
repoRter.nih: a convenient R interface to the NIH RePORTER

Project API

Michael Barr, ACAS, MAAA, CPCU

Introduction

The US National Institute of Health (NIH) received funding of approximately $42 billion in Ąscal year 2022;
$31 billion (72%) of this was awarded by the NIH in the form of research grant funding to hospitals, medical
colleges, non-proĄts, businesses, and other organizations based in the U.S. and abroad.1 The NIH maintains
a publicly available database called ŞRePORTERŤ to track this substantial Ćow of grant funding and makes
it available to the public via a web-based query interface as well as an API.

ŞThe NIH RePORTER APIs is designed to programmatically expose relevant scientiĄc awards
data from both NIH and non-NIH federal agencies for the consumption of project teams or
external 3rd party applications to support reporting, data analysis, data integration or to satisfy
other business needs as deemed pertinent.Ť ŰNIH RePORTER v2 API Documentation

1https://nexus.od.nih.gov/all/2021/04/21/fy-2020-by-the-numbers-extramural-investments-in-research

1

https://reporter.nih.gov/
https://nexus.od.nih.gov/all/2021/04/21/fy-2020-by-the-numbers-extramural-investments-in-research

This data can have signiĄcant value for many audiences, including researchers, investors, industry, watch-
dogs/public advocates, and R users. But constructing queries and retrieving results programmatically in-
volves some coding overhead which can be a challenge for those not familiar with RESTful APIs and JSON;
it takes some effort even for those who are. The repoRter.nih package aims to simplify this task for the
typical analyst scripting in R.

Getting Started

Installation

This package (latest stable release) can be installed from CRAN the usual way:

install.packages("repoRter.nih")

The current dev version can be installed from github, on the dev branch:

devtools::install_github(’bikeactuary/repoRter.nih@dev’)

I welcome R developers more capable than myself to collaborate on improving the source code, documenta-
tion, and unit testing in this package.

Basic Workflow

library(tibble)

library(repoRter.nih)

library(ggplot2)

library(ggrepel)

library(dplyr)

library(scales)

library(tufte)

The make_req() method is used to generate a valid JSON request object. The req can subsequently be passed
to the RePORTER Project API and results retrieved via the get_nih_data() method.

Generating the request:

all projects funded by the Paycheck Protection Act, Coronavirus Response and

Relief Act, and American Rescue Plan, in fiscal year 2021

req <- make_req(criteria =

list(fiscal_years = 2021,

covid_response = c("C4", "C5", "C6")))

#> This is your JSON payload:

#> {

#> "criteria": {

#> "fiscal_years": [

#> 2021

#>],

#> "covid_response": [

#> "C4",

#> "C5",

#> "C6"

#>],

#> "use_relevance": false,

#> "include_active_projects": false,

2

#> "exclude_subprojects": false,

#> "multi_pi_only": false,

#> "newly_added_projects_only": false,

#> "sub_project_only": false

#> },

#> "offset": 0,

#> "limit": 500

#> }

#>

#> If you receive a non-200 API response, compare this formatting (boxes, braces, quotes, etc.) to

the ’Complete Payload’ schema provided here:

#> https://api.reporter.nih.gov/?urls.primaryName=V2.0#/Search/post_v2_projects_search

Sending the request and retrieving results:

res <- get_nih_data(req)

#> Retrieving first page of results (up to 500 records)

class(res)

#> [1] "tbl_df" "tbl" "data.frame"

A tibble is returned containing 43 columns. This data is not Ćat - several columns are nested data.frames
and lists (of variable length vectors and data.frames of varying height).

res %>% glimpse(width = getOption("cli.width"))

#> Rows: 252

#> Columns: 44

#> $ appl_id <int> 10255113, 10425707, 10403857, 10258548, 10439178, 10446500, ~

#> $ subproject_id <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ~

#> $ fiscal_year <int> 2021, 2021, 2021, 2021, 2021, 2021, 2021, 2021, 2021, 2021, ~

#> $ project_num <chr> "3P20GM104417-07S1", "3P20GM104417-08S1", "3R01ES028615-07S1~

#> $ project_serial_num <chr> "GM104417", "GM104417", "ES028615", "ES028615", "DC019579", ~

#> $ organization <df[,17]> <data.frame[31 x 17]>

#> $ award_type <chr> "3", "3", "3", "3", "7", "3", "1", "3", "3", "1", "1", "~

#> $ activity_code <chr> "P20", "P20", "R01", "R01", "U01", "R01", "R01", "U01", "U19~

#> $ award_amount <int> 1115953, 681188, 300000, 1609765, 877287, 348242, 667277, 26~

