Package ‘rle’

May 28, 2025

Version 0.10.0
Date 2025-05-28
Title Common Functions for Run-Length Encoded Vectors

Description Common 'base’ and 'stats' methods for 'rle' objects, aiming to make it possi-
ble to treat them transparently as vectors.

Depends R (>=3.5)
Imports methods
Copyright file inst/COPYRIGHT

BugReports https://github.com/statnet/rle/issues
License GPL-3

RoxygenNote 7.3.2.9000

Encoding UTF-8

Suggests covr

NeedsCompilation yes

Author Pavel N. Krivitsky [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9101-3362>)

Maintainer Pavel N. Krivitsky <pavel@statnet.org>
Repository CRAN
Date/Publication 2025-05-28 14:10:02 UTC

Contents

rle-package L e
asale e e e e e
COMPIESS + « v v v v v e e e e e e e e e e e e e e e e
compress.rle e
Extractrle e e
INAEX_tO_TUN o o o o e e
Mathurle e e

https://github.com/statnet/rle/issues
https://orcid.org/0000-0002-9101-3362

2 rle-package

rep.rle e e 10
rle-methods L L 11
Summary.rle 12
Index 14
rle-package rle: Common Functions for Run-Length Encoded Vectors
Description

Common base and stats methods for rle objects, aiming to make it possible to treat them trans-
parently as vectors.

History

This package grew out of the needs of the ergm package for a run-length encoded representation of
extremely long vectors with a small number of contiguous runs, and these functions were originally
implemented in the statnet.common package.

It has been split out into its own package to enable others to use this functionality without installing
any unnecessary dependencies and to facilitate contributions under a simplified license.
What works and what doesn’t

The long-run aim of this package is to make it possible to treat rle objects transparently as unnamed
vectors. As of this writing, the biggest unimplemented feature are:

* It is possible to use the indexing ([and [[) operators to extract by positive numeric indices
but not by logical or negative numeric indices, and the implementation is far from optimal. It
is not possible to replace individual elements of the vector represented by an rle object. See
Extract.rle for more details.

e Method rep.rle currently has limited functionality.

Author(s)

Maintainer: Pavel N. Krivitsky <pavel@statnet.org> (ORCID)

See Also

Useful links:

* Report bugs at https://github.com/statnet/rle/issues

https://orcid.org/0000-0002-9101-3362
https://github.com/statnet/rle/issues

as.rle

as.rle Coerce to rle if not already an rle object

Description

Coerce to rle if not already an rle object

Usage

as.rle(x)

S3 method for class 'rle'
as.rle(x)

Default S3 method:

as.rle(x)
Arguments
X the object to be coerced.
compress A generic function for compressing a data structure.
Description

A generic function for compressing a data structure.

Usage
compress(x, ...)
Arguments
X the object to be compressed.

additional arguments to methods.

4 compress.rle

compress.rle Compress the rle object by merging adjacent runs

Description

Compress the rle object by merging adjacent runs

Usage
S3 method for class 'rle’
compress(x, ...)

Arguments
X an rle object.

additional objects; if given, all arguments are concatenated.

Note

Since rle stores run lengths as integers, compress.rle will not merge runs that add up to lengths
greater than what can be represented by a 32-bit signed integer (2147483647).

Examples

x <- rle(as.logical(rbinom(10,1,.7)))
y <- rle(as.logical(rbinom(10,1,.3)))

stopifnot(identical(rle(inverse.rle(x)&inverse.rle(y)),compress(x&y)))

big <- structure(list(lengths=as.integer(rep(.Machine$integer.max/4,6)),
values=rep(TRUE,6)), class="rle")

stopifnot(all(aggregate(as.numeric(lengths)~values,
data=as.data.frame(unclass(big)),FUN=sum)

aggregate(as.numeric(lengths)~values,
data=as.data.frame(unclass(compress(big))),
FUN=sum)))

Extract.rle 5

Extract.rle Indexing Methods for rle Objects

Description
These methods provide indexing functionality for rle objects on the scale of the original scale (the
elements of the vector that was compressed) where possible.

