package. In order to do
that, we will use text with questions and answers from the Belgian parliament. This dataset
was collected as open data under the CCO license from http://data.dekamer.be

The data contains Dutch questions asked in the year 2017 by members in the National Belgian
parliament. Each question was categorised alongside several themes and the dataset also
contains the answer which was given by the department or minister who was responsible for
that topic. We also know to which political party the person belonged to who was asking the

question.

library(ruimtehol)

data("dekamer", package = "ruimtehol")

str(dekamer)

'data.frame': 3811 obs. of 12 variables:

$ doc_id : int 184501 184502 184503 184504 184505 184506 184507 184508 1845
$ depotdat : Date, format: "2017-01-04" "2017-01-04"

$ aut_party : Factor w/ 16 levels "CD&V","CDH","DEFI",..: 6 6 9 9166 7 11 9
$ aut_person : Factor w/ 156 levels "Almaci, Meyrem",..: 10 17 87 87 86 12 12 15
$ aut_language : Factor w/ 2 levels "dutch","french": 2 211122121

$ question : chr "Lijn Brussel-Luxemburg. - Technisch incident. \n\n Op maand
$ question_theme_main : Factor w/ 45 levels "ARBEID","BEGROTING",..: 43 43 39 39 15 NA NA
$ question_theme : chr "VERVOERSLIJN,VERVOERBELEID,VERVOER PER SPOOR,NMBS,DIENSTREG
$ answer : chr "1. De noodrem werd geactiveerd; het ging om kwaad opzet. 2.
$ answer_deptpres int 13 136 3 9 4 16 13 13 16 ...

$ answer_department : chr "Minister van Mobiliteit, belast met Belgocontrol en de Nati
$ answer_subdepartment: chr "Mobiliteit, Belgocontrol en NMBS" "Mobiliteit, Belgocontrol

http://data.dekamer.be

4 Neural Text Models with R package ruimtehol

2. Text classification

In this example, we will perform text classification. Each question in parliament can be
labelled with one or more tags. A tagspace model is constructed which can be used to tag
new questions with the learned tagset.

2.1. Data preparation

The following data preparation is done first

e make sure all the text is separated by spaces, this is the format which Starspace needs

e make sure the response is a list of all categories in case you do multi-label classification
and each category should not contain spaces (in the below example spaces are replaced
with a dash)

The Starspace C++ library internally uses spaces as a separator, make sure each token is

separated by a space if you want to include it in the model and that the labels do not contain
spaces.

dekamer$x <- strsplit(dekamer$question, "\\W")

dekamer$x <- lapply(dekamer$x, FUN = function(x) x[x != ""])

dekamer$x <- sapply(dekamer$x, FUN = function(x) paste(x, collapse = " "))
dekamer$x <- tolower (dekamer$x)

dekamer$y <- strsplit(dekamer$question_theme, split = ",")

dekamer$y <- lapply(dekamer$y, FUN=function(x) gsub(" ", "-", x))

dekamer$x[1:2]

[1] "lijn brussel luxemburg technisch incident op maandag 19 december 2016 kondigde de nmb
[2] "mystery shopping resultaten van de onderzoeken op een eerdere parlementaire vraag ove

dekamer$y[1:2]

[[11]
(1] "VERVOERSLIJN" "VERVOERBELEID"
[3] "VERVOER-PER-SPOOR" "NMBS"

[5] "DIENSTREGELING-VAN-HET-VERVOER"

[[2]1]
(1] "FRAUDE" "CONTROLEORGAAN" "VERVOERBELEID"
[4] "PLAATSBEWIJS" "VERVOER-PER-SPOOR" "NMBS"

2.2. Model building

Jan Wijffels 5

Next a model is constructed, in this case a tagspace model which is a model which can be
used for simple classification as well as multi-label classification (which is the case here).

set.seed (123456789)
model <- embed_tagspace (x

model

Object of class textspace

dekamer$y,
0.8, validationPatience =

= dekamer$x, y
early_stopping
dim = 50,

lr = 0.01, epoch = 40, loss = "softmax", adagrad = TRUE,
similarity = "cosine", negSearchlLimit = 50,

ngrams = 2, minCount = 2, bucket = 100000,

maxTrainTime = 2 * 60)