#> $ is_active <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALS~

#> $ project_num_split <df[,7]> <data.frame[31 x 7]>

#> $ principal_investigators <list> [<data.frame[1 x 7]>], [<data.frame[1 x 7]>], [<data.frame[2~

#> $ contact_pi_name <chr> "ADAMS, ALEXANDRA K.", "ADAMS, ALEXANDRA K.", "AL-HENDY, ~

#> $ program_officers <list> [<data.frame[1 x 4]>], [<data.frame[1 x 4]>], [<data.frame[~

#> $ agency_ic_admin <df[,3]> <data.frame[31 x 3]>

#> $ agency_ic_fundings <list> [<data.frame[1 x 5]>], [<data.frame[1 x 5]>], [<data.frame[1~

#> $ cong_dist <chr> "MT-00", "MT-00", "IL-01", "IL-01", "MA-08", "MA-08", "MO-0~

#> $ spending_categories <list> <44, 89, 176, 180, 4835, 5009, 5011, 246, 3641, 298, 338,~

#> $ project_start_date <chr> "2020-11-17T12:11:00Z", "2021-09-01T12:09:00Z", "2020-11-11~

#> $ project_end_date <chr> "2023-08-31T12:08:00Z", "2023-08-31T12:08:00Z", "2023-07-31T~

#> $ organization_type <df[,3]> <data.frame[31 x 3]>

#> $ full_foa <chr> "PA-20-135", "PAR-18-264", "PA-20-272", "PA-20-135", "RFA-O~

#> $ full_study_section <df[,6]> <data.frame[31 x 6]>

#> $ award_notice_date <chr> "2020-11-17T12:11:00Z", "2021-09-21T12:09:00Z", "2021-08-31T~

#> $ is_new <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALS~

#> $ mechanism_code_dc <chr> "RC", "RC", "RP", "RP", "RP", "RP", "RP", "RP", "RP", "RP~

#> $ core_project_num <chr> "P20GM104417", "P20GM104417", "R01ES028615", "R01ES028615", ~

#> $ terms <chr> "<Adult><21+ years old><Adult Human><adulthood><Affect><A~

#> $ pref_terms <chr> "2019-nCoV;Adult;Affect;Agricultural Workers;American Indian~

#> $ abstract_text <chr> "Project Summary\nThe COVID-19 pandemic has disproportionate~

#> $ project_title <chr> "Center for American Indian and Rural Health Equity", "Cente~

#> $ phr_text <chr> "Project Narrative\nWorking with our Latino community partne~

#> $ spending_categories_desc <chr> "American Indian or Alaska Native; Behavioral and Social Sci~

3

#> $ agency_code <chr> "NIH", "NIH", "NIH", "NIH", "NIH", "NIH", "NIH", "NIH", "NIH~

#> $ covid_response <list> "C4", "C6", "C6", "C4", "C4", "C6", "C6", "C6", "C6", "C4", ~

#> $ arra_funded <chr> "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", ~

#> $ budget_start <chr> "2020-11-17T12:11:00Z", "2021-09-01T12:09:00Z", "2021-09-01T~

#> $ budget_end <chr> "2023-08-31T12:08:00Z", "2023-08-31T12:08:00Z", "2023-07-31T~

#> $ cfda_code <chr> "310", "859", "113", "310", "310", "855", "855", "855", "855~

#> $ funding_mechanism <chr> "Research Centers", "Research Centers", "Non-SBIR/STTR", "N~

#> $ direct_cost_amt <int> 1006607, 616778, 297064, 1560464, 569403, 207287, 473684, 15~

#> $ indirect_cost_amt <int> 109346, 64410, 2936, 49301, 307884, 140955, 193593, 116250, ~

#> $ project_detail_url <chr> "https://reporter.nih.gov/project-details/10255113", "https:~

#> $ date_added <chr> "2020-11-21T07:11:17Z", "2021-09-25T04:09:53Z", "2021-09-04T~

Criteria-Field Translation

A dataset (nih_fields) is provided with this package to assist in translating between Ąeld names used
in the payload criteria, column names in the return data, and Ąeld names used in the include_fields,
exclude_fields, and sort_field arguments.

data("nih_fields")

nih_fields %>% print

#> # A tibble: 43 x 5

#> payload_name response_name include_name return_class mod_ind

#> <chr> <chr> <chr> <chr> <int>

#> 1 appl_ids appl_id ApplId integer 1

#> 2 <NA> subproject_id SubprojectId character 0

#> 3 fiscal_years fiscal_year FiscalYear integer 1

#> 4 project_nums project_num ProjectNum character 1

#> 5 serial_num project_serial_num ProjectSerialNum character 1

#> 6 <NA> organization Organization data.frame 0

#> 7 award_types award_type AwardType character 1

#> 8 activity_codes activity_code ActivityCode character 1

#> 9 award_amount_range award_amount AwardAmount integer 1

#> 10 include_active_projects is_active IsActive logical 1

#> # ... with 33 more rows

Some Ąelds can not be used as Ąltering criteria - these will show NA in the payload_name column.

