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Abstract

A difficulty in statistical analysis is the presence of outliers, or observations which Ąt
poorly to the assumed statistical model. Robust methods may be used to down weight
these observations. One method is to assume that the data consists of standard and
outlier observations with different distributions and Ąt these as a mixture model. For
generalized linear models the outliers are assumed to be from an overdispersed model,
constructed either by including a random effect in the linear predictor or where the dis-
tribution includes a scale parameter varying it. The use of the robmixglm R package is
demonstrated on three examples, demonstrating how outliers may be identiĄed. An ad-
vantage of this approach is that it is likelihood based, allowing all the associated methods.
This is demonstated using a package for model selection.
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1. Introduction

A common problem in statistics is that some observations, known as outliers, are unusual
for the parametric model used and may result in inaccurate parameter estimates as these
observations are given excessive weighting. A simple method is to remove the outliers, but
this has the effect of biasing the standard errors downwards, as this method may remove
observations that are only slightly unusual, but not in fact incorrect, resulting in a reduction
in the estimated error variance. A better method is to down weight observations based on
their inĆuence (Hampel, Ronchetti, Rousseeuw, and Stahel 1986), for example using the
residuals, and this has been applied to a large number of models. A method for generalised
linear models (GLM) is described in Cantoni and Ronchetti Cantoni and Ronchetti (2001)
and Cantoni Cantoni (2004), which also incorporates an additional weighting to reduce the
inĆuence of high leverage points.

An alternative method of performing robust model Ątting is to use a heavy-tailed distribu-
tion, as this will allow for outlier observations, giving the advantage of allowing likelihood
based inference with an associated increase in efficiency. An addditional advantage occurs
when the parameters of the distribution describing the shape are estimated, as this avoids the
need for prespeciĄed tuning parameters. An early Bayesian approach for linear models was to
use a mixture of normals (Box and Tiao 1968; Abraham and Box 1978) with a pre-speciĄed
proportion of outliers. Aitkin and Tunnicliffe Wilson (1980) showed how models for mixtures
of standard and outlier observations can be Ątted using the EM algorithm, with a model
allowing the mean to vary between the two groups. (Lange, Little, and Taylor 1989) used a
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t distribution in place of a normal distribution, allowing for the degree of contamination by
including the degrees of freedom ν as a parameter. Lange and Sinsheimer (1993) compared a
number of error distributions including the t-distribution and mixture of normals (contami-
nated normal) on a number of datasets. While the t-distribution methods have the advantage
of a lower number of parameters required, the mixture based methods have the advantage of
greater Ćexibility and allowing for the identiĄcation of outliers.

The mixture based approach is difficult for most generalised linear models (McCullagh and
Nelder 1989), as the scale parameter is Ąxed. Beath (2017) extended the mixture based
approach to generalized linear models by modifying the outlier class to include in the linear
predictor an additional normally distributed random effect, which is therefore an overdispersed
generalised linear model as described by Aitkin Aitkin (1996). For distributions which have
an estimated scale parameter, for example the negative binomial and normal, the outlier
distribution can be speciĄed using a different scale parameter for the standard and outlier
components. The robmixglm package in R ({R Core Team} 2021) was developed to Ąt these
models and is available at https://CRAN.R-project.org/package=robmixglm.

An advantage of the mixture-based approach is that it is model-based, and so standard
likelihood procedures may be used. An example of this is model selection, where it is required
to reduce the number of predictors to the minimum required to adequately Ąt the data. This
may be performed simply for reasons of parsinonomy, as a simpler model will be easier to
understand. It also has the advantage of removing some covariates that are highly correlated.
It does have the disadvantage that it may produce a spurious improvement in Ąt, especially
when the number of covariates is large compared to number of observations. There are a
number of ways of avoiding this problem, for example dividing the data into training and
validation data sets. For a general introduction see James, Witten, Hastie, and Tibshirani
(2013, Chapter 6).

For robust linear models using inĆuence functions there are two available methods (Heritier,
Cantoni, Copt, and Victoria-Feser 2009, Section 3.4.5): Robust AIC and Robust MallowŠs Cp,
however these have not been extended to generalized linear models. For robust genearalized
linear models the only published method is that of Cantoni and Ronchetti (2001) which uses
a robust quasi-deviance. This can then be used to compare models with and without a given
predictor, and a stepwise procedure is then performed to obtain the Ąnal model. This has
the disadvantage that there is no penalty for increasing number of predictors in the model.

