--- title: "Get pubmed data" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Get pubmed data} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Introduction This vignette demonstrates how to retrieve citation data from PubMed using: - `get_pubmed_count()` — to retrieve the total count of articles matching a term. - `get_pubmed_by_year()` — to get article counts by publication year. These functions are part of the `risk.assessr` package. DISCLAIMER: This feature only works if you choose a good R package name. --- ## Setting Your PubMed API Key To increase request limits and improve stability, you can use an NCBI API key. ```{r api-key-example, eval = FALSE} # Replace with your actual API key options(pubmed.api_key = "your_actual_ncbi_api_key") ``` --- ## Load Required Libraries ```{r setup} library(risk.assessr) library(ggplot2) package_name <- "limma" ``` --- ## Total Number of Articles Matching a Term ```{r, message=FALSE, warning=FALSE, eval=FALSE} pubmed_count <- get_pubmed_count(package_name) pubmed_count ``` --- ## Number of Articles by Year ```{r, message=FALSE, warning=FALSE, eval=FALSE} citation_data <- get_pubmed_by_year(package_name, years_back = 20) citation_data ``` --- ## Plotting the Article Trend Over Time ```{r, message=FALSE, warning=FALSE, echo=FALSE, eval=FALSE} ggplot(citation_data, aes(x = Year, y = Count)) + geom_col(fill = "steelblue") + labs( title = "PubMed Articles per Year", subtitle = paste("Search term:", package_name), x = "Publication Year", y = "Number of Articles" ) + theme_minimal() ```