Generating Requests

Most of the detail (and function documentation) is around the many parameters available in RePORTER
to Ąlter/search project records. LetŠs get into some of the capabilities.

Default Request

If no arguments are supplied, the default behavior of make_req() is to generate a request for all projects
funded in fiscal_years = lubridate::year(Sys.Date()). Limiting requests to a single year is often necessary
(depending on additional Ąltering criteria used) due to a RePORTER restriction that a maximum of 10K
records may be returned from any result set. There are currently ~2.6M projects in the database going back
to Ąscal year 1985, and each Ąscal year tends to have 70-100K projects, so the 10K limit can be restrictive
to the user wanting a broad search.

4

req <- make_req()

#> This is your JSON payload:

#> {

#> "criteria": {

#> "fiscal_years": [

#> 2023

#>],

#> "use_relevance": false,

#> "include_active_projects": false,

#> "exclude_subprojects": false,

#> "multi_pi_only": false,

#> "newly_added_projects_only": false,

#> "sub_project_only": false

#> },

#> "offset": 0,

#> "limit": 500

#> }

#>

#> If you receive a non-200 API response, compare this formatting (boxes, braces, quotes, etc.) to

the ’Complete Payload’ schema provided here:

#> https://api.reporter.nih.gov/?urls.primaryName=V2.0#/Search/post_v2_projects_search

The method prints a helpful message to the console in addition to returning the JSON. Set message = FALSE

if you wish to suppress this message.

Limiting Data Retrieved

You can limit both the width and height of the result set retrieved from the API.

Fields

We probably will not need to fetch every Ąeld every time. The include_fields argument is provided to
specify a limited set of Ąelds to be returned. Alternatively, Ąelds may be excluded using exclude_fields.

Records (projects)

This package provides the ability to retrieve only a limited number of result pages via the max_pages ar-
gument. This can be useful for developing/testing your queries (and for reducing time to render package
documentation). Each page has a record count equal to limit - so setting max_pages = 5 with the default
limit = 500 (the maximum permitted by RePORTER) in make_req() will result in up to 2,500 total records
returned.

Ex. 1 - Limiting results and selecting Ąelds

data("nih_fields")

fields <- nih_fields %>%

filter(response_name %in%

c("appl_id", "subproject_id", "project_title", "fiscal_year",

"award_amount", "is_active", "project_start_date")) %>%

pull(include_name)

req <- make_req(include_fields = fields,

limit = 500,

5

message = FALSE) # default

res <- get_nih_data(query = req,

max_pages = 1)

#> Retrieving first page of results (up to 500 records)

#> max_pages set to 1 by user. Result set contains 13 pages. Only partial results will be

retrieved.

res %>% glimpse(width = getOption("cli.width"))

#> Rows: 500

#> Columns: 7

#> $ appl_id <int> 10516064, 10547797, 10528455, 10539351, 10543399, 10532712, 105264~

#> $ subproject_id <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~

#> $ fiscal_year <int> 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, ~

#> $ award_amount <int> NA, 47719, 348376, 283022, 480000, 598833, 976715, NA, 756681, 157~

#> $ is_active <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, ~

#> $ project_start_date <chr> "2018-10-01T12:10:00Z", "2019-12-25T12:12:00Z", "2018-12-01T12:12:~

#> $ project_title <chr> "Novel Treatments for Modulation of Innate Immunity in Veteran Rel~

Some Vanilla Criteria

Many criteria are passed as vectors within the criteria list argument. We will cover some of the most useful
examples:

Ex. 2 - Organization search

We can reĄne our query results by providing Ąltering criteria to make_req(), and by extension to the API.
Suppose we want all currently active projects, funded in Ąscal years 2017 through 2021, with a speciĄc
organization in mind (though we donŠt know exactly how its name will appear in RePORTER):

req <- make_req(criteria =

list(

fiscal_years = 2010:2011,

include_active_projects = TRUE,

org_names = c("Yale", "New Haven")

),

include_fields = c("Organization", "FiscalYear", "AwardAmount"),

message = FALSE)

Here we are asking for any orgs containing the strings ŞyaleŤ or Şnew havenŤ (ignoring case) - there are
implied wildcards on either end of the strings we provide. This is the same as org_name LIKE ’%yale%’ OR

org_name LIKE ’%new haven%’ in a SQL WHERE clause.

