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Summary: rtrimis an r-package for the analysis of time series of counts of animal populations
with missing observations. The package contains functions to estimate indices and trends and
to asses the effects of covariates on these indices and trends. This report describes, in some
detail, the statistical methods and models implemented in this package.
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1 Introduction

The package rtrim (Bogaart, van der Loo and Pannekoek, 2016) is developed for the analysis of
count data obtained from monitoring animal populations. Such monitoring projects typically
involve a large number of sites that are surveyed annually, seasonally or monthly during some
period of time. One of the principal objectives of monitoring is to assess between-year changes
in abundance of the species under study. These changes are usually represented as indices, using
(usually) the first year as a base year.

In practice, this kind of data often contains many missing values. This hampers the usefulness of
index numbers because index numbers calculated on incomplete data will not only reflect
between year changes but changes in the pattern of missing values as well. By the use of models
that make assumptions about the structure of the counts, it is possible to obtain better estimates
of the indices. The idea is to estimate a model using the observed counts and then to use this
model to predict the missing counts. Indices can then be calculated on the basis of a completed
data set with the predicted counts replacing the missing counts. The package rtrimimplements
a variety of loglinear models for this purpose.

The purpose of these models is not only to produce estimates of annual indices but also to
investigate trends in these indices: is the abundance of a certain species increasing or decreasing
over time. These trends need not be constant over time, allowing conclusions like “the
development over time can be described by an annual increase of x% from 1980 up to 1988, no
change between 1988 and 1993 and an annual decrease of y% from 1993 onwards”. TRIM also
includes models that allow for effects of covariates on the trends and indices. Apart from leading
to improved estimates of annual indices, covariates are also important for investigating, for
instance, whether or not environmental factors such as acidification or pollution have an impact
on the trends.

A problem in monitoring programmes is the oversampling of particular areas and the
undersampling of others. Especially when many volunteers are involved, the more natural areas
like dunes, heathland and marshes might be overrepresented whereas urban areas and farmland
are underrepresented. This hinders the assessment of national figures because the changes are
not necessarily similar in all area types. This situation can be remedied by the use of weights that
can counter the effects of over- and undersampling.

In the application of loglinear models to the kind of data considered here, there are some
statistical complications to deal with. First, the usual (maximum likelihood) approach to
estimation and testing procedures for count data are based on the assumption of independent
Poisson distributions (or a multinomial distribution) for the counts. Such an assumption is likely
to be violated for counts of animals because the variance is often larger than expected for a
Poisson distribution (overdispersion), especially when they occur in colonies. Furthermore, the
counts are often not independently distributed because the counts in a particular year will also
depend on the counts in the year before (serial correlation). Therefore, rtrim uses statistical
procedures for estimation and testing that take these two phenomena into account. Second, the
usual algorithms for estimating loglinear models are not practical for the large number of
parameters in our models (since there is a parameter for each site the total number of
parameters is larger than the number of sites which can be several hundreds). This complication
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is dealt with by an algorithm that is tailor made for the applications discussed here and is much
faster and requires much less memory than the usual approach.

The remaining of this report consists of the following two main sections:

Models and statistics This section gives an overview of the models and methods implemented
in rtrim to analyse trends and estimate indices. These models belong to the class of loglinear
models and, although this section is self-contained, some background in loglinear analysis will be
helpful in understanding the models described here. General introductions to the theory and
practice of analysing count data by loglinear models can be found in standard text books such as
Agresti (1990, chapter 5), McCullagh and Nelder (1989, chapter 6), chapter 6 or Fienberg (1977).
Application of loglinear models to the analysis of monitoring data, also referred to as “Poisson
regression”, has been discussed by ter Braak et al. (1994), Thomas (1996) and Weinreich and
Oude Voshaar (1992). This section also summarizes the test-statistics implemented in rtrim,
including goodness-of-fit tests for the models and Wald-tests for the significance of specific
parameters.

Details of estimation and computation This section provides a more technical description of
the estimation methods and the algorithms involved as well as more details of the calculation of
the summary statistics and parameter transformations that can (optionally) be produced by
rtrim.
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2.1

Models and statistics

Terminology

Observed counts and missing counts The data for which the package rtrimis developed are
counts obtained from a number of sites at a number of years (or any equi-distant time points),
and optionally months (or any other season) within these years or time point. In what follows,
we will, without loss of generality, speak of ‘years’ and ‘months’. In case of annual data, the
count or frequency in site i at year j will be denoted by f;; (i = 1...1,j = 1...]) with I the total
number of sites and J the total number of years. There will usually not be observations f;; for
every combination of site and year and the unobserved counts are called missing counts. In case
of monthly (or any other type of higher frequency) data, we will have observed frequencies f; i,
(m =1...M) with M the number of months.

To cover cases with and without monthly observations, we will use the notation ij(m) to denote
both ij, in case of yearly observations, and ijm in case of monthly observations.

Expected and estimated counts The counts are viewed as random variables. The expected
counts are the expected values of the counts. The models, to be discussed in the next subsection,
express the expected counts as a function of site-effects and time-effects (or, site-parameters
and time-parameters). In many cases it will be possible to estimate the model parameters and
hence to calculate an estimated (or predicted) expected count for every combination of i and j
(and optionally m) even with a substantial number of missing counts. This depends however on
the model type and the pattern of missing values. In general, complicated models with many
parameters can only be estimated if the data are not too sparse (the number of missing data is
not too large), and simple, but perhaps not very realistic, models can be estimated even with
very sparse data. rtrim will inform you if a chosen model cannot be estimated because the data
are too sparse. In the following, expected counts will be denoted by ; ), and estimated
expected counts (also be called estimated counts) will be denoted by f; j ().

Imputed counts The count after imputation (imputed count) for a Site by Time combination,
denoted by fi}f(m), equals the observed count if an observation is made and equals the estimated
count f;jm) if an observation is missing, i.e.,

Nijeom if fij(m) availabe (observed),

fro .=
ij(m) ﬁij(m) otherwise.

Observed, model based and imputed time-total For year j, the observed total is
f+j = 2icobs fij» Where the notation i € obs denotes that summation is over available (observed)
fij only. Similarly, the model-based total is defined as p, ; = ¥, 1;j, and the imputed total as

+ — +
fii= Zifij'
Similarly, for monthly observations, we define fy ;1 = X, icobs fijms B4 j+ = Zim Hijm, and

+ +
f+j+ - Zi,mEobs fijm
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2.2

Model based and imputed index values An annual index value, index for short, describes the
increase or decrease of a species aggregates over all sites, relative to some specific reference
year or time period. Index values are computed as the total for a specific year, divided by the
total for a specified reference year or period. Usually, for these indices, the first year of a time
series is used as the reference year, but it is possible to select any other year to serve as
reference. For the exposition in most of the remainder of this report it is assumed, however, that
the first time-point is the base time-point. The model based indices are indices calculated from
the model based totals and the imputed indices are indices calculated from the imputed totals.

Models

This section gives a brief description of the models that are used in rtrimto analyse trends and
estimate indices. These models belong to the class of loglinear models. Loglinear models are
linear models for the logarithm of expected counts in contingency tables (in our case the
two-way Site by Time table).

Because rtrim models for monthly data sets are expressed as a mixture of models for yearly
data, first the ‘yearly’ models will be presented, and then the corresponding ‘monthly’ models.

2.2.1 Model 1: no time-effects
A very simple, base-line, model for In y;; is:

Inuij = q, (1)

with a; the effect for site i. For the expected counts under this model we have p; ;) = exp(a;).
This “no time-effects” model implies that the counts vary only across sites and not across
time-points; the model based time-totals are thus equal for each time point and the model based
indices are all equal to one.

