Package 'rmda'

October 14, 2022

Type Package

Title Risk Model Decision Analysis

Version 1.6

Date 2018-07-17

Author Marshall Brown

Maintainer Marshall Brown <mdbrown@fredhutch.org>

Description Provides tools to evaluate the value of using a risk prediction instrument to decide treatment or intervention (versus no treatment or intervention). Given one or more risk prediction instruments (risk models) that estimate the probability of a binary outcome, rmda provides functions to estimate and display decision curves and other figures that help assess the population impact of using a risk model for clinical decision making. Here, "population" refers to the relevant patient population. Decision curves display estimates of the (standardized) net benefit over a range of probability thresholds used to categorize observations as 'high risk'. The curves help evaluate a treatment policy that recommends treatment for patients who are estimated to be 'high risk' by comparing the population impact of a risk-based policy to ``treat all" and ``treat none" intervention policies. Curves can be estimated using data from a prospective cohort. In addition, rmda can estimate decision curves using data from a case-control study if an estimate of the population outcome prevalence is available. Version 1.4 of the package provides an alternative framing of the decision problem for situations where treatment is the standard-of-care and a risk model might be used to recommend that low-risk patients (i.e., patients below some risk threshold) opt out of treatment. Confidence intervals calculated using the bootstrap can be computed and displayed. A wrapper function to calculate cross-validated curves using k-fold cross-validation is also provided.

License GPL-2

URL http://mdbrown.github.io/rmda/, https://github.com/mdbrown/rmda

LazyData TRUE Imports reshape, pander, MASS, caret RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-07-17 17:30:02 UTC

R topics documented:

rmda-package	2
Add_CostBenefit_Axis	3
cv_decision_curve	4
dcaData	5
dcaData_cc	6
decision_curve	7
plot_clinical_impact	9
plot_decision_curve	
plot_roc_components	13
summary.decision_curve	14
1	16

Index

rmda-package

rmda: Risk Model Decision Analysis

Description

The package 'rmda' (risk model decision analysis) provides tools to evaluate the value of using a risk prediction instrument to decide treatment or intervention (versus no treatment or intervention). Given one or more risk prediction instruments (risk models) that estimate the probability of a binary outcome, rmda provides functions to estimate and display decision curves and other figures that help assess the population impact of using a risk model for clinical decision making. Here, "population" refers to the relevant patient population.

Details

Decision curves display estimates of the (standardized) net benefit over a range of probability thresholds used to categorize observations as 'high risk'. The curves help evaluate a treatment policy that recommends treatment for patients who are estimated to be 'high risk' by comparing the population impact of a risk-based policy to "treat all" and "treat none" intervention policies. Curves can be estimated using data from a prospective cohort. In addition, rmda can estimate decision curves using data from a case-control study if an estimate of the population outcome prevalence is available. Version 1.4 of the package provides an alternative framing of the decision problem for situations where treatment is the standard-of-care and a risk model might be used to recommend that low-risk patients (i.e., patients below some risk threshold) opt out of treatment.

Confidence intervals calculated using the bootstrap can be computed and displayed. A wrapper function to calculate cross-validated curves using k-fold cross-validation is also provided.

Functions in this package include:

decision_curve,
summary.decision_curve,
plot_decision_curve,
plot_clinical_impact,

plot_roc_components,

Add_CostBenefit_Axis

cv_decision_curve and Add_CostBenefit_Axis.

See Also

Useful links:

- http://mdbrown.github.io/rmda/
- https://github.com/mdbrown/rmda

Add_CostBenefit_Axis Add cost benefit ratio axis to a decision curve plot.

Description

Add cost benefit ratio axis to a decision curve plot.

Usage

```
Add_CostBenefit_Axis(xlim, cost.benefits, n.cost.benefits = 6, line = 4,
policy, ...)
```

Arguments

xlim	range of x-axis.
cost.benefits	Character vector of the form c('c1:b1', 'c2:b2',, 'cn:bn') with integers ci, bi corresponding to specific cost:benefit ratios to print.
n.cost.benefit	S
	number of cost:benefit ratios to print if cost.benefit.axis = TRUE (default n.cost.benefit = 6).
line	x-axis line to print the axis (default is 4).
policy	Either 'opt-in' (default) or 'opt-out', describing the type of policy for which to report the net benefit. A policy is 'opt-in' when the standard-of-care for a population is to assign a particular 'treatment' to no one. Clinicians then use a risk model to categorize patients as 'high-risk', with the recommendation to treat high-risk patients with some intervention. Alternatively, an 'opt-out' policy is applicable to contexts where the standard-of-care is to recommend a treatment to an entire patient population. The potential use of a risk model in this setting is to identify patients who are 'low-risk' and recommend that those patients 'opt-out' of treatment.
	other options sent to 'axis'.