10,

dimension of the embedding: 50

training arguments:
loss: softmax
margin: 0.05
similarity: cosine
epoch: 40
adagrad: TRUE
1r: 0.01
termLr:
norm: 1
maxNegSamples: 10
negSearchlLimit: 50
p: 0.5
shareEmb: TRUE
ws: 5
dropoutLHS: 0O
dropoutRHS: O
initRandSd: 0.001

1e-09

The code above has trained a model with the following relevant arguments

e early_stopping: data is split in a training (80 %) and a validation set (20 %)

e dim: the dimension of the embedding is set to 50

e optimisation is done with adagrad, during 40 epochs, starting with a learning rate (Ir)
of 0.01 and each time decreasing the learning rate by 1/epoch.

e The loss which is optimised is softmax loss. If the loss has not decreased during 10
epochs as set with validationPatience, training is stopped.

¢ Similarity between positive and negative labels is done by cosine similarity

6 Neural Text Models with R package ruimtehol

e negSearchLimit indicates the number of negative samples which are taken (for each
question we know which labels were given (positive) and we sample from the list of
labels which were not given a bunch of negatives)

e model is trained on bigrams (argument ngrams) and these should occur at least twice
(argument minCount), embeddings of bigrams are hashed to 100000 buckets

e model is trained for maximum 120 seconds (argument maxTrainTime))

2.3. Model inspection

Loss evolution

The plot shows the evolution of the loss over the epochs on the training set and the validation
set. This should generally decrease steadily and stabilise on the validation set which indicates
it has learned the embeddings well.

plot (model)
| Data
?'5] —— Training
---- Validation
«© _|
(90}
~o_
(40}
)]
(7]
(@]
- ©
™
Ln__ \ ® c e S -e-e-0-4-%"0
™ .\
< .\
™ 7]

Jan Wijffels 7

Dictionary

Starspace models the embeddings of the labels and the words in the same embedding space
allowing you to compute similarities across labels and text. To get the dictionary of all terms
in the model (words and labels), you can do the following.

dict <- starspace_dictionary(model)

str(dict)
List of 6
$ ntokens : int 616342
$ nwords : int 16406
$ nlabels : int 1332
$ labels : chr [1:1332] "__label__VERVOERBELEID" "__label__GEZONDHEIDSBELEID" "_
$ dictionary_size: int 17738
$ dictionary :'data.frame’: 17738 obs. of 3 variables:
..$ term : chr [1:17738] "de" "van" "het" "in" ..

..$ is_word : logi [1:17738] TRUE TRUE TRUE TRUE TRUE TRUE ...
..$ is_label: logi [1:17738] FALSE FALSE FALSE FALSE FALSE FALSE ...

length(dict$labels)
[1] 1332

The dictionary element contains a data.frame with all words as well as all labels which were
found in the data and for which embeddings are calculated.

Note that bigrams or ngrams are not stored and you’ll also see that labels are prefixed with
the text __label__, allowing them to be distinguished from plain words.

2.4. Embeddings of the dictionary

You can get the learned embeddings of the words and the labels which are part of the dictio-
nary as follows.

emb <- as.matrix(model)
dim(emb)

[1] 17738 50

If you only want embeddings of the words or of the labels, you can set the type argument in
the function as.matriz or you can use the function starspace_embedding directly. Below the
embedding of the word ’geld’ is retrieved as well as the embedding of the label "'VERVOER-
BELEID’.

emb_words <- as.matrix(model, type = "words")
emb_labels <- as.matrix(model, type "labels", prefix = FALSE)
e <- starspace_embedding(model, x = c("__label__VERVOERBELEID", "geld"), type = "ngram")

8 Neural Text Models with R package ruimtehol

If you trained a model with ngrams > 1, you can get the embedding of a bigram /ngram also.
For this Starspace uses a hashing trick from fastText and gets - based on the words which
define the bigram/ngram - the embedding of the hashed bucket of the combined term. If you
specify to retrieve this type of embedding, you can not have more words than you specified
ngrams when doing the training.