2.2.2 Model 2: Linear (switching) trend
A model with a site-effect and a linear (on the log-scale) effect of time can be written as

Inuij=ai+B(j—1) (2a)

According to this model the In ;;’s for each site i are a linear function of j with slope f8; the log
expected count increases with an amount § from one time-point to the next. Model (2a) can be
rewritten in multiplicative form as:

pij = aibU™ = b 4 (2b)

with a; = exp(@;) = p;; and b = exp(f) This formulation shows that for each site the expected
count at some time-point j (j > 1) is a factor b times the expected count at the previous
time-point. For the model based time-totals we have u, ; = pU-D Y.; a;, and the model based
indices are hU~1),

Model (2a) implies exponential growth or decrease in the expected counts from each time point
to the next. Such a model may give an adequate description of short time series but will usually
become unrealistic if the time series get longer. A switching trend model allows the slope
parameter to change at some time points.
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For instance, a model with a slope £8; for time points 1 to 4, a slope (3, for time points 5to 7 and a
slope S5 for time points beyond 7 is a switching trend model with two changes in slope, one at
time point 4 and one at time point 7. The time points (4 and 7 in this example) where the slope
parameter changes are called changepoints or knots and will be denoted by k;, withl =1 ...L
and L the number of changepoints (k; = 4, k, = 7 and L = 2 in this example).

This model can be reformulated to encompass the no time-effects model (1) by setting the slope
to zero from the first time point up to the first changepoint, to ; from the first to the second
changepoint and so on. The no time-effects model is then obtained if there are no changepoints
and the model in the example above is obtained if we set three changepoints: k; = 1, k, = 4
and k3 = 7. The linear trend model (2a) is obtained if there is a changepoint at the first
time-point only.

In this formulation, the log expected counts for a model with L changepoints can be written as

a; forl1<j <k,
a;i + 1 —kq) fork,; <j<k,
Iny;; = :
a; + Bi(ky — k1) + Bo(ks — k) + -+ B — ki) fork; <j <kpys

a; + Bi(ky — ki) + Bo(ks — k) + -+ B — ki) fork, <j<]

So the log expected counts are constant (equal to a;) for time points up to and including k;. At
time point (k; + 1) the log expected count is a; + [5;. The increase between successive time
points (slope) remains ; until the next change point k, is reached where the increase becomes
B>, and so on.

The equations for the log expected counts can be comprised into a single equation as follows:

L
Inpj =a; + Z(ﬁl — Bi-)U — k)k(, k), (3)
=1
where §; = 0 and the function k(j, k) is defined by
. 0 forj <k
’ k =
) [1 forj >k,

2.2.3 Model 3: Effects for each time-point

An alternative to describing the development in time with a (number of) linear trend(s) is to use
a model with separate parameters for each year. A model with effects for each site and each year
can be expressed as

In,ul-j =a; + Vi (4)

with y; the effect for time j on the log-expected counts. One restriction is needed to make the
parameters of this model identifiable. In rtrim, the parameter y; is set to zero. Model (4) can be
rewritten in multiplicative form as:

Hij = a;cj (5)

with a; = exp(@;) = p;1, ¢, = exp(0) = 1 and ¢; = exp(y;). From (5) we have for the expected
total for time j: u,; = X; pij = ¢; X; a; and so the model based indices are identical to the
parameters ¢; (since Uy j/upq = cj).
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2.3

The time parameters in model (4) can be decomposed in a linear trend parameter (,8]’-") and
parameters (y}‘) describing the deviations from this linear trend for each year. Such a
representation makes it easy to investigate for which years significant deviations from the linear
trend occur (y}i“ different from zero). One way of obtaining such a decomposition is by fitting a
linear regression line through the In 1i;; of model (4), see section(4.2) for the details. This
reparameterization can be written as

Inuuzaf+[3*dl+yj* (6)

with d; equal to j minus the average of the j's,sod; = j — %ij. The parameter a; is the
intercept and the parameter 8 is the slope of the regression line through the In Uij- The
parameters y]’f are the deviations of the In y;; from this regression line. Note that (6) is just a
different version of (4) and (5), the expected counts and model based indices being the same for
all three representations.

The model with time-point parameters is equivalent to a switching trend model when all
time-points (except the last) are changepoints. For the model with time-point parameters the
trend between time-points j and j + 1 is

Inpijer —Inpij = ¥jp1 — v (7)
and for the equivalent switching trend model the trend is (compare (3))
Inpijeq — Inpgj = B; (8)

and 81 = y,, sincey; = 0.

So, the switching trend model (3) is a more general model than the time-effects model (4) since it
includes this last model as a special case.

2.2.4 Extended model formulations for monthly data

In case monthly data are used, i.e. ﬁ-jm instead of fl-j, models 1, 2, and 3 are extended to include
month effects, denoted by additional parameters &, (for month m). In all cases, month effects
are expressed similar to how year effects are expressed in Model 3, and the extended model
definitions now read

Inpijm = a; + &y (9)
Inuijm =a;+BG—1)+6p (10)
In ,Ltum = Qq; + ]/} + 6m (11)

or similar, for models 1, 2 and 3, respectively (note that the example given here applies to the
simplest version of model 2, .i.e. Eqn (2a), but can be applied to the more generic version Eqn (3)
as well). As with y parameters, §; = 0.

Effects of categorical covariates on the trend

Both model 2 and model 3 are restrictive in the sense that the time related parameters (5, y and
§) are assumed to be the same for each site. By the use of covariates, this assumption can be
relaxed and the models can be improved. The rtrim package accomodates additive effects of
categorical covariates on trends and time-point parameters. For this purpose, dummy-variables
are created for the categories of each covariate. Since one of the dummies is redundant, the
dummy variable for the first category of each covariate is omitted. The values of these dummy
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2.4

variables are denoted by z; j(myk, (k = 1...K) with K the sum of the numbers of categories of
the covariates minus the number of covariates.

An extension of the simple linear trend model (2a) that allows for additive effects of K covariates
on the slope parameter is

K
Inw;j =a; + (B + Z ZijiPr)(J — 1) (12)
k=1

so that the slope of the linear trend for site i and year j consists of a for all i and j common
component 8, (which is the slope parameter for site by time combinations belonging to the first
categories of all covariates) plus a component that is the sum of the effects of the categories to
which site i belongs at time j. Note that the values of covariates can vary not only across sites
but also across time points. This allows for the possibility that, for instance, a site is classified as
‘wood’ at some point in time but as ‘farmland’ at another point in time. A switching trend model
with effects of covariates on each of the slope parameters is obtained similarly by replacing £; in

(3) with B9 + 211;1 Zijk Pk

An extension of model 3 that allows for additive effects of categorical covariates on the
time-effects is:

Inpij=a;+vjot+ ) ZijiVjk (13)
k=1
The effect of time j at site i now consists of a for all sites common component y;, (which is the
time-effect for time j for sites belonging to the first categories of all covariates) plus an effect
Yk ZijkYjk thatis specific for the combination of categories of the covariates.

Above formulations, which are given here for yearly observations only, can be extended for
monthly observations by inclusion of categorial month effects, similar to the year effects (13)

K
In ‘Lll]m = ..+ 6m0 + Z Zijmk6mk (14)
k=1

Changepoints and model estimability

In many cases, users want make as few assumptions as possible regarding actual trend changes,
and therefore would like to use model 3 or, equivalently, a ‘maximal’ model 2, where each time
point is treated as a change point. However, not in all cases will there be sufficient observations
to estimate the corresponding model parameters. A single year without any observations is one
simple example.

In applications it will often be the case that a switching trend or time-parameters model with
covariates cannot be estimated owing to a lack of observations. For the time-parameters model
to be estimable, it is necessary that for each time-point there are observations for each category
of each covariate. For the switching trend model to be estimable it is necessary that for each
time-interval between two adjacent changepoints (time-points j for which k; < j < k;,1) there
is at least one observation for each category of each covariate. rtrim checks these conditions
and, if necessary, an error message will be issued indicating for which time-interval (time-point)
and covariate category there are no observations.
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2.5

An other option is, for the switching trend model, to automatically delete changepoints such that
for the remaining time-intervals there are observations for each category of each covariate. This
is accomplished by deleting the changepoint corresponding to the end point of the first
time-interval for which no observations are available and then checking again, beginning with the
newly created interval.