The combination of the robust mixture method and packages for model selection allow the
use of two main methods: complete subset regression and step wise regression. In complete
subset regression models are Ątted for all possible subsets of the covariates, then based on
some Ątting criteria the best is chosen. This has the disadvantage of possibly long execution
time, but guaranteeing that the best Ątting subset is found. For stepwise regression, starting
with a speciĄed model, models of greater or lesser complexity are Ątted, with models varying
by only one covariate at each step. The best model based on a Ątting criteria is chosen and
the process repeated. If backward then only smaller models are allowed, for forward larger
models and forward/backward both. The disadvantage of this method is that it may not Ąnd
the best model, but it may be considerably faster.

There are two other packages available in R for robust generalised linear models, both based
on inĆuence functions. The function glmRob() using routines from Marazzi (1993, Chapter
10) and methods in Kunsch, Stefanski, and Carroll (1989) in package robust is restricted to bi-
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nomial and Poisson models, and the function glmrob() (Cantoni 2004) in package robustbase

uses the method described in Cantoni and Ronchetti (2001).

The remainder of this paper is organised as follows: Section 2 describes the theory for the
models, Section 3 describes the functions, Section 4 contains examples and Section 5 a sum-
mary.

2. Model

2.1. Robust Mixture Model

Package robmixglm implements the method of Beath (2017). This assumes that data consists
of a mixture of two types of observations: standard and outlier, where the standard group
consists of subjects from a standard generalised linear model (GLM). The outlier group may
be constructed in either of two ways:

1. They are from an overdispersed generalised linear model as described by Aitkin (1996),
obtained by incorporating a normally distributed random effect into the linear predictor.

2. For distributions, for example gaussian and negative binomial, where the overdispersion
is determined by a scale parameter, the outlier group has greater dispersion through
choice of a different scale parameter than the standard group.

The basis of a generalised linear model is that the distribution of the data Yi, is from the
linear exponential family. The relationship between the conditional mean µi = E [yi|xi] and
the covariates is through the link function g (µi) = x

T
i β (McCullagh and Nelder 1989, p. 27),

where xi is a vector of covariates for observation i with the Ąrst element 1 corresponding
to the intercept, and x

T
i β is referred to as the linear predictor. The overdispersed model

described by Aitkin (1996) is constructed by including an individual level random effect. For
the robust model with class ci = 1 for standard and ci = 2 for outliers, and the normally
distributed random effect λi ∼ N

(

0, τ2
)

, the link function is

g (µi|ci, λi) =

{

x
T
i β, ci = 1

x
T
i β + λi, ci = 2

with the proportion of standard observations and outliers π1, π2 respectively, where π1+π2 = 1
and these are assumed constant over xi. Estimates of the parameters are obtained through
a GEM algorithm, with the marginal likelihood for the outlier class obtained by integration
over the random effect using Gauss-Hermite quadrature. One advantage of the model is that
it is not restricted to GLMs, but can be applied to any model with a linear predictor.

2.2. Outlier Probability

IdentiĄcation of outliers can be performed using the posterior probability of membership of
the outlier class. Given an observed outcome yi then f1 (yi) and f2 (yi) are the values of the
density functions for the standard and outlier points respectively, evaluated at the maximum
likelihood estimates. Then the probability that the subject is in class 2, the outlier class, is
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(McLachlan and Peel 2000, Section 2.8.1):

P (ci = 2|yi) =
π̂2f2 (yi)

π̂1f1 (yi) + π̂2f2 (yi)

2.3. Outlier Test

As the method is likelihood based a test can be performed for the presence of outliers, equiv-
alent to a test that the proportion of outliers is zero, that is π2 = 0. A difficulty with this
test is that the null hypothesis is for a parameter on the edge of the parameter space, so that
the likelhood ratio test no longer has the asymptotic chi-square distribution under the null
hypothesis. This requires that the null distribution is simulated, known as the Bootstrap Like-
lihood Ratio Test (BLRT) (McLachlan 1987) or equivalently a parametric bootstrap (Davison
and Hinkley 1997, Section 4.2). The observed test statistic is then compared to the simulated
distribution to obtain the p-value for the test.