e <- starspace_embedding(model, c("nationale loterij"), type = "ngram")

2.5. Embeddings of full text

For retrieving embeddings of full text, use type = ’document’ which is the default of starspace_embedding.
It aggregates the embeddings of the words which are part of the text. Note that this aggre-

gation is governed by the normalization parameter p which you can set when you build the

model. The sum of the embeddings of the words which are in the text is normalised by divid-

ing by #words?. If p = 1, this is equivalent to taking the average of the embeddings. When

p = 0, this is equivalent to taking sum of the embeddings. The default is p = 0.5 indicating

a mixture of both.

text <- c("de nmbs heeft het treinaanbod uitgebreid via onteigening ...",
"de migranten komen naar europa de asielcentra ...")

emb_text <- starspace_embedding(model, text)

dim(emb_text)

[1] 2 50

2.6. Predict/Similarities/Ranking

You can extract predictions and get embedding similarities for information retrieval and
ranking. Function predict gets the document embeddings of the text and find the closest
among the labels.

predict(model, "de migranten komen naar europa de asielcentra ...")
[[1]]
[[1]11$doc_id
[1] 1
[[1]]$text
[1] "de migranten komen naar europa de asielcentra ..."
[[1]]1$prediction

label label_starspace similarity
1 GRENSCONTROLE __label__GRENSCONTROLE 0.8290045
2 VLUCHTELING __label __VLUCHTELING 0.7991300

3 MIDDEN--EN-OOST-EUROPA __label__MIDDEN--EN-OOST-EUROPA 0.7721905

Jan Wijffels

4 MIDDELLANDSE-ZEE __label__MIDDELLANDSE-ZEE 0.7315854
5 VLUCHTELINGENCENTRUM __label__VLUCHTELINGENCENTRUM 0.7287868
[[1]]$terms

[[1]]$terms$basedoc_index
[1] 486 21 1255 400 236

[[1]1]$terms$basedoc_terms
character(0)

The same can also be achieved with the function embedding_similarity which provides cosine
and dot product similarities. They give the same numbers as the predict functionality.

embedding_similarity(emb_text, emb_labels, type = "cosine", top_n = 5)

terml

de nmbs heeft het treinaanbod uitgebreid via onteigening ...

de nmbs heeft het treinaanbod uitgebreid via onteigening ...

de nmbs heeft het treinaanbod uitgebreid via onteigening ...

de nmbs heeft het treinaanbod uitgebreid via onteigening ...

de nmbs heeft het treinaanbod uitgebreid via onteigening ...

de migranten komen naar europa de asielcentra ...

de migranten komen naar europa de asielcentra ...

de migranten komen naar europa de asielcentra ...

de migranten komen naar europa de asielcentra ...

0 de migranten komen naar europa de asielcentra ...
term2 similarity rank

© 0 NO Ok WN -

[EY

1 PARKING 0.9174108 1
2 VEILIGHEIDSINRICHTING 0.9130136 2
3 TRANSPORTINFRASTRUCTUUR 0.9076254 3
4 VERVOER-PER-SPOOR 0.9024220 4
5 NMBS 0.9011823 5
6 GRENSCONTROLE 0.8290044 1
7 VLUCHTELING 0.7991300 2
8 MIDDEN--EN-OOST-EUROPA 0.7721905 3
9 MIDDELLANDSE-ZEE 0.7315854 4
10 VLUCHTELINGENCENTRUM 0.7287868 5

Shorthands for the knn Starspace functionality is also provided. This function allows you to
answer things like "What does this look like’. It shows the nearest neighbour of text to the
dictionary.

n

starspace_knn(model, "de migranten komen naar europa de asielcentra ...", k

$input
[1] "de migranten komen naar europa de asielcentra ..."