res <- get_nih_data(req, max_pages = 1)

#> Retrieving first page of results (up to 500 records)

#> max_pages set to 1 by user. Result set contains 8 pages. Only partial results will be retrieved.

res %>% glimpse(width = getOption("cli.width"))

#> Rows: 500

#> Columns: 3

#> $ fiscal_year <int> 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, ~

#> $ organization <df[,17]> <data.frame[31 x 17]>

#> $ award_amount <int> 31652, 383541, 324878, 125625, 817479, 51752, 298417, 515342, 632313~

Notice the column organization is a nested data frame - it has 17 columns and always a single record. Setting
flatten_result = TRUE in the call to get_nih_data() will Ćatten all such return Ąelds, preĄxing the original
Ąeld name and returning with clean names (see janitor::clean_names()).

6

res <- get_nih_data(req,

max_pages = 1,

flatten_result = TRUE)

#> Retrieving first page of results (up to 500 records)

#> max_pages set to 1 by user. Result set contains 8 pages. Only partial results will be retrieved.

res %>% glimpse(width = getOption("cli.width"))

#> Rows: 500

#> Columns: 19

#> $ fiscal_year <int> 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, 2023, ~

#> $ award_amount <int> 672801, 418750, 251250, 1353606, 613743, 762160, 31652~

#> $ organization_org_name <chr> "YALE UNIVERSITY", "YALE UNIVERSITY", "YALE UNIVERSITY~

#> $ organization_city <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~

#> $ organization_country <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~

#> $ organization_org_city <chr> "NEW HAVEN", "NEW HAVEN", "NEW HAVEN", "NEW HAVEN", "N~

#> $ organization_org_country <chr> "UNITED STATES", "UNITED STATES", "UNITED STATES", "UN~

#> $ organization_org_state <chr> "CT", "CT", "CT", "CT", "CT", "CT", "CT", "CT", "CT", ~

#> $ organization_org_state_name <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~

#> $ organization_dept_type <chr> "BIOCHEMISTRY", "MICROBIOLOGY/IMMUN/VIROLOGY", "INTERN~

#> $ organization_fips_country_code <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~

#> $ organization_org_duns <chr> "043207562", "043207562", "043207562", "043207562", "0~

#> $ organization_org_ueis <chr> "FL6GV84CKN57", "FL6GV84CKN57", "FL6GV84CKN57", "FL6GV~

#> $ organization_primary_duns <chr> "043207562", "043207562", "043207562", "043207562", "0~

#> $ organization_primary_uei <chr> "FL6GV84CKN57", "FL6GV84CKN57", "FL6GV84CKN57", "FL6GV~

#> $ organization_org_fips <chr> "US", "US", "US", "US", "US", "US", "US", "US", "US", ~

#> $ organization_org_ipf_code <chr> "9420201", "9420201", "9420201", "9420201", "9420201",~

#> $ organization_org_zipcode <chr> "065208327", "065208327", "065208327", "065208327", "0~

#> $ organization_external_org_id <int> 9420201, 9420201, 9420201, 9420201, 9420201, 9420201, ~

Most users will prefer the Ćattened format above. It looks like Yale is busy, but it is not the only org
matching our search.

res %>%

group_by(organization_org_name) %>%

summarise(project_count = n())

#> # A tibble: 1 x 2

#> organization_org_name project_count

#> <chr> <int>

#> 1 YALE UNIVERSITY 500

The org_names_exact_match criteria can be used as an alternative when we know the exact org name as it
appears in RePORTER, if we want only that orgŠs projects returned.

Ex. 3 - Geographic search

We can also Ąlter projects by the geographic location (country/state/city) of the applicant organization.

A valid request but probably not what we want

req <- make_req(criteria =

list(

fiscal_years = 2010:2011,

include_active_projects = TRUE,

org_cities = "New Haven",

org_states = "WY"

),

include_fields = c("Organization", "FiscalYear", "AwardAmount"),

message = FALSE ## suppress printed message

7

)

res <- get_nih_data(req,

max_pages = 5,

flatten_result = TRUE)

#> Retrieving first page of results (up to 500 records)

#> Done - 0 records returned. Try a different search criteria.