Note that this procedure is aimed at the identification of a ‘maximum’ set of change points, given
the amount of actual observations. The alternative is to identify a ‘minimal’, parsimonious,
model (a model with as few parameters as possible, without compromising the explanatory
power of the model). This can be carried out by a stepwise selection of changepoints, explained
in Section 4.1.

Overall trend

When covariates are used, trends and indices vary between sites and the models do not provide
a measure of the trend in the aggregated (over sites) time-counts. Although the between-sites
differences in trends will usually be of scientific interest since they reflect the effects of
covariates on the trend, the trend in the aggregated time-counts will often also be of interest
since this ‘overall trend’ reflects changes in the total population over time. A simple measure of
overall trend can be obtained as the ordinary least squares (ols) estimator of the slope
parameter, B, say, of a linear regression line through the log estimated model-based time-totals,
Infiy;. Thus, as the ols estimator ,5’+ of 8, in the expression

ndyj=a+p.G—1) +¢ (15)

with g; the deviation of the log estimated time-total for time j from the linear trend.

To obtain expressions for the ols-estimators of the slope parameters, we introduce the following
notation: X is a J-vector (a vector of length J) with all elements equal to 1, X, a J-vector with
valuesj—1( =1,..,]), X = (X1,X;) and y a J-vector with values In y1, ;. Then we have for
the ols-estimators for the intercept and slope in model (2.5):

B=(ap)" =X"X)"'XTy, (16)

It is important to note that the estimator /3'+ of the overall slope is not viewed as an estimator of
a parameter of a model thought to have generated the In i ;’s but as a descriptive statistic
highlighting one aspect (the linear trend) of the In /i, ;’s. The In fi, ;’s in (15) are estimates that
can have been derived from any of the models discussed before, and will not generally follow a
linear trend.

Although ﬁ+ is defined by ols-regression, its variance is estimated in a way that is different from
the usual ols-regression approach. In line with the interpretation of ﬁ+ a summary statistic
(function) of the In [l ;'s, estimator of its variance is obtained from the estimated covariance
matrix of the In i, ;’s, which in turn is derived from the estimated covariance matrix of the
parameters of the model used to generate the In i ;’s (see, section 5).
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2.6 Using weights

In some instances it is advisable to use cell weights to improve the estimates of national indices,
see van Strien et al. (1995) for an example. For instance, if sites from urban areas are
underrepresented relative to sites from other areas, weights could be calculated such that the
weighted total surface of urban sites equals the population total surface of urban areas and the
weighted total surface of other areas also equals the corresponding population surface. Then,
assuming that the counts are proportional to the surface of the sites, the counts can be
multiplied by these weights to obtain a better representation of the population counts. More
generally, weights can be determined such that the weighted total surface of sites of a certain
type at a certain point in time equals, or is proportional to, the total population surface of sites of
that type. This kind of weighting can counter the effects of over- and undersampling and is easy
to incorporate in the loglinear modelling approach.

When weights are used, interest will be in models describing the weighted expected counts. If
the weights are denoted by w; .y, the expected value of the weighted counts will be

E[Wijom fijem)] = Wijemytijm) since the weights are known constants. A model, for instance
model 3 (effects for each time-point), for the weighted expected counts can be written as

Inw;juij = a; +;, (17)
or

Wiilij = a;Cj. (18)
This model implies for the unweighted expected counts

Ingi; = a; +y; — Inw;. (29)

The Inw;; are parameters that are known in advance. Such parameters are called an offset in the
terminology of generalized linear models (glm’s) (McCullagh and Nelder, 1989).

When weights are used, the model based indices are },; w;ju;;/ ¥.; w1 i1 (assuming the first
time point is taken as reference). These indices will not change if the weights are multiplied by a
constant different from zero, but the model based totals for the time-points will change. If the
weights do not change over time we can write w;; = w;, with w; the common weight for all
time-points for site i. The indices for model (18) can then be expressed as

Xiwiaicj/ ¥; wia; = cj showing that the indices are independent of the weights and the
weighted model based indices are equal to the unweighted model based indices. More generally,
weighted and unweighted model based indices are equal if the weights are equal for all
time-points and the time related parameters are the same for all sites. Thus, if w;; = w;, the
weighting does not affect the indices for models without covariates but does affect the indices if
covariates are used.

Weighted model based indices will be calculated using the weighted estimated counts and
weighted imputed indices will be calculated using the weighted observed counts w;; f;; if they
are available and the weighted estimated counts otherwise.

The weights as described in this subsection are part of the model, they are multiplicative factors
used to increase/decrease counts for site/time combinations that are
underrepresented/overrepresented in the sample and do not change the variances of the
observations. This specific type of weighting should not be confused with the weighting as
performed by estimation methods such as weighted least squares or generalisations thereof such
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2.7

as the iterative weighted least squares algorithm used for generalised linear models. In such
procedures the observations are weighted by the inverse of their variances and the weights are
part of the estimation procedure but not of the model.

In case of monthly observations, this reasoning does not change, and e.g. Equations (17) and (19)
are written as

INW;jmbijm = a; +¥j + 6 (20)
and

In Uijm = a; + ]/J + 8171 —In Wijim- (21)

Estimation options

The usual approach to statistical inference for loglinear models is to use maximum likelihood
(ML) estimation and associated calculations of standard errors and test statistics. These
estimation and testing procedures are based on the assumption of independent Poisson
distributions (or a multinomial distribution) for the counts. Such an assumption is likely to be
violated for counts of animals because the variance is often larger than expected for a Poisson
distribution (overdispersion), especially when they occur in colonies. Furthermore, the counts
are often not independently distributed because the counts at a particular point in time will
often depend on the counts at the previous time-point (serial correlation). The rtrim package
uses procedures for estimation and testing that take these two phenomena into account (a
Generalised Estimating Equations (GEE) approach, see section 3.2 for details). This procedure is
based on the following assumptions for the variance of the counts and the correlation between
the counts for adjacent time-points:

var(fi;) = o?p; (22)
and

cor(fij, fij+1) = P (23)

The parameter ¢ is called a dispersion parameter. For ¢ = 1, the variance of fij is equal to its
expectation which is the variance under the Poisson assumption. The parameter p is the serial
correlation parameter. The counts are independent if p = 0. If both 6> = 1 and p = 0, the
estimation procedure used in rtrim is identical to the usual maximum likelihood approach. If
0% # 1and p = 0, the estimates of parameters (and expected counts and indices) are equal to
the maximum likelihood estimates but the estimated standard errors and test statistics will be
different. If p # 0 both the estimates of parameters and standard errors differ from the
maximum likelihood estimates. The difference between GEE and ML estimates of parameters is
usually small and tends to decrease as the counts increase. However, the corresponding
difference between estimated standard errors and test-statistics need not be small nor decreases
when the counts become larger. So, allowing p and ¢ to be unequal to 0 and 1 respectively, has
little impact on the estimated parameters but can have important effects on standard errors. In
rtrim options can be set that allow the user to specify whether overdispersion and/or serial
correlation must be taken into account or not. If either of these options is used estimates of g2
and/or p will be calculated and used in estimation and testing procedures.

In case of monthly observations, overdispersion is allowed, and Equation (22) is written as

Var(fijm) = Uzllijm
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2.8

but serial correlation is not considered (p = 0) due to the complexities associated with
intra-annual serial correlations in species abundance.

Test-statistics

2.8.1 Model goodness-of-fit tests
The goodness-of-fit of loglinear models is generally tested by Pearson’s chi-squared statistic,
given by
s 2
= (ijamy = Bijomy)
i jm)

(24)
ij(m)

or by the likelihood ratio test given by

ijm) Hijom)

where the summation is over observed (i, j) or (i, j, m) only. For independent Poisson
observations, both statistics are asymptotically 2 distributed, with v the number of degrees of
freedom (equal to the number of observed counts minus the number of estimated parameters).
Models are rejected for large values of these statistics and small values of the associated
significance probabilities. These tests indicate how well the model describes the observed
counts.