Value

List with components threshold, value and name.

summary.decision_curve, decision_curve

cv_decision_curve Calculate cross-validated decision curves

Description

This is a wrapper for 'decision_curve' that computes k-fold cross-validated estimates of sensitivity, specificity, and net benefit so that cross-validated net benefit curves can be plotted.

Usage

```
cv_decision_curve(formula, data, family = binomial(link = "logit"),
thresholds = seq(0, 1, by = 0.01), folds = 5, study.design = c("cohort",
    "case-control"), population.prevalence, policy = c("opt-in", "opt-out"))
```

formula	an object of class 'formula' of the form outcome ~ predictors, giving the predic- tion model to be fitted using glm. The outcome must be a binary variable that equals '1' for cases and '0' for controls.
data	data.frame containing outcome and predictors. Missing data on any of the pre- dictors will cause the entire observation to be removed.
family	a description of the error distribution and link function to pass to 'glm" used for model fitting. Defaults to binomial(link = "logit") for logistic regression.
thresholds	Numeric vector of high risk thresholds to use when plotting and calculating net benefit values.
folds	Number of folds for k-fold cross-validation.
study.design	Either 'cohort' (default) or 'case-control' describing the study design used to obtain data. See details for more information.
population.prev	valence
	Outcome prevalence rate in the population used to calculate decision curves when study.design = 'case-control'.
policy	Either 'opt-in' (default) or 'opt-out', describing the type of policy for which to report the net benefit. A policy is 'opt-in' when the standard-of-care for a population is to assign a particular 'treatment' to no one. Clinicians then use a risk model to categorize patients as 'high-risk', with the recommendation to treat high-risk patients with some intervention. Alternatively, an 'opt-out' policy is applicable to contexts where the standard-of-care is to recommend a treatment to an entire patient population. The potential use of a risk model in this setting is to identify patients who are 'low-risk' and recommend that those patients 'opt-out' of treatment.

dcaData

Value

List with components

- derived.data: derived.data: A data frame in long form showing the following for each predictor and each 'threshold', 'FPR':false positive rate, 'TPR': true positive rate, 'NB': net benefit, 'sNB': standardized net benefit, 'rho': outcome prevalence, 'prob.high.risk': percent of the population considered high risk. 'DP': detection probability = TPR*rho, 'model': name of prediction model or 'all' or 'none', and cost.benefit.ratio's.
- folds: number of folds used for cross-validation.
- call: matched function call.

See Also

summary.decision_curve, decision_curve, Add_CostBenefit_Axis

Examples

dcaData

Simulated dataset for package 'DecisionCurve'

Description

Simulated cohort data containing demographic variables, marker values and cancer outcome.

Usage

dcaData

A data frame with 500 rows and 6 variables:

- Age: Age in years.
- Female: Indicator for female gender.
- Smokes: Indicator for smoking status.
- Marker1: simulated biomarker.
- Marker2: simulated biomarker.
- Cancer: Indicator for cancer.

dcaData_cc

Simulated dataset for package 'DecisionCurve'

Description

Simulated data from a case-control study containing demographic variables, marker values and cancer outcome. The prevalence of cancer in the population that this data is sampled from is approximately 0.11.

Usage

dcaData_cc

Format

A data frame with 500 rows and 6 variables:

- Age: Age in years.
- Female: Indicator for female gender.
- Smokes: Indicator for smoking status.
- Marker1: simulated biomarker.
- Marker2: simulated biomarker.
- Cancer: Indicator for cancer.

Description

This function calculates decision curves, which are estimates of the standardized net benefit by the probability threshold used to categorize observations as 'high risk.' Curves can be estimated using data from an observational cohort (default), or from case-control studies when an estimate of the population outcome prevalence is available. Confidence intervals calculated using the bootstrap are calculated as well. Once this function is called, use plot_decision_curve or summary to plot or view the curves, respectively.