Multiple criteria are usually connected by logical ŞANDŤ - there are no orgs based in the city of New Haven
in Wyoming state (because it doesnŠt exist.)

req <- make_req(criteria =

list(

fiscal_years = 2015,

include_active_projects = TRUE,

org_states = "WY"

),

include_fields = c("ApplId", "Organization", "FiscalYear", "AwardAmount"),

sort_field = "AwardAmount",

sort_order = "desc",

message = FALSE)

res <- get_nih_data(req,

flatten_result = TRUE)

#> Retrieving first page of results (up to 500 records)

res %>% glimpse(width = getOption("cli.width"))

#> Rows: 93

#> Columns: 20

#> $ appl_id <int> 8884461, 8898483, 10398032, 10450795, 10563569, 104957~

#> $ fiscal_year <int> 2015, 2015, 2022, 2022, 2022, 2022, 2022, 2015, 2015, ~

#> $ award_amount <int> 4957554, 3521553, 3418046, 2552738, 2255378, 2006157, ~

#> $ organization_org_name <chr> "WYOMING STATE DEPARTMENT OF HEALTH", "UNIVERSITY OF W~

#> $ organization_city <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~

#> $ organization_country <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~

#> $ organization_org_city <chr> "CHEYENNE", "LARAMIE", "LARAMIE", "LARAMIE", "LARAMIE"~

#> $ organization_org_country <chr> "UNITED STATES", "UNITED STATES", "UNITED STATES", "UN~

#> $ organization_org_state <chr> "WY", "WY", "WY", "WY", "WY", "WY", "WY", "WY", "WY", ~

#> $ organization_org_state_name <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~

#> $ organization_dept_type <chr> NA, "PHARMACOLOGY", "PHARMACOLOGY", "VETERINARY SCIENC~

#> $ organization_fips_country_code <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA~

#> $ organization_org_duns <chr> "809915796", "069690956", "069690956", "069690956", "0~

#> $ organization_org_ueis <chr> "JP1QRJYYJG73", "FDR5YF2K32X5", "FDR5YF2K32X5", "FDR5Y~

#> $ organization_primary_duns <chr> "809915796", "069690956", "069690956", "069690956", "0~

#> $ organization_primary_uei <chr> "JP1QRJYYJG73", "FDR5YF2K32X5", "FDR5YF2K32X5", "FDR5Y~

#> $ organization_org_fips <chr> "US", "US", "US", "US", "US", "US", "US", "US", "US", ~

#> $ organization_org_ipf_code <chr> "9408801", "9412601", "9412601", "9412601", "9412601",~

#> $ organization_org_zipcode <chr> "820020001", "820712000", "820712000", "820712000", "8~

#> $ organization_external_org_id <int> 9408801, 9412601, 9412601, 9412601, 9412601, 9412601, ~

Why are there projects from more recent years than 2015? Because the include_active_projects Ćag adds
in active projects that match all criteria aside from fiscal_years (this appears to be the intended behavior
by RePORTER).

Ex. 3 - Coronavirus/Covid-19 research

We already provided one example of this search criteria above. LetŠs mix it up and request all Covid response
projects.

8

all projects funded by the Paycheck Protection Act, Coronavirus Response and Relief Act,

and American Rescue Plan, over all years

req <- make_req(criteria =

list(covid_response = c("All")),

include_fields = nih_fields %>%

filter(payload_name %in% c("award_amount_range", "covid_response"))

%>% pull(include_name))

#> This is your JSON payload:

#> {

#> "criteria": {

#> "covid_response": [

#> "All"

#>],

#> "use_relevance": false,

#> "include_active_projects": false,

#> "exclude_subprojects": false,

#> "multi_pi_only": false,

#> "newly_added_projects_only": false,

#> "sub_project_only": false

#> },

#> "include_fields": [

#> "AwardAmount",

#> "CovidResponse"

#>],

#> "offset": 0,

#> "limit": 500

#> }

#>

#> If you receive a non-200 API response, compare this formatting (boxes, braces, quotes, etc.) to

the ’Complete Payload’ schema provided here:

#> https://api.reporter.nih.gov/?urls.primaryName=V2.0#/Search/post_v2_projects_search

res <- get_nih_data(req, max_pages = 1)

#> Retrieving first page of results (up to 500 records)

#> max_pages set to 1 by user. Result set contains 7 pages. Only partial results will be retrieved.