An alternative to the BLRT is to use an information criteria, which has the advantage of
being much faster but is not as reliable as the BLRT. The basis of an information criteria
is a function of the log likelihood penalised by the number of parameters in the model.
Two information criteria (McLachlan and Peel 2000, SEction 6.8) are available; AkaikeŠs
Information Criteria (AIC) where AIC = −2LL + 2npar and Bayesian Information Criteria
(BIC) where BIC = 2LL+log (nobs) npar, where LL is the log likelihood for the Ątted model,
npar is the number of parameters in the model and nobs is the number of observations. Of the
two, BIC has been preferred by a number of authors, for example Fraley and Raftery (1998),
for determining the number of components in a mixture model.

3. Description of the functions

The basic function is robmixglm(formula,family,offset,data) where the parameters have
the same meaning as for the glm() function. The parameter family is a string describing
the error distribution and link for the generalised linear model. Valid families are shown in
Table 1.

family error distn. link

gausssian gaussian or normal identitly
binomial binomial logit
poisson Poisson log

truncpoisson truncated Poisson log
gamma gamma log
nbinom negative binomial log

Table 1: robmixglm Families

Two main methods are supplied: outlierProbs(), which extracts the posterior probabilities
of being an outlier and has an associated plot() method, and outlierTest(), which performs
a BLRT for the presence of outliers.



Ken J. Beath 5

4. Examples

4.1. Brain versus Body Weight

This data gives the average brain and body weights for 28 land animals (Rousseeuw and
Leroy 1987) which was obtained from the MASS package. Of interest is to Ąnd if there is a
relationship between brain and body mass and any deviations from this relationship. Given
the right skewness of the data, it is Ąrst log-transformed for both variables.

R> library("MASS")

R> data(Animals)

R> Animals$logbrain <- log(Animals$brain)

R> Animals$logbody <- log(Animals$body)

First is Ątted a standard linear model, and then the robust model. If AIC or BIC are to be used
to compare the models, then it is important to use glm() rather than lm(), as otherwise the
log likelihoods are not comparable with those from robmixglm(), thus preventing comparison
of AIC and BIC between the standard and robust models.

R> brainbody.glm <- glm(logbrain~logbody, data=Animals)

R> summary(brainbody.glm)

Call:

glm(formula = logbrain ~ logbody, data = Animals)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.2890 -0.6763 0.3316 0.8646 2.5835

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.55490 0.41314 6.184 1.53e-06 ***

logbody 0.49599 0.07817 6.345 1.02e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 2.345692)

Null deviance: 155.427 on 27 degrees of freedom

Residual deviance: 60.988 on 26 degrees of freedom

AIC: 107.26

Number of Fisher Scoring iterations: 2

R> brainbody.glm.rob <- robmixglm(logbrain~logbody, data=Animals)

R> summary(brainbody.glm.rob)
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Figure 1: Observed and Fitted for Brain versus Body Weight

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.92968 0.16567 11.65 <2e-16 ***

logbody 0.74495 0.02895 25.73 <2e-16 ***

Outlier p. 0.29842

Sigma-sq 0.14977

Sigma-sq Out. 10.12383

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

logLik AIC BIC

-41.09157 92.18313 98.84415

The robust model estimates that there are about 0 % outliers. There is a large decrease in
s2 for the robust model, decreasing from 2.35 down to 0.15 showing the effect of reducing
the inĆuence of the outliers. The coefficient Sigma-sq Out. gives the error variance for the
outlier group, and is much higher than for the standard group. The lines for each Ątted model
can then be plotted using the abline() function as shown in Figure 1. An alternative method
is to use the predict() method, which allows the predictions to be further transformed.