Usage

```
decision_curve(formula, data, family = binomial(link = "logit"),
  policy = c("opt-in", "opt-out"), fitted.risk = FALSE,
  thresholds = seq(0, 1, by = 0.01), confidence.intervals = 0.95,
  bootstraps = 500, study.design = c("cohort", "case-control"),
  population.prevalence)
```

formula	an object of class 'formula' of the form outcome ~ predictors, giving the predic- tion model to be fitted using glm. The outcome must be a binary variable that equals '1' for cases and '0' for controls.
data	data.frame containing outcome and predictors. Missing data on any of the pre- dictors will cause the entire observation to be removed.
family	a description of the error distribution and link function to pass to 'glm' used for model fitting. Defaults to binomial(link = 'logit') for logistic regression.
policy	Either 'opt-in' (default) or 'opt-out', describing the type of policy for which to report the net benefit. A policy is 'opt-in' when the standard-of-care for a population is to assign a particular 'treatment' to no one. Clinicians then use a risk model to categorize patients as 'high-risk', with the recommendation to treat high-risk patients with some intervention. Alternatively, an 'opt-out' policy is applicable to contexts where the standard-of-care is to recommend a treatment to an entire patient population. The potential use of a risk model in this setting is to identify patients who are 'low-risk' and recommend that those patients 'opt-out' of treatment.
fitted.risk	logical (default FALSE) indicating whether the predictor provided are estimated risks from an already established model. If set to TRUE, no model fitting will be done and all estimates will be conditional on the risks provided. Risks must fall between 0 and 1.
thresholds	Numeric vector of high risk thresholds to use when plotting and calculating net benefit values.

confidence.intervals		
	Numeric (default 0.95 for 95% confidence bands) level of bootstrap confidence intervals to plot. Set as NA or 'none' to remove confidence intervals. See details for more information.	
bootstraps	Number of bootstrap replicates to use to calculate confidence intervals (default 500).	
study.design	Either 'cohort' (default) or 'case-control' describing the study design used to obtain data. See details for more information.	
population.prevalence		
	Outcome prevalence rate in the population used to calculate decision curves when study.design = 'case-control'.	

Details

Confidence intervals for (standardized) net benefit are calculated pointwise at each risk threshold. For when data come from an observational cohort, bootstrap sampling is done without stratifying on outcome, so disease prevalence varies within bootstrap samples. For case-control data, bootstrap sampling is done stratified on outcome.

Value

List with components

- derived.data: A data frame in long form showing the following for each predictor and each 'threshold', 'FPR':false positive rate, 'TPR': true positive rate, 'NB': net benefit, 'sNB': standardized net benefit, 'rho': outcome prevalence, 'prob.high.risk': percent of the population considered high risk. DP': detection probability = TPR*rho, 'model': name of prediction model or 'all' or 'none', cost.benefit.ratio, and 'xx_lower', 'xx_upper': the lower and upper confidence bands for all measures (if calculated).
- confidence.intervals: Level of confidence intervals returned.
- call: matched function call.

See Also

summary.decision_curve, cv_decision_curve, Add_CostBenefit_Axis

Examples

```
#helper function
expit <- function(xx) exp(xx)/ (1+exp(xx))</pre>
```

full.model <- decision_curve(Cancer~Age + Female + Smokes + Marker1 + Marker2,</pre>

```
data = dcaData,
                            thresholds = seq(0, .4, by = .01),
                            bootstraps = 10)
#simulated case-control data with same variables as above
data(dcaData_cc)
table(dcaData_cc$Cancer)
#estimated from the population where the
#case-control sample comes from.
population.rho = 0.11
full.model_cc <- decision_curve(Cancer~Age + Female + Smokes + Marker1 + Marker2,
                               data = dcaData,
                               thresholds = seq(0, .4, by = .01),
                               bootstraps = 10,
                               study.design = 'case-control',
                               population.prevalence = population.rho)
#estimate the net benefit for an 'opt-out' policy.
nb.opt.out <- decision_curve(Cancer~Age + Female + Smokes + Marker1 + Marker2,</pre>
                            data = dcaData,
                            policy = 'opt-out',
                            thresholds = seq(0, .4, by = .01),
                            bootstraps = 10)
```

plot_clinical_impact Plot the clinical impact curve from a DecisionCurve object.

Description

For a given population size, plot the number of subjects classified as high risk, and the number of subjects classified high risk with the outcome of interest at each high risk threshold.