The likelihood ratio statistic can be used to test for the difference between nested models. That
is, if we have two models, M; with p parameters and M, with the same p parameters plus q
additional parameters, then M; is said to be nested within M, (M, can be obtained from M, by
setting the g additional parameters of M, equal to zero). Now, model M, can be tested against
model M, by using the difference between the likelihood ratio statistics for the two models
(LRy_, = LRy — LR, say) as test statistic. This difference is also a likelihood ratio statistic and
therefore asymptotically 2 distributed, with degrees of freedom v equal to the difference in
degrees of freedom for the two models which is also equal to the number of additional
parameters q.

Another approach to comparing models is by the use of Akaike’s Information Criterion (AIC) (see,
e.g. McCullagh and Nelder (1989), page 91). For loglinear models this criterion can be expressed
as C + LR — 2v where the constant C is the same for all models for the same data set. According
to this approach, models with smaller values of AIC, or equivalently LR — 2v, provide better fits
than models with larger values. Contrary to comparing models by using the likelihood ratio test
for the difference, comparing models on the basis of AlC-values is not restricted to nested
models.

If the counts are not (assumed to be) independent Poisson observations and either a2 or p is
estimated, the statistics defined by (24) and (25) are not asymptotically x2 distributed and the
associated significance probabilities are incorrect. Also, the AIC cannot be used for comparing
models. However, Wald-tests (to be described below) can still be used to test for the significance
of (groups of) parameters.
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2.9

2.8.2 Wald-tests for significance of parameters

A number of tests can be performed in rtrim to test for the significance of groups of
parameters. These so called Wald-tests are based on the estimated covariance matrix of the
parameters and since this covariance matrix takes the overdispersion and serial correlation into
account (if specified), these tests are valid, not only if the counts are assumed to be independent
Poisson observations but also if 0% and/or p is estimated. The general form of the Wald-statistic
for testing simultaneously whether several parameters are different from zero is

W=7 [var(®)] 8,

with @ a vector containing the parameter estimates to be tested and var(@) the covariance
matrix of 6.

The following Wald-tests can be performed in rtrim:

1. Test for the significance of the slope parameter (model 2).

2. Tests for the significance of changes in slope (model 2).

3. Test for the significance of the deviations from a linear trend (model 3).
4. Tests for the significance of the effect of each covariate (models 2 and 3).

Wald-tests are asymptotically 2 distributed, with the number of degrees of freedom equal to
the rank of the covariance matrix var(é). The hypothesis that the tested parameters are zero is
rejected for large values of the test-statistic and small values of the associated significance
probabilities (denoted by p), so parameters are significantly different from zero if p is smaller
than some chosen significance level (customary choices are 0.01, 0.05 and 0.10)

In addition to these tests the significance of each individual parameter can be tested by a t-test
e.g., a parameter is significantly (at the 0.05 significance level) different from zero if it exceeds
plus or minus 1.96 times its standard error.

Equality of model based and imputed indices

For the model with parameters for each time point (model 3, i.e., without month effects), the
model-based and imputed indices are equal if p = 0 and no weighting is used. This is explained
in this subsection.

Model 3 (without covariates) is the model of independence in a two-way contingency table. It is
well known (e.g. Fienberg (1977, ch. 2) that if the parameters of this model are estimated by
maximum likelihood, the estimated expected counts satisfy

Z ﬁij = Z fij =f+j: (26)

i€Eobs i€obs
where again the summation is over observed (i, j) only. Thus, the time-totals of the estimated
expected counts, where the summation is over the observed cells only, are equal to the
time-totals of the observed counts (also summing over the observed cells only, of course). For
the imputed time-totals we then have
Zfi}r= Zfij"‘Zﬁij—Zﬁij=f+j+ﬁ+j—f+j=ﬁ+j (27)
i i€obs i i€obs

So, the imputed time-totals are equal to the estimated model based time-totals and the imputed
and model based indices will both be equal to the estimates of the parameters c;. This equality
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between imputed and model based indices holds also when covariates are used since then
equalities analogous to (26) and (27) apply to the imputed and model based time-totals for each
group of sites sharing the same covariate values. Therefore, the imputed and model based
time-totals for all sites, obtained by adding the per group time totals, must also be equal.

Equality between imputed and model based indices also holds if o # 1 and p = 0 because the
estimates of parameters (and expected counts) are then equal to the maximum likelihood
estimates (see section 2.7) but the equality does not hold (in general) if either I) the model is not
the time-effects model or Il) weighting is used or Ill) p # 0.
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3.1

3.2

Details of estimation and
computation

Matrix formulation

To facilitate the discussion of estimators for the model parameters, it is convenient to formulate
the models in matrix notation. If we collect the expected frequencies in an 1] (M)-vector
B = (H1,101), -+ B, m)), all models can be written as

Inp = Aa + BB, (28)

with & a vector of length I containing the site-parameters and f a vector containing the time
related parameters (which can be either all §; or y;, augmented with all §,, in case of monthly
data). 4 and B are dummy matrices for the site-effects and time-effects. For all models in rtrim,
a has length p, =1, and Ais an IJ (M) X I-matrix with I dummy-variables, one for each site. The
matrix B and vector B (of length p,,) are specific for each model.

The parameter vectors a and 8 can be combined to one vector @ = (a”, B7)T and the design
matrices A and B can be combined to one IJ(M) X p design matrix X = (4, B) withp = p, + pp,
the total number of @ and 8 parameters to estimate.

The model (28) can then be written as

Inpu=X0 (29)
and models for weighted counts can be specified as

In diag(w)u = X0
or

Inu=X0—Inw

with w an IJ(M)-vector containing the cell weights and diag(w) a diagonal matrix with w on the
diagonal.

Generalized estimating equations

The estimation method used in rtrim is based on generalized estimating equations (GEE) see,
Liang and Zeger (1986), Zeger and Liang (1986), McCullagh and Nelder (1989), chapter 9.
Contrary to maximum-likelihood (ML) this method doesn’t require the distribution of the
observations to be specified in full. The specification (up to some unknown parameters) of the
first two moments (expectation and covariance matrix) is sufficient. This makes it relatively easy
to take overdispersion and serial correlation into account. Furthermore, the GEE approach to
estimating loglinear models reduces to the usual maximum likelihood approach if the covariance
matrix of the observations equals the covariance matrix of independent Poisson observations
(62 =1andp = 0).

For estimating the parameters only the observed counts can be used and therefore, in this
subsection, the vector f refers to the O-vector (O < IJ(M)) with observed counts only and
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similarly the rows of the matrices X, A and B corresponding with missing counts are deleted
such that the dimensions of these matrices are now O X p, O X p, and O X py,, respectively.

Given the values of the parameters in the covariance matrix, the GEE estimator 8 for @ is the
solution of the estimating equation

U@ =D"v'(f-mw=0, (30)

with D the O X p matrix du/030 and V the covariance matrix of f. Since the elements of D are
given by D;;, = 0u;; /00, = X;jip;; we can write D = diag(u)X and for the estimating
function U(@) we have

U(6) = X" diag()V~'(f — ) (31)

If the counts were assumed to be independently Poisson distributed, V would be diag(u) and the
function U(8) would reduce to X7 (f — u) which is well known to be the score-function
(derivative w.r.t. 8) of the likelihood associated with this assumption.

The expected value of the derivative matrix dU(8)/987 is
-D"V~'D = —i(@), (32)

where i(0) plays the same role as the Fisher information matrix for likelihood functions. In
particular, if the model is correct and the observed counts are large, the distribution of the GEE
estimator 8 is approximately normal with covariance matrix i(8)~1.