LetŠs inspect the result:

res$covid_response %>% class()

#> [1] "list"

res$covid_response[[1]]

#> [1] "Reg-CV"

covid_response is a nested list (with character vectors of variable length) within the return tibble. We can
use flatten_result = TRUE here - elements of each vector will be collapsed to a single string delimited by
Ş;Ť, massaging the list to a single character vector.

all projects funded by the Paycheck Protection Act, Coronavirus Response and Relief Act,

and American Rescue Plan, in fiscal year 2021

req <- make_req(criteria =

list(covid_response = c("All")),

message = FALSE)

res <- get_nih_data(req,

flatten_result = TRUE)

unique(res$covid_response)

9

#> [1] "Reg-CV" "CV" "C3" "C4" "C6" "C6;Reg-CV" "C5"

#> [8] "C5;Reg-CV" "C4;Reg-CV"

Some projects are being funded from multiple sources. Summarizing all Covid-related project awards:

library(ggplot2)

res %>%

left_join(covid_response_codes, by = "covid_response") %>%

mutate(covid_code_desc = case_when(!is.na(fund_src) ~ paste0(covid_response, ": ", fund_src),

TRUE ~ paste0(covid_response, " (Multiple)"))) %>%

group_by(covid_code_desc) %>%

summarise(total_awards = sum(award_amount) / 1e6) %>%

ungroup() %>%

arrange(desc(covid_code_desc)) %>%

mutate(prop = total_awards / sum(total_awards),

csum = cumsum(prop),

ypos = csum - prop/2) %>%

ggplot(aes(x = "", y = prop, fill = covid_code_desc)) +

geom_bar(stat="identity") +

geom_text_repel(aes(label =

paste0(dollar(total_awards,

accuracy = 1,

suffix = "M"),

"\n", percent(prop, accuracy = .01)),

y = ypos),

show.legend = FALSE,

nudge_x = .8,

size = 3, color = "grey25") +

coord_polar(theta ="y") +

theme_void() +

theme(legend.position = "right",

legend.title = element_text(colour = "grey25"),

legend.text = element_text(colour="blue", size=6,

face="bold"),

plot.title = element_text(color = "grey25"),

plot.caption = element_text(size = 6)) +

labs(caption = "Data Source: NIH RePORTER API v2") +

ggtitle("Legislative Source for NIH Covid Response Project Funding")

10

A second dataset is provided to translate the covid_response codes; it includes both the long-form and a
shorter version of the source name.

data("covid_response_codes")

covid_response_codes %>% print

#> # A tibble: 6 x 3

#> covid_response funding_source fund_~1

#> <chr> <chr> <chr>

#> 1 Reg-CV NIH regular appropriations funding NIH Re~

#> 2 CV Coronavirus Preparedness and Response Supplemental Appropriations Act~ Corona~

#> 3 C3 CARES Act (Coronavirus Aid, Relief, and Economic Security Act), 2020 CARES ~

#> 4 C4 Paycheck Protection Program and Health Care Enhancement Act, 2020 PPP & ~

#> 5 C5 Coronavirus Response and Relief Supplemental Appropriations Act, 2021 Corona~

#> 6 C6 American Rescue Plan Act of 2021 Americ~

#> # ... with abbreviated variable name 1: fund_src

Some Rocky Road Criteria

Other criteria provide search and Ąltering capability on many of the nested data elements. These criteria
are passed as lists and must include a value for each of the named elements within.

Ex. 4 - Principal Investigator/Officer name search

The pi_names and po_names criteria allow the user to search for projects based on the Ąrst and last names
of Principal Investigators and Principal Officers assigned. Each of these criteria must be provided as a list
with three named character vector elements: first_name, last_name, and any_name. Even if you only want

11

to search on one of these name fields, you must provide the remaining elements as an empty string. We will
demonstrate with a search on PI name:

projects funded in 2021 where the principal investigator first name

is "Michael" or begins with "Jo"

req <- make_req(criteria =

list(fiscal_years = 2021,

pi_names = list(first_name = c("Michael", "Jo*"),

last_name = c(""), # must specify all pi_names elements

always

any_name = character(1))),

include_fields = nih_fields %>%

filter(payload_name == "pi_names") %>%

pull(include_name),

message = FALSE)

res <- get_nih_data(req,

max_pages = 1,

flatten_result = TRUE)

#> Retrieving first page of results (up to 500 records)

#> max_pages set to 1 by user. Result set contains 13 pages. Only partial results will be

retrieved.

res %>% glimpse(width = getOption("cli.width"))

#> Rows: 500

#> Columns: 2

#> $ principal_investigators <list> [<data.frame[3 x 7]>], [<data.frame[3 x 7]>], [<data.frame[2~

#> $ contact_pi_name <chr> "IX, JOACHIM H", "WU, JOSEPH C.", "FRAKES, MICHAEL D.", "IX, ~

Here we searched for any projects with a PI Ąrst-named ŞMichaelŤ or beginning with ŞJoŤ - the Ş*Ť is a
wildcard operator.

Note that the Ąrst column in the return is a list of data frames of variable height (not a nested data.frame)
- we leave such returned elements to the user to handle extraction/formatting - Ćattening is only performed
for lists of atomic vectors and nested data frames.