Usage

```
plot_clinical_impact(x, population.size = 1000, cost.benefit.axis = TRUE,
    n.cost.benefits = 6, cost.benefits, confidence.intervals, col = "black",
    lty = 1, lwd = 2, xlim, ylim, xlab, ylab,
    cost.benefit.xlab = "Cost:Benefit Ratio", legend.position = c("topright",
    "right", "bottomright", "bottom", "bottomleft", "left", "topleft", "top",
    "none"), ...)
```

Arguments

```
Х
```

decision_curve object to plot. Assumes output from function 'decision_curve'

ро	opulation.size	
		Hypothetical population size (default 1000).
С	ost.benefit.ax	
		logical (default TRUE) indicating whether to print an additional x-axis showing relative cost:benefit ratios in addition to risk thresholds.
n	.cost.benefits	
		number of cost:benefit ratios to print if cost.benefit.axis = TRUE (default n.cost.benefit = 6).
C	ost.benefits	Character vector of the form c("c1:b1", "c2:b2",, "cn:bn") with integers ci, bi corresponding to specific cost:benefit ratios to print. Default allows the function to calculate these automatically.
С	onfidence.inte	rvals
		logical indicating whether to plot confidence intervals.
C	ol	vector of length two indicating the color for the number high risk and the second to the number high risk with outcome, respectively.
11	ty	vector of linetypes. The first element corresponds to the number high risk and the second to the number high risk with outcome.
1	wd	vector of linewidths. The first element corresponds to the number high risk and the second to the number high risk with outcome.
x	lim	vector giving c(min, max) of x-axis. Defaults to c(min(thresholds), max(thresholds)).
y	lim	vector giving c(min, max) of y-axis.
x	lab	label of main x-axis.
y	lab	label of y-axis.
С	ost.benefit.xl	ab
		label of cost:benefit ratio axis.
10	egend.position	
		character vector giving position of legend. Options are "topright" (default), "right", "bottomright", "bottom", "bottomleft", "left", "topleft", "top", or "none".
•	••	other options directly send to plot()
Exam	ples	
	l data (da a Data)	

plot_decision_curve

Plot the net benefit curves from a decision_curve object or many decision_curve objects

Description

Plot the net benefit curves from a decision_curve object or many decision_curve objects

Usage

```
plot_decision_curve(x, curve.names, cost.benefit.axis = TRUE,
    n.cost.benefits = 6, cost.benefits, standardize = TRUE,
    confidence.intervals, col, lty, lwd = 2, xlim, ylim, xlab, ylab,
    cost.benefit.xlab, legend.position = c("topright", "right", "bottomright",
    "bottom", "bottomleft", "left", "topleft", "top", "none"), ...)
```

x	'decision_curve' object to plot or a list of 'decision_curve' objects. Assumes output from function 'decision_curve'	
curve.names	vector of names to use when plotting legends.	
cost.benefit.a>	xis	
	logical (default TRUE) indicating whether to print an additional x-axis showing relative cost:benefit ratios in addition to risk thresholds.	
n.cost.benefits	-	
	number of cost:benefit ratios to print if cost.benefit.axis = TRUE (default n.cost.benefit = 6).	
cost.benefits	Character vector of the form c("c1:b1", "c2:b2",, "cn:bn") with integers ci, bi corresponding to specific cost:benefit ratios to print. Default allows the function to calculate these automatically.	
standardize	logical (default TRUE) indicating whether to use the standardized net benefit (NB/disease prevalence) or not.	
confidence.intervals		
	logical indicating whether to plot confidence intervals.	
col	vector of color names to be used in plotting corresponding to the 'predictors' given. Default colors will be chosen from rainbow(, $v = .8$). See details for more information on plot parameters.	
lty	vector of linetypes.	
lwd	vector of linewidths.	
xlim	vector giving c(min, max) of x-axis. Defaults to c(min(thresholds), max(thresholds)).	
ylim	vector giving c(min, max) of y-axis.	
xlab	label of main x-axis.	
ylab	label of y-axis.	

cost.benefit.xlab	
	label of cost:benefit ratio axis.
legend.position	
	character vector giving position of legend. Options are "topright" (default), "right", "bottomright", "bottom", "bottomleft", "left", "topleft", "top", or "none".
	other options directly send to plot()

Details

When k decision_curve objects are input, the first k elements of col, lty, lwd ... correspond to the curves provided. The next two elements (..., k+1, k+2) correspond to the attributes of the 'all' and 'none' curves. See below for an example.