Usage

S3 method for class 'rle’
x[i, ..., unclass = getOption("rle.unclass_index") %||% FALSE]

S3 replacement method for class 'rle'
x[i, ..., unclass = getOption("rle.unclass_index") %||% FALSE] <- value

S3 method for class 'rle'

x[[i, ..., unclass = getOption("rle.unclass_index") %||% FALSE]]

S3 replacement method for class 'rle’

x[[i, ..., unclass = getOption("rle.unclass_index") %||% FALSE]] <- value
S3 method for class 'rle'

x$name

S3 replacement method for class 'rle’

x$name <- value

Arguments

X, 1, name, value, ...
Arguments to indexing operators. See Extract documentation in the base pack-

age.
unclass Logical: whether to process the arguments as if for an ordinary list; default other
than FALSE can be set with options(rle.unclass_index=...).

Details

At this time, the rle following form of indexing are supported:

operation index effect

[numeric >=@ as vector
[numeric <@ no

[logical no

[character onrle
[<- numeric>=0@ no

[<- numeric <9 no

logical
character
numeric
numeric
character
character
character
character

Extract.rle

no
onrle

as vector
no
onrle
onrle
onrle
onrle

Generally, character indexes will access the underlying elements of the rle object, $lengths and

For character indices, the corresponding sublists or elements of the rle object; for numeric indices,
for [[the element at the specified position and for [an rle containing the elements at the specified

Some of these methods and inputs produce an error in order to future-proof code that depends on

6
[<-
[<-
(L
[[<-
[L
[L<-
$
$<-
$values.
Value
position(s).
Note
the rle package by preventing their use.
See Also
index_to_run()
Examples

Indexing by character or by $ works, including sub-indexing.

x <- rle(1:5)
x[["values"]] <- 2:6
X

x$values[2:3] <- 7:8
X

From example(rle):

z <- c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE)

rle(z)
rle(z)[3:5] # Extract a sub-rle
rle(z)[[4]] # Extract an element

stopifnot(identical (inverse.rle(rle(z)[3:51), z[3:5]))

Fractional:

stopifnot(identical(inverse.rle(rle(z)[3.5]), z[3.51))

Zero:

stopifnot(identical(inverse.rle(rle(z)[0]), z[e]))

Out of range:

stopifnot(identical(inverse.rle(rle(z)[20]), z[20]))

A mix:
strange <- c(20, 3:5, 0, NA, 1:2)

index_to_run 7

stopifnot(identical(inverse.rle(rle(z)[strangel), z[strangel))

index_to_run Map an element in a vector represented by an rle to its run

Description

Map an element in a vector represented by an rle to its run

Usage

index_to_run(x, i, ...)

S3 method for class 'rle'

index_to_run(x, i, ...)
Arguments
X an rle object.
i a numeric vector of indices to map; fractional values are rounded down.

additional arguments to methods.

Value

An integer vector. Negative values of i and O are always mapped to 0. Indexes above the range
represented by x are mapped to the number of runs + 1.

Note

This function is generic for future-proofing.

Examples

From example(rle):
z <- c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE)
rle(z)

stopifnot(identical(

index_to_run(rle(z), (-1):10),

c(oL, oL, 1L, 1L, 2L, 2L, 3L, 4L, 5L, 5L, 5L, 6L)
))

8 Math.rle

Math.rle Mathematical functions for rle Objects

Description

Mathematical functions that work independently elementwise on vectors described in Math are
implemented for rle objects. See Details for list of exceptions.

Usage
S3 method for class 'rle’
Math(x, ...)
Arguments
X An rle object.
Additional arguments.
Details

Supported functions include all elements of the S3 Math group excluding the "cumulative" ones,
which are not supported at this time and will raise an error. As of this writing, functions supported
include (from R help) abs, sign, sqrt, floor, ceiling, trunc, round, signif, exp, log, expm1,
logip, cos, sin, tan, cospi, sinpi, tanpi, acos, asin, atan, cosh, sinh, tanh, acosh, asinh,
atanh, 1gamma, gamma, digamma, and trigamma.

Functions cumsum, cumprod, cummax, and cummin are not supported at this time and will raise an
eITor.

Value

In every supported case, the call should result in an rle that would have resulted had the call been
applied to the original (uncompressed) vector, then compressed using rle. (At no point in the
calculation is the uncompressed vector actually constructed, of course.)

By default, the functions do not merge adjacent runs with the same value. This must be done
explicitly with compress.rle.

Examples

x <- rle(sample(runif(2), 10, c(.7,.3), replace=TRUE))

stopifnot(isTRUE(all.equal(sin(inverse.rle(x)),inverse.rle(sin(x)))))
stopifnot(inherits(try(cumprod(x)), "try-error"))

Ops.rle 9

Ops.rle Unary and Binary Operations for rle Objects

Description

Unary and binary Arithmetic and Logic operators (with exceptions given below) are implemented
between two rle objects and between an rle object and a scalar.