R> plot(Animals$logbody, Animals$logbrain)

R> abline(brainbody.glm, col="red")

R> abline(brainbody.glm.rob, col="green")

As a rough guide to which is the appropriate model we can compare AIC and BIC for the two
models, which can be extracted as follows using the standard AIC() and BIC() functions.
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Figure 2: Outlier Probabilities for Brain versus Body Weight

R> aitable <- data.frame(model=c("Standard", "Robust"),

+ aic=c(AIC(brainbody.glm), AIC(brainbody.glm.rob)),

+ bic=c(BIC(brainbody.glm), BIC(brainbody.glm.rob)))

R> print(aitable)

model aic bic

1 Standard 107.25779 111.25440

2 Robust 92.18313 98.84415

This shows clearly the better Ąt of the robust model with lower AIC and BIC. The presence
of outliers can also be tested using outlierTest(), performing a bootstrap likelihood ratio
test (BLRT), for a more accurate result than comparing information criteria.

R> outlierTest(brainbody.glm.rob)

p value 0.0080

This again shows strong evidence that there are outliers present. The outlying observations
can be identiĄed by plotting the posterior probability, obtained using outlierProbs(), of
being in the outlier class against the observation, as shown in Figure 2. As a simple guide,
the outliers can be identiĄed as having an outlier probability of greater than 0.9.

R> plot(outlierProbs(brainbody.glm.rob))

It appears that there are 5 outliers, with a possible other. These can be printed out as follows.
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R> print(data.frame(Animals,

+ outlierprob=as.numeric(outlierProbs(brainbody.glm.rob)))

+ [outlierProbs(brainbody.glm.rob) > 0.8,])

body brain logbrain logbody outlierprob

Dipliodocus 11700.00 50.0 3.912023 9.367344 1.0000000

Human 62.00 1320.0 7.185387 4.127134 0.9999969

Triceratops 9400.00 70.0 4.248495 9.148465 1.0000000

Rhesus monkey 6.80 179.0 5.187386 1.916923 0.9996808

Chimpanzee 52.16 440.0 6.086775 3.954316 0.8658141

Brachiosaurus 87000.00 154.5 5.040194 11.373663 1.0000000

The 3 outliers on the lower side of the Ątted line are dinosaurs, as would be expected as
reptiles usually have smaller brains, and on the high side are humans, rhesus monkeys and
possibly chimpanzees, again as would be expected as apes have relatively larger brains. We
can produce plots of residual versus Ątted for both the the standard and robust models,
as shown in Figure 3. With the robust model the outliers are much more obvious. This
comes about for two reasons: with the robust model the estimate of the residual variance is
much lower and the Ątted line is no longer dragged towards the outliers, so the residuals are
increased.

R> resdata <- data.frame(

+ model=factor(rep(1:2, each=dim(Animals)[1]),

+ labels=c("Standard", "Robust")),

+ fitted=c(fitted(brainbody.glm), fitted(brainbody.glm.rob)),

+ residual=c(residuals(brainbody.glm), residuals(brainbody.glm.rob)))

R> xyplot(residual~fitted|model, data=resdata)

4.2. Carrot Damage

This is analysis of an experiment to determine the dose-response for insecticide on carrot
Ćy on carrots conducted at the National Vegetable Research Station Phelps (1982), with the
analysis presented in that paper including an offset which will be ignored here. This data has
been previosly analysed in Williams (1987) and McCullagh and Nelder (1989), to demonstrate
techniques for detecting outliers. Of interest is that observation 14 appears to be an outlier.
We obtain the data from the robustbase package.

R> library(robustbase)

R> data(carrots)

Fitting the two models:

R> carrots.glm <- glm(cbind(success, total-success)~logdose+factor(block),

+ family="binomial", data=carrots)

R> summary(carrots.glm)
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Figure 3: Residual versus Fitted for Brain versus Body Weight

Call:

glm(formula = cbind(success, total - success) ~ logdose + factor(block),

family = "binomial", data = carrots)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9200 -1.0215 -0.3239 1.0602 3.4324

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0226 0.6501 3.111 0.00186 **

logdose -1.8174 0.3439 -5.285 1.26e-07 ***

factor(block)B2 0.3009 0.1991 1.511 0.13073

factor(block)B3 -0.5424 0.2318 -2.340 0.01929 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.344 on 23 degrees of freedom

Residual deviance: 39.976 on 20 degrees of freedom

AIC: 128.61

Number of Fisher Scoring iterations: 4
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R> carrots.robustmix <- robmixglm(cbind(success, total-success)~logdose+

+ factor(block), family="binomial", data=carrots)

R> summary(carrots.robustmix)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.4609 0.8367 2.941 0.00327 **

logdose -2.0632 0.4414 -4.674 2.95e-06 ***

factor(block)B2 0.1765 0.2808 0.628 0.52970

factor(block)B3 -0.5305 0.2709 -1.958 0.05025 .