For given values of the correlation and dispersion parameters, the GEE estimator for @ (the
solution to (30)) is usually obtained by Fisher scoring iterations given by

0:11=6,+i(0)UB,)!
=0, + DIV D)T'DIVEN(f — 1e) (33)

where t is the iteration number and 8, V;, D, and u, are estimates at iteration t. If V = diag(u)
(the Poisson assumption), the current estimate of ¥V would be diag((8;)) and depend on the
current estimate of @ only. In our applications we are often not willing to assume that

V = diag(u) because it is likely that overdispersion and serial correlation are present and V will
depend on u as well as on dispersion and correlation parameters and estimates of these
parameters are required in order to update 6. Consequently, the algorithm iterates between
updating 8 and estimating the dispersion and correlation parameters as described in section 3.3.

A problem with the updating equation (33) is the size (p X p) of the matrix DTV;1D,. The
number of parameters p is at least equal to the number of sites I, which can be well over 1000.
Inverting such large matrices is very time and memory consuming, and a potential source for
numerical instability. The matrix V is of course even larger (O X 0), but for this matrix a block
diagonal structure is assumed (section 3.3) which reduces the problem to inverting the
covariance matrices for the observations for each site separately. As an alternative to (33) an
algorithm can be applied that uses the derivatives of U(8) with respect to B only. This procedure
leads to an algorithm that is much faster and less memory consuming than an algorithm based
on (33) and is described in section (3.4).
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3.3 Estimation of the covariance matrix

To allow for overdispersion and serial correlation, the O X O covariance matrix V of f is
expressed as

V = o%,/diag uR./diag 1, (34)

with R a correlation matrix. In case of no serial correlation, R simply is the identity matrix,
implicating that V = ¢ diag u in this case, or even V = diag  when overdispersion is also
absent (Poisson assumption)

A simple correlation matrix R that reflects serial correlation is obtained by assuming that within
each site there is a constant correlation, p say, between the observed counts at years jand j — 1
and that counts from different sites are uncorrelated. This leads to a block diagonal correlation
matrix of the form

Ry
R= R; (35)

R,
with R; the O; X O; correlation matrix of the O; observations in site i. If there are no missing
values in a site i then R; is a ] X J matrix and can be expressed as

1 p p? .. pl?
J-2

L (36)
p/™t p/72 pi3 L1

which reflects a declining correlation between counts as they are further apart in time. For sites
with missing values the correlation matrix can be obtained from (36) by deleting the rows and
columns corresponding to the time-points for which there are no observations.

Following Liang and Zeger (1986), an estimates of g2 can be obtained from the Pearson residuals

Tjm) = (fijom) = Bijamy) /[ Bijam), (37)
(which are obviously only available for the O observed i, j, m combinations), as
1
6= 5= D T (38)
j(m)

where the summation is again over the observed (i, j(,m)) only. Note that the inclusion of p in
the denominator of (38) is to account for the effect of parameter-dependency of the y; jy’s and
hence the 73 (,y’s on the available degrees of freedom.

Similarly, an estimate of p can be obtained as

-1
1 /

N§2

p= 7,iMj+1 (39)

I
i=1j=1
where the j-summation is only over consecutive pairs j, j + 1 if both are observed, and N is the
total number of all such pairs. Note again, that serial correlation is only used when observations

are on an annual time scale.
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3.4 An efficient algorithm

Using the partitioning @ = (a”, BT)T of the parameter vector and the corresponding partitioning
X = (4, B), the estimating equation U(0) = 0 can be expressed in two equations as

U, =ATdiaguV-(f— ) =0 (40a)

U, =BT diaguV-'(f — ) =0 (40b)

The negative expected derivative matrix i(0), defined in (32), can be partitioned similarly leading
to

i(0) = —

oU,/0a” | 0U,/3B" ]:[ A"0A | AT0B ] (1)

aU,/da” | 0U, /0BT B"0A | BTQB

with 2 = diag uV =1 diag p1.

The equations (40a) and (40b) can be solved in two steps. First we solve (40a) with respect to
using the value for B from the previous iteration and substitute the resulting value &(f), say in
(40b), leading to

Uy = Up(@(B), B). (42)

Second, we solve (42) with respect to 8. With the new value for B the two steps can be
repeated. This process is iterated until convergence. The resulting estimates for a and 8 solve
the equations (40a, 40b) and hence U(0) = 0. This two-step procedure is similar to the
“concentrated likelihood” approach for solving likelihood equations (see Amemiya, 1985,

Ch. 4.2.5).

To solve (40a) for a we note that the matrix A contains dummy variables for each site and the
matrix V is a block diagonal covariance matrix of the same form as (35) so that for site i we can
write

15, diag(u)Vi*(fi — 1) = 0 (43)

with 0; the number of observed counts for site i, 15, an O;-vector with ones and f; the 0;-vector
with observed counts for site i with expectation u; and covariance matrix V;. For u; we can write
Ui = a; exp(B;B), with B; the matrix with the rows of B corresponding to the observations in
site i. Now, (43) can be written as

u Vit (fi — diexp (B;B)) = 0
leading to

a; = p{ Vi fi/uiVi't exp(B;B). e

To solve the equation U}, = 0 for 8 a Fisher scoring algorithm analogous to (33) can be used. The
expected value of the required derivative matrix, i, say, can be written as

—iy = U} /0B = U, /IB" + (0a”/0B) (0U}/da) (45)

where the derivatives are evaluated in @ = a(f).

Next, differentiating both sides of the equation U, (&(B), B) = 0 with respect to B we obtain

(0a”/0B) (0U%/0a) + 8UL /0B =0
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and so we have for da’ /08
da’ /o = —oU%/op (UL /da) (46)
where again a@ = @(f8). Now, substituting (46) in (45) and using (41) we obtain

—i; = BTOB — BT0A (AT0A)  ATQB (47)

The matrices A, B and £ can be very large but (47) can be rewritten in a form suitable for
computation. Since the columns of A are dummy variables indicating the sites and £2 has the
same block diagonal structure as V (and R) we can write AT 24 = diag(d) with d the I-vector
with elements d; = 151..(21-101. and £2; the i™ block of £ which can be expressed as

Q; = diag(u;)V; " diag(p;)
Now, we can rewrite (47) as

1
=i, = Z (BiT-QiBi - EBL'T-QiAiAiT-QiBi)
L

7

= BT (0 1!21 170, |B

= i\ 2 g ilodo i | Biy (48)
7

and so, the matrix —ij, can be built up by a summation of components for each site that do not
involve very large matrices.

In summary, the algorithm alternates between updating & and f according to
al =In(zl f;) — In(z exp(B;B*™1))
ut = exp(Aat + BBt — Inw) (49)
-1
c=pt - (i) ';
where z{ = 17 in case of a ML model or iteration step, and z] = u;V;* for a GEE iteration step.

For GEE steps, 6% and p are updated using the current value of u. Equations (49) are repeated
until convergence in B (ML) or 3, p and o2 (GEE).

The asymptotic covariance matrix ofﬁ can be estimated by the p;, X pp submatrix in the
lower-right corner of —i(8)~! evaluated at 8 = 6. But, using the formula for the inverse of a
partitioned matrix, it can be seen that this inverse equals the inverse of the right-hand side of
(47) evaluated at the estimates &, [? So, after convergence of the algorithm (49) the matrix
— (i’[,)_l provides an estimate of the covariance matrix of ff, ¥ (and/or S.
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4.1

Model variants and extensions

Stepwise refinement

If the slope parameters (or, if covariates are present, the effects of covariates on the slope)
before and after a certain changepoint do not differ significantly, one may wish to delete that
changepoint in order to obtain a more parsimonious model, which has less parameters than the
original model, without compromising the explanatory power. After refitting the reduced model
one may again wish to delete a certain changepoint and so on. In rtrim a stepwise model
selection procedure is implemented for this purpose. This procedure repeats the following steps:

1. Wald statistics for the difference of the parameters before and after each changepoint and
their associated significance levels are calculated. If the largest significance level exceeds a
certain threshold value (probability to remove, Py, default value is 0.20) the corresponding
changepoint is removed from the model.