10 Neural Text Models with R package ruimtehol

$prediction

label similarity rank
1 opgevangen 0.8825260 1
2 migratiestromen 0.8623469
3 vluchtelingen 0.8592742
4 migrantenakkoord 0.8574268
5 misbruikt 0.8549968

O W N

2.7. Customising

As the words and labels are in the same embedding space, you can interpret the predict and
similarity functionalities in a broad way. This is shown below where the target documents to
compare with are changed.

targetdocs <- c("__label__FISCALITEIT",
"__label__OVERHEIDSADMINISTRATIE",
"__label__MIGRATIEBELEID",
"__label__POLITIE",
"__label__BUITENLANDS-BELEID",
"__label__ECONOMISCH-BELEID",
"de migranten komen naar europa ZZZ",
"__label__PERSONEEL")

predict(model, "de migranten komen naar europa de asielcentra ...",

basedoc = targetdocs)
embedding_similarity(

starspace_embedding (model, "de migranten komen naar europa de asielcentra ...

starspace_embedding (model, targetdocs), top_n = 3)

2.8. Save/Load model

Saving the model consists of saving the embeddings of the words and the labels as well as
storing the model parameters. The saved model can next be loaded back in and used for
information retrieval. The following approach is the advised approach to save and reload
models.

starspace_save_model (model, file = "textspace.ruimtehol")
model <- starspace_load_model("textspace.ruimtehol")

n) s

Jan Wijffels 11

3. Other models

The ruimtehol package contains many more models. It is advised to just inspect the help of
the functions listed up in section 1.2.

e Embeddings of word, sentences, articles, documents, webpages, links and entities: See
the examples in the package.

e Ranking and information retrieval: See the examples in the package.

e Collaborative filtering: See the examples in the package.

4. Semi-supervised learning

In the example in this vignette on classification modelling (embed_tagspace shown in section
2.2), Starspace was used in a completely supervised setting. If you have a look at the docu-
mentation of the functions embed_wordspace, embed_sentencespace, embed_articlespace, you
will notice that these are completely unsupervised. Starspace also allows to do a combination
of both, namely you can perform semi-supervised learning. This is shown below where we
randomly remove some data with text and some data of the labels as well and still learn on

the full data. As long as we have information on the labels or on the terms or both, we can
learn embeddings.

set.seed(321)
dekamer <- dekamer[order (rnorm(n = nrow(dekamer))),]
X <- dekamer$x
Y <- dekamer$y
X[1:250] <- NA
Y[251:500] <- NA
model <- embed_tagspace(x = X, y =Y,
early_stopping = 0.8, validationPatience = 10,

dim = 50,
Ir = 0.01, epoch = 40, loss = "softmax", adagrad = TRUE,
similarity = "cosine", negSearchlLimit = 50,

ngrams = 2, minCount = 2,
maxTrainTime = 2 * 60)

12 Neural Text Models with R package ruimtehol

5. Transfer learning

The ruimtehol R package also allows to do transfer learning. In transfer learning, knowledge
gained while learning on other data can be transferred to new data. The typical use case
of this is the case where we have already pretrained embeddings available. Several authors
have provided embeddings which were trained on different sources (e.g. Wikipedia / Open
databases / Google or Bing queries / Gigaword / Open CONLLU corpora). These are mostly
monolingual resources but also cross-lingual embeddings are common now. There are 2 use
cases of such pretrained embeddings, namely.

1. You can use these embedding as is

2. You can use these embedding as starting point to train and customise them on your
data (transfer learning)

In the examples below, both will be shown. In either case, we need to provide the argument
embeddings which should be a pretrained embedding matrix where the rownames of the matrix
are the terms or labels from the model.

5.1. Transfer learning - use embeddings as is

In order to show the first use case we generate some random embedding matrix and feed
it to function starspace which is the main workhorse behind all embed_ ... functions. The
important arguments that you need to give are

e embeddings: a matrix of embeddings where the row names indicate the terms or label

similarity: how you want to calculate similarities between embeddings and documents

e ngrams: when calculating similarities, shall we consider more than unigrams only
e p: normalisation parameter as explained in section 2.5

trainMode: either 0 (tagspace), 1 (pagespace), 2 (articlespace), 3 (sentence space), 4
(multi-relational graphspace), 5 (word embeddings)

pretrained <- matrix(data = rnorm(1000 * 100), nrow = 1000, ncol = 100,
dimnames = list(term = sprintf ("wordjs", 1:1000)))
model <- starspace(embeddings = pretrained,
similarity = "cosine", p = 0.5, ngrams = 1, trainMode = 5)
predict(model, newdata = c("word5 wordl word5 word3"), type = "knn")