Usage
S3 method for class 'rle'
Ops(el, e2)

Arguments
el, e2 Arguments to unary (e1) and binary (e1 and e2) operators.

Details
Supported operations include all elements of the Ops group, as well as xor. Within the Arithmetic
and Logic operators, this includes (taken from the R help): +, -, %, /, *, <, >, <=, >=, = == %%,
%/%, & |, !, and xor; but excludes non-vector logical functions and operators such as isTRUE and
&8&.

Value

In every supported case, the operation should result in an rle that would have resulted had the op-
eration been applied to the original (uncompressed) vectors, then compressed using rle, with the
proviso that if the resulting function creates adjacent runs of the same value, they are not merged.
This must be done explicitly with compress.rle. (At no point in the calculation are the uncom-
pressed vectors actually constructed, of course.)

An operation between an rle and a zero-length object produces an empty rle.

Examples

x <- rle(as.logical(rbinom(10,1,.7)))
y <- rle(as.logical(rbinom(10,1,.3)))

stopifnot(isTRUE(all.equal((!inverse.rle(x)),inverse.rle(!x))))
stopifnot(isTRUE(all.equal((inverse.rle(x)|inverse.rle(y)),inverse.rle(x|y))))
stopifnot(isTRUE(all.equal((inverse.rle(x)&inverse.rle(y)),inverse.rle(x&y))))

x <- rle(sample(c(-1,+1), 10, c(.7,.3), replace=TRUE))
y <- rle(sample(c(-1,+1), 10, c(.3,.7), replace=TRUE))

stopifnot(isTRUE(all.equal((inverse.rle(x)*inverse.rle(y)),inverse.rle(x*y))))

10 rep.rle

stopifnot(isTRUE(all.equal((2xinverse.rle(y)),inverse.rle(2xy))))
stopifnot(isTRUE(all.equal((inverse.rle(x)*2),inverse.rle(x*2))))

stopifnot(isTRUE(all.equal((inverse.rle(x)/inverse.rle(y)),inverse.rle(x/y))))
stopifnot(isTRUE(all.equal((2/inverse.rle(y)),inverse.rle(2/y))))
stopifnot(isTRUE(all.equal((inverse.rle(x)/2),inverse.rle(x/2))))

stopifnot(isTRUE(all.equal((-inverse.rle(y)),inverse.rle(-y))))
stopifnot(isTRUE(all.equal((inverse.rle(x)-inverse.rle(y)),inverse.rle(x-y))))

stopifnot(isTRUE(all.equal((inverse.rle(x)%/%inverse.rle(y)),inverse.rle(x%/%y))))
stopifnot(isTRUE(all.equal(inverse.rle(x)==inverse.rle(y),inverse.rle(x==y))))

stopifnot(isTRUE(all.equal((inverse.rle(x)>inverse.rle(y)),inverse.rle(x>y))))

rep.rle A rep method for rle objects

Description

A rep method for rle objects

Usage
S3 method for class 'rle'
rep(
X’
scale = c("element”, "run"),

doNotCompact = FALSE,
doNotCompress = doNotCompact

)
Arguments
X an rle object.
see documentation for rep.
scale whether to replicate the elements of the RLE-compressed vector or the runs.

doNotCompress, doNotCompact
whether the method should call compress.rle the results before returning.
Methods liable to produce very long output vectors, like rep, have this set FALSE
by default. doNotCompact is an old name for this argument.

Note

The rep method for rle objects is very limited at this time. Even though the default setting is to
replicate elements of the vector, only the run-replicating functionality is implemented at this time
except for the simplest case (scalar times argument).

rle-methods 11

Examples

x <- rle(sample(c(-1,+1), 10, c(.7,.3), replace=TRUE))
y <- rpois(length(x$lengths), 2)

stopifnot(isTRUE(all.equal(rep(inverse.rle(x), rep(y, x$lengths)),
inverse.rle(rep(x, y, scale="run")))))

stopifnot(isTRUE(all.equal(rep(inverse.rle(x), max(y)),
inverse.rle(rep(x, max(y), scale="element")))))

rle-methods Miscellaneous Common Methods for rle Objects

Description

Miscellaneous Common Methods for rle Objects

Usage

S3 method for class 'rle'’
c(...)