2. For all removed changepoints except the last one, a score statistic is calculated to assess the
significance of the difference in parameters before and after the changepoint. If the smallest
significance level is smaller than a threshold value (probability to enter, Pg, default value is
0.15) the changepoint is added to the model.

The procedure stops if no changepoints can be either removed or added.

4.1.1 Score test

The score test mentioned above is a test for the significance of additional parameters that could
be added to a model. The test can be performed without actually having to estimate the
extended model that includes these additional parameters. This is especially an advantage for
forward stepwise model selection procedures where the significance of a number of possible
additional parameters is evaluated before adding the most significant one to the model.

The score test for testing if r-parameters among a larger set of p-parameters are significantly
different from zero, is obtained as follows. Let the p-vector with parameters be partitioned as
By = (Bg, Br)- Where B, are unrestricted parameters and 8, are parameters restricted to be
zero under the null hypothesis. To estimate B, under the null hypothesis, we estimate 8, in a
reduced model that does not contain the restricted parameters and then add zeroes for the
restricted parameters, thus we obtain ffp = ([fq, 0,). Using ffp we can evaluate the score vector
and Hessian matrix under H, resulting in, using the notation of section 3.4, Uy, (B,) and i},(f8,),
respectively.

The score statistic for testing H, : 8,- = 0 is then given by (see, e.g. Cox and Hinkley, 1974, Ch. 9):

SBr) = UZ(ﬁp)T[_iZ (ﬁp)]_luzu}p) (50)
But Uj, (ﬁp) = [UZ([A}q), U}‘,(ﬁr)] =[0,U; (ﬁr)], because of the maximisation with respect to
the unrestricted parameters B,. Now, if we denote, for ease of notation, [—i}, ([';'p)]_1 by V and

we partition this matrix conformably with the partitioning 8, = (B4, B), we can write the score

statistic as
s@)=[0 Uy [‘;«m "jq] [UZ?BT)]=Uz(i?r)TVr,rUZ(Br) (51)

q
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4.2 Reparameterization of the time effects model

Here we consider the reparameterization of the time-effects model in terms of a model with a
linear trend and deviations from this linear trend for each time point. The time-effects model is
given by

Inyi}- =a; + Vs (52)

with y; the effect for time j on the log-expected counts and y; = 0. This reparameterization can
be expressed as

withd; = j — j and kj the mean of the integers j representing the time points.
The parameter «; is the intercept and the parameter * is the slope of the least squares
regression line through the J log-expected time counts in site i and y]’-“ can be seen as the

residuals of this linear fit. From regression theory we have that the ‘residuals’ y]’-" sum to zero and
are orthogonal to the explanatory variable, i.e.,

zyf =0 (54a)
J

and
z djy; = 0. (54b)
J

Using these constraints we obtain the equations:

Inul}=af+[3*dl+yj*=al+yj (55)
Zlnuij=]a}‘=]ai+2yj (56)
j j

j j j

where (55) is the re-parameterization equation itself and (56) and (57) are obtained by using the
constraints.

From (56) we have that a; = a; + %Z}- ¥;- Now, by using the equations (55) thru (57) and

defining D = Zj d? , we can express the parameters 8* and ¥* as functions of the parameters y
as follows:

1
B = D Z d;y;, (58)
]

y]f‘ =a;+y;—a; —p*d; (using(55))

1 1
=ai—(a’i+jzyj>+)/j—dj52dj)/j

1 1
=Y —721/1—‘1152611%'- (59)
7 ]
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Since £* and y]’-“ are linear functions of the parameters y; they can be expressed in matrix
notation by
B*
« | =Ty, 60
(y 14 (60)

withy* = (1, ..,¥7), ¥ = (Y1, .-, ¥;) and T the (J + 1) X ] transformation matrix that
transforms y to (8%, y*). From (58) and (59) it follows that the elements of T are given by:

d:
Tap =7 (fori=1;j=1,..,])
1 1 . . . .
T(i_]‘)z _]_-_Bdi—ldj (forl=2,...,]+1;j=1,...,];1—1=])
1 1 . . . .
T(i,j)= _]_-_Edi—ldj (f0r1=2,...,]+1;]=1,...,];1—1;&])

The covariance matrix of the transformed parameter vector can now be obtained from the

covariance matrix of y as

cov (5:) = cov(Ty) = T cov(Y)T". (61)

4.2.1 Wald-test for deviations from linear trend

To test for the significance of the deviations of the linear trend, we can test the hypothesis

Hy : y* = 0. To test this H, we must take into account that two of the y*-parameters are
redundant in the sense that any subset of 2 of the y*-parameters can be obtained from the
remaining / — 2 ones by using the two linear constraint equations (54). In particular, the values
of any subset of 2 parameters are zero if the remaining | — 2 ones are. Therefore, testingy* = 0
is equivalent to testing yj_, = 0, with y}_, a vector consisting of some subset of ] — 2 of the
elements of y*. The Wald-statistic for Hy : ¥j_, = 0 is given by

* * -1 *
Wy}_z = (Y]—Z)T var(y]_z) Yi-2 (62)

which is independent of the choice of the subset of | — 2 y*-parameters. This statistic is
asymptotically y? distributed with /] — 2 degrees of freedom.

Alternatively, we could retain the complete y*-vector and the corresponding covariance matrix
to define a Wald-statistic. In that case, a generalized inverse must be used since the
covariance-matrix of y* is a singular matrix, with rank J — 2 (See e.g. Harville, 1997, Chapter 9).
This approach would, however, lead to the same results as using (62).
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51

Uncertainty analysis

The most important parameters produced by rtrim are the time-totals and, especially, the
indices that are derived from them. In this subsection we describe how the covariance matrix of
the time-totals is estimated and how the covariance matrix of the indices is derived from that
matrix. For the calculation of these covariance matrices we must distinguish between
model-based and imputed time-totals and indices (see, subsection 2.1). In subsections 5.2.1 and
5.2.2 we describe the covariance estimator for the model-based and imputed time-totals,
respectively, and in subsection 5.3 we show how the variance of indices can be derived from the
variance of time-totals.

Intermezzo: Standard error of multiplicative parameters and the
delta-method

The multiplicative parameters are simple transformations of the additive parameters. If we let 8
denote an additive scalar parameter, then the corresponding multiplicative scalar parameter, t
say, can be expressed as a function of the additive parameter by t = f(8), with f = exp(.).

The variance of the multiplicative parameters can be approximated by the use of the delta
method (see, e.g. Agresti, 1990, ch. 12 or Sarndal et al., 1992, ch. 5). This method is based on
approximating the function f(é) by the first two terms of the Taylor series expansion around the
true value 6:

f(6) =£(6)+f'(6)(6 - 6),

with f’(0) the derivative of f w.r.t. . The variance of this approximation is

var(®) = var (£(8)) = (£'(6))” var(8). (63)

For the function f = exp(+), that transforms the additive parameters into the multiplicative
ones, this variance approximation leads to the variance estimator

var(f) = t2 var(), (64)

so that the standard error of a multiplicative parameter can simply be estimated by the standard
error estimate of the additive parameter times the estimated value of the multiplicative
parameter.

There is a straightforward generalisation of the Taylor-series approximation, and corresponding
variance estimator, for a (vector- or scalar-valued) function of a vector-valued random variable.
In particular, if t is a function f(0) of 8, with @ a vector and t either a vector or a scalar, the first
two terms of the Taylor-series expansion are

f(8)=f(6)+D(&-0) (65)
with D = 0f(0)/080 and the covariance matrix of t can be expressed as
cov(t) = D cov(8)DT, (66)

with cov(@) the covariance matrix of 8, a result which will be used repeatedly in the sections
below.
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5.2

Standard errors of time-totals

5.2.1 Standard errors of model based time-totals
Starting with model based time totals, these are defined as the total estimated counts for a given
year j aggregated over all sites i:

tj = Z Aijm) (67)
i(m)
or, vectorizing,
t=cCp (68)

where & is a J-vector, and J X I] matrix C is defined as C = (I], I, ...,I]), with Iy an J X J identity
matrix, and the number of identity matrices equal to the number of sites I.