Examples

```
data(dcaData)
set.seed(123)
baseline.model <- decision_curve(Cancer~Age + Female + Smokes,</pre>
                                data = dcaData,
                                 thresholds = seq(0, .4, by = .005),
                                 bootstraps = 10)
#plot using the defaults
plot_decision_curve(baseline.model, curve.names = "baseline model")
set.seed(123)
full.model <- decision_curve(Cancer~Age + Female + Smokes + Marker1 + Marker2,</pre>
                            data = dcaData,
                            thresholds = seq(0, .4, by = .005),
                            bootstraps = 10)
# for lwd, the first two positions correspond to the decision curves, then 'all' and 'none'
plot_decision_curve( list(baseline.model, full.model),
                    curve.names = c("Baseline model", "Full model"),
                    col = c("blue", "red"),
                    lty = c(1,2),
                    1wd = c(3, 2, 2, 1),
                    legend.position = "bottomright")
plot_decision_curve( list(baseline.model, full.model),
                    curve.names = c("Baseline model", "Full model"),
                    col = c("blue", "red"),
                    confidence.intervals = FALSE, #remove confidence intervals
                    cost.benefit.axis = FALSE, #remove cost benefit axis
                    legend.position = "none") #remove the legend
#Set specific cost:benefit ratios.
plot_decision_curve( list(baseline.model, full.model),
                    curve.names = c("Baseline model", "Full model"),
                    col = c("blue", "red"),
```

12

plot_roc_components Plot the components of a ROC curve by the high risk thresholds.

Description

Plot the components of the ROC curve –the true positive rates and false positive rates– by high risk thresholds.

Usage

```
plot_roc_components(x, cost.benefit.axis = TRUE, n.cost.benefits = 6,
  cost.benefits, confidence.intervals, col = "black", lty.fpr = 2,
  lty.tpr = 1, lwd = 2, xlim, ylim, xlab = "Risk Threshold", ylab,
  cost.benefit.xlab = "Cost:Benefit Ratio", legend.position = c("topright",
  "right", "bottomright", "bottom", "bottomleft", "left", "topleft", "top",
  "none"), ...)
```

x	decision_curve object to plot. Assumes output from function 'decision_curve'	
cost.benefit.ax	xis	
	logical (default TRUE) indicating whether to print an additional x-axis showing relative cost:benefit ratios in addition to risk thresholds.	
n.cost.benefits	5	
	number of cost:benefit ratios to print if cost.benefit.axis = TRUE (default n.cost.benefit = 6).	
cost.benefits	Character vector of the form c("c1:b1", "c2:b2",, "cn:bn") with integers ci, bi corresponding to specific cost:benefit ratios to print. Default allows the function to calculate these automatically.	
confidence.intervals		
	logical indicating whether to plot confidence intervals.	
col	vector of length two indicating the color for the true positive rates and false positive rates, respectively.	

lty.fpr	linetype for the false positive rate curve.	
lty.tpr	linetype for the true positive rate curve.	
lwd	vector of linewidths. The first element corresponds to the tpr and the second to the fpr.	
xlim	vector giving c(min, max) of x-axis. Defaults to c(min(thresholds), max(thresholds)).	
ylim	vector giving c(min, max) of y-axis.	
xlab	label of main x-axis.	
ylab	label of y-axis.	
cost.benefit.xlab		
	label of cost:benefit ratio axis.	
legend.position		
	character vector giving position of legend. Options are "topright" (default), "right", "bottomright", "bottom", "bottomleft", "left", "topleft", "top", or "none".	
	other options directly send to plot()	

Examples

#plot using the defaults
plot_roc_components(baseline.model, xlim = c(0, 0.4), col = c("black", "red"))

summary.decision_curve

Displays a useful description of a decision_curve object

Description

Displays a useful description of a decision_curve object

Usage

```
## S3 method for class 'decision_curve'
summary(object, ..., measure = c("sNB", "NB", "TPR",
    "FPR", "TNR", "FNR"), nround = 3)
```

Arguments

object	decision_curve object to summarise
	other arguments ignored (for compatibility with generic)
measure	name of summary measure to print out. For standardized net benefit: "sNB" (default), net benefit: "NB", true positive rate: "TPR", false positive rate: "FPR".
nround	number of decimal places to round (default 3).

Examples

#helper function

```
#load simulated data
data(dcaData)
full.model <- decision_curve(Cancer~Age + Female + Smokes + Marker1 + Marker2,
data = dcaData,
thresholds = seq(0, .4, by = .05),
bootstraps = 25)
summary(full.model) #outputs standardized net benefit by default
summary(full.model, nround = 2, measure = "TPR")</pre>
```

Index

* **datasets** dcaData, 5 dcaData_cc, 6

Add_CostBenefit_Axis, 3, 3, 5, 8

cv_decision_curve, 3, 4, 8

dcaData, 5
dcaData_cc, 6
decision_curve, 2, 4, 5, 7

plot_clinical_impact, 2, 9
plot_decision_curve, 2, 11
plot_roc_components, 2, 13

rmda (rmda-package), 2
rmda-package, 2

summary.decision_curve, 2, 4, 5, 8, 14