S3 method for class 'rle'’
mean(x, na.rm = FALSE, ...)

S3 method for class 'rle'
length(x)

S3 method for class 'rle'’
is.na(x)

S3 method for class 'rle'
str(object, ...)

Arguments

For c, objects to be concatenated. The first object must be of class rle.

X, object An rle object.
na.rm Whether missing values are to be ignored (TRUE) or propagated (FALSE).
Note

The 1length method returns the length of the vector represented by the object, obtained by summing
the lengths of individual runs. This can be overridden by setting options(rle.unclass_index =
FALSE), which causes it to return the length of the underlying representation (usually 2) instead.

12 Summary.rle

Examples

x <- rle(as.logical(rbinom(10,1,.7)))
y <- rle(as.logical(rbinom(10,1,.3)))

stopifnot(isTRUE(all.equal(c(inverse.rle(x),inverse.rle(y)),inverse.rle(c(x,y)))))

stopifnot(isTRUE(all.equal(mean(inverse.rle(x)),mean(x))))
stopifnot(isTRUE(all.equal(mean(inverse.rle(y)),mean(y))))

stopifnot(isTRUE(all.equal(length(inverse.rle(x)),length(x))))
stopifnot(isTRUE(all.equal(length(inverse.rle(y)),length(y))))

x$values[1] <- NA
y$values[1] <- NA
stopifnot(isTRUE(all.equal(is.na(inverse.rle(x)),inverse.rle(is.na(x)))))
stopifnot(isTRUE(all.equal(is.na(inverse.rle(y)),inverse.rle(is.na(y)))))

str(x)

Summary.rle Summary methods for rle objects.

Description

Summarisation functions for vectors described in Summary are implemented for rle objects.

Usage
S3 method for class 'rle'
Summary(..., na.rm)
Arguments

rle objects or objects that can be coerced to rle.

na.rm Whether the missing values should be ignored (TRUE) or propagated (FALSE).

Details

Supported functions include all elements of the S3 Summary group. As of this writing, functions
supported include (from R help) all, any, max, min, prod, range, and sum.

Summary.rle 13

Value

In every supported case, the call should produce the same result as what would have resulted had
the call been applied to the original (uncompressed) vector. (At no point in the calculation is the
uncompressed vector actually constructed, of course.) The exception is that if values are of class
integer, the result will nonetheless always be upcast to numeric to avert overflows. This behaviour
may change in the future.

Examples

x <- rle(as.logical(rbinom(20,1,.7)))
y <- rle(as.logical(rbinom(20,1,.3)))

stopifnot(isTRUE(all.equal(any(x, y),any(inverse.rle(x), inverse.rle(y)))))
stopifnot(isTRUE(all.equal(any(y),any(inverse.rle(y)))))

stopifnot(isTRUE(all.equal(sum(inverse.rle(x),inverse.rle(y)),sum(x,y))))
stopifnot(isTRUE(all.equal(sum(inverse.rle(y)),sum(y))))

y$values[2:3] <- NA
stopifnot(isTRUE(all.equal(sum(inverse.rle(y), na.rm=TRUE),sum(y, na.rm=TRUE))))
stopifnot(isTRUE(all.equal(sum(inverse.rle(y), na.rm=FALSE),sum(y, na.rm=FALSE))))

Index

[.rle(Extract.rle), 5
[<-.rle (Extract.rle), 5
[[.rle(Extract.rle), 5
[[<-.rle (Extract.rle),5

stats, 2

str.rle (rle-methods), 11
Summary, 12
Summary.rle, 12

$.rle (Extract.rle), 5
$<-.rle (Extract.rle), 5 xor, 9
&&, 9

Arithmetic, 9
as.rle, 3

base, 2

c.rle(rle-methods), 11
compress, 3
compress.rle, 4,4, 8-10

Extract, 5
Extract.rle, 2,5

index_to_run, 7
index_to_run(), 6
is.na.rle (rle-methods), 11
isTRUE, 9

length, 11
length.rle (rle-methods), 11
Logic, 9

Math, 8
Math.rle, 8
mean.rle (rle-methods), 11

Ops.rle, 9

rep, 10
rep.rle, 2, 10

rle, 2—12

rle (rle-package), 2
rle-methods, 11
rle-package, 2

14

	rle-package
	as.rle
	compress
	compress.rle
	Extract.rle
	index_to_run
	Math.rle
	Ops.rle
	rep.rle
	rle-methods
	Summary.rle
	Index