The covariance matrix of the estimated time-totals can then be expressed as
var(t) = Cvar(ft)C" = €D var(6)D"CT

= C diag(ft)X var(0)XT diag(jr)C” (69)

where we have used the usual Taylor-series variance approximation var(ft) = D var(8)DT, with
D = 0u/00T7 (see section 5.1 and the paragraph following Eqn (30)).

To compute the standard errors of the model based time-totals according to (69) we need the
covariance matrix of the complete estimated parameter vector 6. This matrix is not easy to
compute because it requires inversion of a very large matrix, as pointed out in section 3.2. An
alternative formula for var(%) that is suitable for computation will be derived in this subsection.

Consider the partitioned form (41) of i(@), which can be re-expressed as

AT0A | ATOB igq | iab

i(0) = =|— - 70

() [ BT0A | B'OB i, iy (70)
with 2 = diag(u)V ! diag(p).
The inverse of this partitioned matrix can be expressed as (Rao, 1973, page 33)

i1 —1pT -1
1 _ | iaa + FE'F" | —FE | @1 | P12
i) —[ “EFT | BT |7 | @y | 9y (71)

where
iyq = ATQA = diag(d),
E =iy, — igpiaaiap = ip
and

di*wliB,
F =izli,, = diag(d)"*ATQB = ) : i )
d;*w; By

with

1 1
w; =1, 0; = Z(Ih’z )i (1 )i (R ji
J
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and

— 1T
di = 10iwi

From this representation we see that we only need the inverse of E (which is already produced
by the algorithm) and the inverse of i,, (which is a diagonal matrix) in order to calculate the
inverse of i(8).

The covariance matrix of the estimated time-totals can now be expressed as
var(t) = C diag(u)X var(0)X” diag(u)C”
= Cdiag(p) [A®1,AT + B®, AT + Ad,BT + Bd,, BT diag(u)C"
=GD,6" + HD,,G" + GD,H" + HD,, HT
= Gdiag(d)"1G” + GFE"'(GF)" — HE"'(GF)" — GFE"*HT + HE"'HT
= Gdiag(d)"'G" + (GF — H)E"*(GF — H)T (72)
with G = C diag(u)A and H = C diag(u)B.

To compute the covariance matrix (72) the following expressions for the elements of the J X |
matrix G, the ] X p;, matrix GH, the ] X p, matrix H and the ] X ] matrix Gdiag(d)1G" are used:

Gji = Wij, (73)

(GF)j = Z UijF ik, (74)
7

Hj, = Z(Bi)jk.uij (75)
7

(Giag(d) ™6 = ) pyjuted;™ (76)
7

So, the matrices GF — H and Gdiag(d)~*G" can be obtained by a summation over sites.
In case of monthly data, the expressions for G and Gdiag(d)'G" changes to
Gj; = Z Hijm
m

(GF)j, = Z G;iFy
;

Hj, = Z Z(Bim)jk#ijm
i m
(Gdlag(d)_lGT)]k = Z GjiGikdi_l
i
where B, the subblock of B; representing the § parameters corresponding to month m. For
m = 1thesearerows 1,...,J, form = 2 rows (J + 1), ..., 2], etc.

5.2.2 Standard error of imputed time-totals
The J-vector with imputed time-totals can be written as

t=Cf*=C,f +C,iL, (77)
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where f* denotes the vector containing the imputed counts with elements given by
froo= fijem) if observed
yam Hij(m) otherwise

The vector f* is split up in two parts: a vector f containing the observed elements and a vector
[L, with the estimated values for the missing observations. The matrix C is split up accordingly,
into a matrix C, containing the columns of C corresponding to the observed elements in f* and
a matrix C,, containing the columns of € corresponding to the missing elements in f*.

Now, the covariance matrix of # can be written as the sum of three J X | matrices:
var(f) = C, var(f)CT + 2C,, cov(fr,, f)CT + C, var(fi,)CT. (78)

where we have used that C, cov(f, fi,)CL = C, cov(ji,, f)CT.

To evaluate (78) we need estimates of the three covariance matrices var(f), var(ft,) and
cov(fi,, f). Using previous results, var(f) and var(ft) are relatively easy to obtain but cov(fL,, f)
needs some further linear approximations.

To obtain the covariance between the observed counts f and the estimated missing counts ft,
we first express the estimated expected counts as a function of the estimated parameters 0 by
the Taylor-series approximation according to (65):

ﬁx = Wy + Dx(é - 9)' (79)

since D, = du, /d6. Next we use a Taylor-series approximation of the GEE estimating equation
(30) to express the parameter estimate 0 as a function of the observed counts, leading to

UB) = DIV (f — o)
~ U(0)+ (0U(8)/060)(6 — 0)
=DyV ' (f — o) = DGV ™'D,(6 - 6),
and hence,
6—6= DIV D) DIV (S — po),
which, after substituting in (79), results in an expression for fi, as a function of f:

B — 1y = Dx(ng_lDo)_ngV_l(f = Ho)-

Also,

var(8) = (DTV-1D ).

Using these expression we obtain for cov(fL,, f)
cov(fty, f) = E(f — ) (f — ﬂo)T
= Dx(Dz;V_lDo)_ngV_lE(f — o) (f - I'lo)T
=D,(DTVID,) IDIV-tvar(f)
= D, var(0)D? (using V = var(f)). (80)
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Now, by using C, var(ft)CT = C,.D, var(8)DTCT (analogous to (69)) and by substituting (80) in
(78), we have

var(t) = €, var(f)C? + 2C,.D, var(8)D? €Y + €, D, var(8)DICT,
= C, var(f)C? + €D var(8)D"C" — C,D, var(8)D? Y. (81)

The matrix C, var(f)C? can be estimated from the data by using var(f) as decribed in section
3.3. This estimate depends on the assumptions of possible serial correlation and overdispersion.
If serial correlation is assumed to be present, the observed counts within sites are correlated but
remain independent across sites, resulting in a block-diagonal structure with blocks
corresponding to the sites.

The matrix CD var(é)DTCT is the covariance matrix of the model based time-totals, the
computation of which is described in section 5.2.1. The matrix CODovar(é)Dgcg can be
calculated similarly, by restricting all calculations to the observed counts only.

5.2.3 Standard errors with external covariance matrix of counts

The estimation procedures and standard error estimates in rtrim normally use an estimate of
the covariance matrix of the observed counts, based on the user specified options for serial
correlation and overdispersion. It is, however, also possible to use a covariance matrix that is
completely specified by the user. In this case, the parameters of the models will be estimated by
maximum likelihood, that is, using a covariance matrix based on the assumption of independent
Poisson distributions for the counts (no serial correlation, variance equal to the expected value).
Although this assumption will normally not be in line with the user specified covariance matrix,
the parameter estimates remain consistent and the effects on point estimates of using the
"wrong” covariance matrix are usually small. This does, however, not hold for the effects on
variances and standard errors and for these a correction is necessary that takes the user specified
covariance matrix into account. This approach is described by e.g. Royal (1986) and White
(1980). The resulting corrected covariance estimator is often called the “sandwich” estimator.
This sandwich estimator is applied in rtrim for estimating the covariance of time-totals when a
user specified covariance matrix is used and will be described below.

The sandwich covariance estimator is given by
var(@) = i(0)"1Si(0)* (82)

With i(8)~! the inverse of the information matrix of the likelihood (compare (32)). This matrix is
the covariance matrix of the parameter estimate  if the model assumptions underlying the
ML-procedure are satisfied (independent Poisson counts). The matrix i(8) in (82) is a special
case of the corresponding matrix in the GEE-estimation procedure of section 3.2, obtained by
setting the covariance matrix of the observed counts (V) equal to diag(p) in accordance with the
independent Poisson assumption.