Ex. 5 - Advanced text search

RePORTER allows users to search the project title, abstract, and tags for speciĄc terms or phrases. You
can access this capability with the advanced_text_search criteria - a named list with three elements:

• operator may be either ŞandŤ, ŞorŤ, or ŞadvancedŤ - and/or will specify the logical operator connecting
multiple search terms. ŞadvancedŤ allows the user to pass a boolean search string directly;

• search_field can be any or multiple of ŞtermsŤ, ŞabstractŤ, Şprojecttitle.Ť To search all items, specify
ŞallŤ or Ş Ť (a length 1 vector with an empty string);

• search_text may be either a length 1 character vector of space-delimited search terms (when using
ŞandŤ or ŞorŤ for the operator argument - the logical operator is inserted between all search terms); or
it may be a boolean search string (when specifying ŞadvancedŤ for the operator argument).

using advanced_text_search with boolean search string

req <- make_req(criteria =

list(advanced_text_search =

list(operator = "advanced",

search_field = c("terms", "abstract"),

search_text = "(head AND trauma) OR \"brain damage\" AND NOT

\"psychological\"")),

12

include_fields = c("ProjectTitle", "AbstractText", "Terms"))

#> This is your JSON payload:

#> {

#> "criteria": {

#> "advanced_text_search": {

#> "operator": "advanced",

#> "search_field": "terms,abstract",

#> "search_text": "(head AND trauma) OR \"brain damage\" AND NOT \"psychological\""

#> },

#> "use_relevance": false,

#> "include_active_projects": false,

#> "exclude_subprojects": false,

#> "multi_pi_only": false,

#> "newly_added_projects_only": false,

#> "sub_project_only": false

#> },

#> "include_fields": [

#> "ProjectTitle",

#> "AbstractText",

#> "Terms"

#>],

#> "offset": 0,

#> "limit": 500

#> }

#>

#> If you receive a non-200 API response, compare this formatting (boxes, braces, quotes, etc.) to

the ’Complete Payload’ schema provided here:

#> https://api.reporter.nih.gov/?urls.primaryName=V2.0#/Search/post_v2_projects_search

res <- get_nih_data(req, max_pages = 1)

#> Retrieving first page of results (up to 500 records)

#> max_pages set to 1 by user. Result set contains 40 pages. Only partial results will be

retrieved.

LetŠs inspect the Ąelds we searched from one of these results:

one_rec <- res %>%

slice(42) %>%

mutate(abstract_text = gsub("[\r\n]", " ", abstract_text))

one_rec %>% pull(project_title) %>% print

#> [1] "Translational Platform for Epilepsy Therapy and Biomarker Discovery"

substr to avoid LaTeX error exceeding char limit

one_rec %>% pull(abstract_text) %>% substr(1, 85) %>% print

#> [1] "PROJECT SUMMARY There is currently no validated treatment to prevent the development "

one_rec %>% pull(terms) %>% substr(1, 85) %>% print

#> [1] "<Brain><Brain Nervous System><Encephalon><California><Double-Blind Method><Double-Bli"

Large Result Sets

The RePORTER API provides no direct way to obtain complete result sets when searches yield over 10,000
records. get_nih_data() provides the return_meta argument which is defaulted to FALSE. When set to TRUE

and combined with a little programming, you can easily obtain full result sets well beyond the 10K limit.
One approach may be the following:

13

1. Obtain a sample from your full result set by making the query you desire and calling get_nih_data()

with max_pages = 1 (or some small number of pages); also set return_meta = TRUE in order to determine
the total number of records in the full result set

2. Calculate quantiles for the sample distribution of a column of your choice (e.g. award_amount)

• Set the # of quantiles such that you can conĄdently infer that the number of records within each
quantile range will contain <10K records within the full result set

3. Iterate over your quantiles making separate requests, passing the endpoints of each quantile to
award_amount_range criteria

• Wait until the end to Ćatten the combined results since some columns may Ćatten differently on smaller
individual result sets, causing problems in combining them after Ćattening

4. Bind your list of results together
5. Flatten the complete result set, if desired

Below is an implementation of the above logic:

all_res <- list()

for(y in 2017:2021) { ## five years to loop over, each year is ~80K records

We only need the AwardAmount for quantiles

req_sample <- make_req(criteria = list(fiscal_years = y),

include_fields = "AwardAmount")

get a sample of the result set - 1000 records should be enough

return the metadata

res_sample <- get_nih_data(req_sample, max_pages = 2, return_meta = TRUE)

paste0("There are ", res_sample$meta$total, " results for fiscal year ", y) %>%

print()

deciles of award amount - each decile should contain ~7,314.2 records, approximately

qtiles <- res_sample$records %>% pull(award_amount) %>% quantile(na.rm = TRUE, probs = seq(.1,