Outlier p. 0.2482

Tau-sq 0.4509

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

logLik AIC BIC

-57.91094 127.8219 134.8902

There are an estimated 0 % outliers. The value of τ2 of 0.45 indicates the additional overdis-
persion required to Ąt the outlier observations. To compare the results of the two models we
can extract the coefficients and place them in a table, with standard model results preĄxed
with "Std" and robust model results with "Rob":

R> carrot.results <- data.frame(

+ StdEst=format(summary(carrots.glm)$coefficients[1:4, 1],

+ digits=4),

+ StdSE=format(summary(carrots.glm)$coefficients[1:4, 2],

+ digits=4),

+ Stdp=format.pval(summary(carrots.glm)$coefficients[1:4, 4],

+ digits=4, eps=0.0001),

+ RobEst=format(summary(carrots.robustmix)$coefficients[1:4, 1],

+ digits=4),

+ RobSE=format(summary(carrots.robustmix)$coefficients[1:4, 2],

+ digits=4),

+ Robp=format.pval(summary(carrots.robustmix)$coefficients[1:4, 4],

+ digits=4, eps=0.0001))

R> print(carrot.results, quote=FALSE)

StdEst StdSE Stdp RobEst RobSE Robp

(Intercept) 2.0226 0.6501 0.001863 2.4609 0.8367 0.003269

logdose -1.8174 0.3439 < 1e-04 -2.0632 0.4414 < 1e-04

factor(block)B2 0.3009 0.1991 0.130733 0.1765 0.2808 0.529701

factor(block)B3 -0.5424 0.2318 0.019286 -0.5305 0.2709 0.050248

Test for outliers and plot the outlier probabilities in Figure 4. This shows clearly that obser-
vation 14, with an outlier probability close to one, is the only outlier. However there are a
number of observations that have at least a moderate probability of being an outlier.
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Figure 4: Outlier Probabilities for Carrot Damage

R> outlierTest(carrots.robustmix)

p value 0.0070

R> plot(outlierProbs(carrots.robustmix))

A plot incorporating the observed and predicted for both models is shown in Figure 5. This
shows clearly again that observation 14 is the outlier observation. Observed versus Ątted is
shown in Figure 6, and shows the outlier and also that there is no systematic variation.

R> plot(1:dim(carrots)[1], carrots$success/carrots$total,

+ xlab="Observation", ylab="Proportion")

R> points(1:dim(carrots)[1], fitted(carrots.glm), pch=2, col="red")

R> points(1:dim(carrots)[1], fitted(carrots.robustmix), pch=3, col="blue")

R> legend(20,4,legend=c("Observed","Standard","Robust"),pch=c(1,2,3),col=c("black","red","blue"))

R> plot(fitted(carrots.robustmix), carrots$success/carrots$total,

+ xlab="Fitted Proportion", ylab="Observed Proportion")

R> abline(a=0.0, b=1.0, col="red")

4.3. Diabetes Data

This data is from a study of the prevalence of cardiovascular risk factors such as obesity and
diabetes for African Americans (Willems, Saunders, Hunt, and Schorling 1997), and were
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Figure 5: Observed and Fitted for Carrot Damage Models
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Figure 6: Observed versus Fitted for Carrot Damage
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obtained from Heritier et al. (2009) and are included in the robmixglm package. Data was
available for 403 subjects screened for diabetes, reduced to 372 after removal of cases with
missing data. The aim is to predict the level of glycosated haemoglobin from the risk factors.
It actually appears that a gamma model with log link is better, but I have kept the gaussian
to be consistent with Heritier et al. It is also quite likely that there is another predictor that
is missing from the analysis. Fit the standard and robust models:

R> diabdata.glm <- glm(glyhb~age+gender+bmi+waisthip+frame,

+ data=diabdata)

R> summary(diabdata.glm)