The matrix S is the outer product of the score vector (derivative of the log-likelihood), which in

this case is:
S=EX"(f - - wX]
= X" var(f)X, (83)
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5.3

with f the observed counts and u the expected counts corresponding to these observed counts.
The covariance matrix of the observed counts var(f) is a block diagonal matrix with elements
specified by the user. Using this S we write the covariance matrix of  as:
var(t) = Cdiag(u)Xi(0) X" var(f)Xi(0) X7 diag(u)C"
= Pvar(f)P7, say. (84)

Using the partitioning (70) of i(8) ! and X = [A, B] we can write for P:
P = Cdiag(n)[A® ;AT + Bd,, AT + Ad,BT + Bd,,BT
=G® AT + H®,, AT + GD,,B” + Hd,,BT
= Gdiag(u,) *AT + GFE"*FTA" — GFE™'B" — HE'F"A" + HE™'B"
= Gdiag(u,)"*AT + (GF — H)E~1(FTAT — BT),

(85)

where F, G, H and E as defined in (71) and (72). The matrices F and E are somewhat simpler
here because, in the absence of overdispersion and serial correlation, they are based on the
simplified form of i(@) obtained by setting £ equal to diag(u). The matrix diag(u) is a diagonal
matrix with the sum, over the years, of the expected counts of each site on the diagonal.

The first component of the sum P (85), can be partitioned according to the sites as,

1 1 1
: —14T — T 1T — 1T
Gdiag(u,) A" = i 759 NS MH”llosz' Sy miloy,

=[Q1: ., Q% ..., Q] say,

with 1, a vector of ones with length equal to obs;, the number of observed values in site i, thus

(86)

the length of f;. The site specific matrices @; have obs; identical columns, each equal to u;;/u;...

The matrix (GF — H) is a constant for all sites because it is obtained by a summation over sites,
analogous to the calculation of this matrix in the case of variance of the model based indices in
section 5.2.1.

The matrix E~1 is also constant over sites. It is in this case the estimated covariance matrix of the
B-parameters according to the ML-method with which these parameters are estimated. This
matrix is calculated as part of the ML-procedure.

Standard error of indices

Estimated time-totals can be model-based or imputed, and each of these is based on a model
that can have been estimated the ML or GEE method. The covariance matrix of the time-totals
will differ among definitions and methods, but in all cases, the indices are the same functions of
the time-totals and the covariance matrix of the indices is the same function of the covariance
matrix of the time-totals, irrespective of the definition or estimation procedure used.

The index for time-point j with respect to some reference time point b, (7; say) can be expressed
as a function of the time-totals for time-points j and b:

T]' = tj/tb- (87)
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5.4

To obtain the variances of the estimated indices as functions of the variances and covariance of
the time-totals t; and t;,, we apply the delta-method outlined in section 5.1. For this we need
the vector with derivatives of 7; w.r.t. t; and t;, given by

d= (-t%g; 2) (88)

The variance of an index 7; can now be obtained, by applying (66), as
var(‘[j) = dTth,tjd' (89)

with Vit the covariance matrix of t, and t; corresponding to the definition of the totals
(model-based or imputed) and estimation method used.

Note that the index for time-point b (the base-time) is, by definition and for all data sets, equal to
1. So, for j = b we must have that var(z;) = 0. Indeed, by substituting t;, for t; in (89) and
setting var(t;) = cov(tj, t,) = var(t,) we obtain zero for the r.h.s. of (89).

5.3.1 Using multi-year reference periods for indexing

Sometimes, interannual variability of observations is high, such that the computed index values
are highly contingent on the counts in the base year. In these cases, it may be more robust to use
a longer time period as reference instead of a single year. rtrim facilitates this extended
indexing by allowing for multiple, say n, base years, say by, ..., by, In this case, the expression (87)
for 7; changes to

where t, = (tp, + ... + tp )/nis the average time total for the base years.

The partial derivatives of 7; are now given by the vector of lengthn + 1
_nt] (Zn tbi)_z
-nt;(X, tbi)l_z

n(Zn tbi)_

where the repeated elements make up the first n elements of d. Note that (87) and (88) are
special cases of (90) and (91).

d= (91)

Standard error of overall slope

In section 2.5 we defined as a summary measure for the overall trend the slope of the regression
line, estimated by ols, through the estimated log time-totals (model (15)). For this model (see,
(16))

B=(ap) =X"X)"1XTy,

with y the vector with as elements the log-expected total counts, In u, ;. The covariance matrix
of[} is a function of the covariance matrix V(y) of y and is given by

VB = XTX)IXTV)X(XTX) L, (92)

and the variance of the estimated overall slope parameter ﬁ+ is the lower right element of this
matrix.
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The covariance matrix V' (y) in (92) will depend on the model used and the specification of the
covarance matrix of the observed counts, e.g., the settings of the options for serial correlation
and overdispersion.

CBS | Discussion paper | July 2018 32



References

Amemiya, T, 1985, Advanced Econometrics, Blackwell, London.
Agresti, A., 1990, Categorical Data Analysis, Wiley, New York.

Bogaart, P. W., M. van der Loo, and J. Pannekoek, 2016. rtrim: Trends and Indices for Monitoring
Data, R package version 1.0.1 https://CRAN.R-project.org/package=rtrim

ter Braak, C.J.F,, A.J. van Strien, R. Meijer, and T.J. Verstrael, 1994, Analysis of monitoring data
with many missing values: which method? In: Proceedings Bird Numbers 1992.

Cox, D.R. and D.V. Hinkley, 1974, Theoretical Statistics, Chapman and Hall, London).

Fienberg, S.E., 1977, The analysis of cross-classified categorical data, MIT press (Cambridge,
Massachusetts).

Harville, D. A., 1997, Matrix Algebra from a Statistician’s Perspective, Springer-Verlag, New York.

Liang, K. Y. and S. L. Zeger, 1986, Longitudinal data analysis using generalized linear models,
Biometrika, 73, 13-22.

McCullagh, P. and J. A. Nelder, 1989, Generalized Linear Models, 2nd edition, Chapman and Hall,
London.

Rao, C. R., 1973, Linear Statistical Inference and Its Applications, Second edition, Wiley, New York.

Royall, R. M., 1986, Model robust confidence intervals using maximum likelihood estimators.
International Statistical Review, 54, 221-226.

Sarndal, C.-E., B. Swensson and J. Wretman, 1992, Model Assisted Survey Sampling,
Springer-Verlag, New York.

van Strien, A.J., J. Pannekoek, E.J.M. Hagemeijer and T.J. Verstraal, 1995, A loglinear Poisson
regression method to analyze bird monitoring data, Paper presented at: Bird Numbers
Conference 1995.

Thomas, L. 1996, Monitoring long-term population change: why are there so many analysis
methods?, Ecology.

Underhill, L. G. and R. P. Prys-Jones, 1994, Index numbers for waterbird populations. |. Review
and methodology, Journal of Applied Ecology, 31, 463—480.

Weinreich, J.A. and J.H. Oude Voshaar, 1992, Population trends of bats hibernating in marl caves
in the Netherlands (1943-1987), Myotis, 30, 75-84.

White, H., 1980, A heteroscedsticity-consistent covariance matrix estimator and a direct test for
heteroscedasticity, Econometrica, 41, 733—-750.

Zeger, S. L. and K. Y. Liang, 1986, Longitudinal data analysis for discrete and continuous outcomes,
Biometrics, 42, 121-130.

CBS | Discussion paper | July 2018 33



Colophon

Publisher

Statistics Netherlands

Henri Faasdreef 312, 2492 JP The Hague
www.cbs.nl

Prepress
Statistics Netherlands, Grafimedia

Design
Edenspiekermann

Information
Telephone +31 88 570 70 70, fax +31 70 337 59 94
Via contact form: www.cbs.nl/information

© Statistics Netherlands, The Hague/Heerlen/Bonaire 2018.
Reproduction is permitted, provided Statistics Netherlands is quoted as the source