1, .1))

list for qtile results (full year)

this_res <- list()

for each qtile

for (i in 1:length(qtiles)) {

if (i == 1) {

award_min <- 0

} else {

award_min <- ceiling(qtiles[i-1])+.01

}

if (i == length(qtiles)) {

award_max <- 1e9 ## arbitrarily huge

} else {

award_max <- ceiling(qtiles[i])

}

req <- make_req(criteria = list(fiscal_years = y,

award_amount_range = list(min_amount = award_min,

max_amount = award_max)))

result set for quantile

this_res[[i]] <- get_nih_data(req, flatten_result = FALSE)

}

14

list of result sets for each year

yr_res[[y %>% as.character()]] <- this_res

}

shape it up

all_res <- unlist(yr_res, recursive = FALSE) %>%

bind_rows() %>%

flatten(recursive = FALSE) %>%

clean_names()

pull out everything that is flat

flat_columns <- all_res %>%

select_if(is.atomic)

everything that isn’t

annoying_columns <- all_res %>%

select_if(!is.atomic)

Note that using award_amount for this purpose will omit records with missing values. If you need these
included, you may consider similar logic applied to an alternative Ąeld such as award_notice_date.

Additional Resources

• The RePORTER web interface and official API documentation are useful for getting familiar with
available search parameters

• . . . and the homepage with further examples/documentation is here
• Information on NIH study sections, IRGs, etc. is here
• h/t to Chris whose code on github was all I could Ąnd existing in R and served as a starting point for

this work

Session Information

The version number of R and packages loaded for generating the vignette were:

sessionInfo()

#> R version 4.2.2 (2022-10-31)

#> Platform: x86_64-pc-linux-gnu (64-bit)

#> Running under: Debian GNU/Linux 11 (bullseye)

#>

#> Matrix products: default

#> BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0

#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

#>

#> locale:

#> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8

#> [4] LC_COLLATE=C LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8

#> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C

#> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C

#>

#> attached base packages:

#> [1] stats graphics grDevices utils datasets methods base

#>

#> other attached packages:

#> [1] tufte_0.12 scales_1.2.1 dplyr_1.0.10 ggrepel_0.9.2

15

https://reporter.nih.gov/advanced-search
https://api.reporter.nih.gov/documents/Data%20Elements%20for%20RePORTER%20Project%20API%20v2.pdf
https://api.reporter.nih.gov/
https://public.csr.nih.gov/StudySections
https://github.com/christopherBelter/nih_reporter_api

#> [5] ggplot2_3.4.0 repoRter.nih_0.1.4 tibble_3.1.8

#>

#> loaded via a namespace (and not attached):

#> [1] Rcpp_1.0.9 pillar_1.8.1 compiler_4.2.2 tools_4.2.2 digest_0.6.31

#> [6] gtable_0.3.1 timechange_0.2.0 jsonlite_1.8.4 lubridate_1.9.0 evaluate_0.19

#> [11] lifecycle_1.0.3 pkgconfig_2.0.3 png_0.1-8 rlang_1.0.6 cli_3.6.0

#> [16] DBI_1.1.3 rstudioapi_0.14 curl_5.0.0 yaml_2.3.6 xfun_0.36

#> [21] fastmap_1.1.0 withr_2.5.0 httr_1.4.4 stringr_1.5.0 knitr_1.41

#> [26] janitor_2.1.0 generics_0.1.3 vctrs_0.5.1 grid_4.2.2 tidyselect_1.2.0

#> [31] snakecase_0.11.0 glue_1.6.2 R6_2.5.1 fansi_1.0.3 rmarkdown_2.19

#> [36] purrr_1.0.1 magrittr_2.0.3 htmltools_0.5.4 assertthat_0.2.1 colorspace_2.0-3

#> [41] utf8_1.2.2 stringi_1.7.12 munsell_0.5.0 crayon_1.5.2

16

	Introduction
	Getting Started
	Installation

	Basic Workflow
	Criteria-Field Translation
	Generating Requests
	Default Request
	Limiting Data Retrieved
	Fields
	Records (projects)
	Ex. 1 - Limiting results and selecting fields

	Some Vanilla Criteria
	Ex. 2 - Organization search
	Ex. 3 - Geographic search
	Ex. 3 - Coronavirus/Covid-19 research

	Some Rocky Road Criteria
	Ex. 4 - Principal Investigator/Officer name search
	Ex. 5 - Advanced text search

	Large Result Sets
	Additional Resources
	Session Information