Call:

glm(formula = glyhb ~ age + gender + bmi + waisthip + frame,

data = diabdata)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.2195 -1.1379 -0.4676 0.2614 10.2285

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.340044 1.563959 -0.217 0.8280

age 0.041324 0.007136 5.791 1.51e-08 ***

gendermale 0.063536 0.256950 0.247 0.8048

bmi 0.039969 0.019888 2.010 0.0452 *

waisthip 3.163880 1.687404 1.875 0.0616 .

framemedium 0.115422 0.289920 0.398 0.6908

framesmall -0.049235 0.365635 -0.135 0.8930

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 4.307101)

Null deviance: 1830.8 on 371 degrees of freedom

Residual deviance: 1572.1 on 365 degrees of freedom

AIC: 1607.8

Number of Fisher Scoring iterations: 2

R> diabdata.robustmix <- robmixglm(glyhb~age+gender+bmi+waisthip+frame,

+ data=diabdata)

R> summary(diabdata.robustmix)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.002329 0.559352 5.368 7.98e-08 ***

age 0.013899 0.002585 5.376 7.62e-08 ***

gendermale 0.018244 0.090133 0.202 0.8396
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Figure 7: Outlier Probabilities for Diabetic Data

bmi 0.010404 0.007077 1.470 0.1415

waisthip 1.056509 0.575061 1.837 0.0662 .

framemedium -0.052746 0.109855 -0.480 0.6311

framesmall -0.184365 0.137613 -1.340 0.1803

Outlier p. 0.235690

Sigma-sq 0.340610

Sigma-sq Out. 20.576419

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

logLik AIC BIC

-630.1581 1280.316 1319.505

Test for outliers and plot the outlier probabilities in Figure 7, which shows a large number
of outliers. This may indicate there is a problem with the model used, possibly an incorrect
distribution.

R> outlierTest(diabdata.robustmix)

p value 0.0010

R> plot(outlierProbs(diabdata.robustmix))

The observed versus Ątted may be plotted as in Figure 8. This shows a generally increasing
variance at higher predicted values and an increase in the mean, suggesting that there may
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Figure 8: Observed versus Fitted for Diabetic Data using Robust Model

be alternative models, for example a gamma with log link, which may be a better Ąt to the
data.

R> plot(fitted(diabdata.robustmix), diabdata$glyhb)

R> abline(a=0.0, b=1.0, col="red")

The step() function, a simpliĄed version of stepAIC() described in Venables and Rispley
(1999), allows for stepwise model selection based on the AIC statistic. Here we use the
default setting of both backward and forward selection, and start with the full model. The
Ąrst parameter of the function deĄnes the models to be Ątted, and the second deĄnes the terms
from which the model is selected. Further parameters are deĄned in the documentation for
step(). The function produces a large amount of output, giving the AIC and change for each
Ątted model, so this has been removed using the trace=FALSE parameter. The Ąnal model
Ąt is then printed. Note that in practice we would embed this code within a more rigorous
analysis, using either a training and test dataset or cross-validation.

R> library("MASS")

R> diabdata.step <- step(diabdata.robustmix,

+ glyhb ~ age + gender + bmi + waisthip + frame,

+ trace = FALSE)

R> summary(diabdata.step)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.582896 0.474758 5.440 5.31e-08 ***

age 0.014560 0.002537 5.739 9.52e-09 ***
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bmi 0.015162 0.005771 2.627 0.00861 **

waisthip 1.267877 0.541610 2.341 0.01924 *

Outlier p. 0.236816

Sigma-sq 0.342148

Sigma-sq Out. 20.474058

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

logLik AIC BIC

-631.4526 1276.905 1304.338

The resulting model has excluded frame and gender, and resulted in an increased level of
evidence for bmi as a consequence of the correlation between it and frame.

5. Summary

It has been shown how the robmixglm package may be used to Ąt generalized linear models
accounting for outliers. Features of the package allow for identiĄcation of outliers and a test
for the presence of outliers, as a consequence of the use of a probability model, thus allowing
construction of a likelihood function. Further example showed how standard R functions can
be used to perform model selection. As the method allows for robustness with and model
with a linear predictor then it is possible to extend the range of models Ątted. One example
is the zero truncated Poisson which is included in the package.
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