[[1]]
doc_id label similarity rank
1 word5 0.7854695
1 wordl 0.5080059
1 word3 0.5045538
1 word188 0.3253955
1 word435 0.3094592

g WD
g WwN -

Jan Wijffels 13

5.2. Transfer learning - use embeddings as starting values for training

Now for the second use case: transfer learning. Below we build a simple wordspace model to
extract word embeddings. These embeddings will be passed on as starting values for another
tagspace model.

set.seed(321)

model <- embed_wordspace (dekamer$x,
dim = 50, ws = 7, epoch = 5, ngrams = 2, adagrad = FALSE,
margin = 0.8, negSearchLimit = 10,
maxTrainTime = 2 * 60)

pretrained_words <- as.matrix(model)

It’s important to note that we need to pass on pretrained embeddings for all terms as well
as all labels which we want to keep training upon. As we haven’t got the embeddings of the
labels, in the example below, we assign some random starting values to the embedding of the
labels. (Small note: in business settings it makes sense to let these labels start from a sensible
combination of the embeddings of words which you think are similar to that label). Starspace
uses the default prefix __label__ for identifying a label, which we need to add as prefix to the
rownames from the label embeddings.

labels <- sort(unique (unlist (dekamer$y)))
pretrained_labels <- matrix(data = rnorm(n = length(labels) * 50,
mean = mean(pretrained_words),
sd = sd(pretrained_words)),
nrow = length(labels),
ncol 50,
dimnames = list(term = sprintf("__label__Js", labels)))
pretrained <- rbind(pretrained_words, pretrained_labels)

Once we have these pretrained embeddings, we can use them as starting values for the training.
Note that we do not need to provide the dim argument as this argument is governed by the
dimension of the pretrained embedding matrix.

set.seed(321)
model <- embed_tagspace(x = dekamer$x, y = dekamer$y,
embeddings = pretrained,
early_stopping = 0.8, validationPatience = 10,

dim = 50,
Ir = 0.01, epoch = 40, loss = "softmax", adagrad = TRUE,
similarity = "cosine", negSearchlLimit = 50,

ngrams = 2, minCount = 2,
maxTrainTime = 2 * 60)
embedding <- as.matrix(model)

plot (model)
starspace_knn(model, "__label__FISCALITEIT", k = 10)

14 Neural Text Models with R package ruimtehol

$input
(1] "__label__FISCALITEIT"

$prediction
label similarity rank
1 __label__FISCALITEIT 0.9999999 1
2 orderbureaus 0.9193923 2
3 bezwaardossiers 0.9156525 3
4 inbezitneming 0.9025711 4
5 medecontractant 0.9005405 5
6 vijftiende 0.8956137 6
7 betrouwbaardere 0.8882675 7
8 kades 0.8866432 8
9 illustreert 0.8840237 9
10 actieven 0.8810527 10
To
O)__
™ .. Data
\\& —— Training
o ---- Validation
o ° .
) \ -
\ ".
L0 .\ ..'
o . .
) \ e,
()] .\ \o ... °
(2] . ¢ e e 4,
3 o \. ’..o
o
) .
T} °.
~
™ <.
o *te.
~ ® e e e
) S e,
I I I I I I I
0 5 10 15 20 25 30
Epoch

And now we have the model ready for doing further work based on the enhanced embedding
matrix.

Affiliation:

BNOSAC - Open Analytical Helpers
E-mail: jwijffels@bnosac.be
URL: http://www.bnosac.be

Jan Wijffels

15

mailto:jwijffels@bnosac.be
http://www.bnosac.be

	Ground control to ruimtehol
	Overview
	Source code repository

	Functionalities
	Example data

	Text classification
	Data preparation
	Model building
	Model inspection
	Loss evolution
	Dictionary

	Embeddings of the dictionary
	Embeddings of full text
	Predict/Similarities/Ranking
	Customising
	Save/Load model

	Other models
	Semi-supervised learning
	Transfer learning
	Transfer learning - use embeddings as is
	Transfer learning - use embeddings as starting values for training

