
Package ‘regressinator’
August 16, 2024

Type Package

Title Simulate and Diagnose (Generalized) Linear Models

Version 0.2.0

Date 2024-08-16

Description Simulate samples from populations with known covariate
distributions, generate response variables according to common linear and
generalized linear model families, draw from sampling distributions of
regression estimates, and perform visual inference on diagnostics from model
fits.

URL https://www.refsmmat.com/regressinator/,

https://github.com/capnrefsmmat/regressinator

BugReports https://github.com/capnrefsmmat/regressinator/issues

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

Depends R (>= 4.1)

Imports broom, cli, DHARMa, dplyr, ggplot2, insight, nullabor, purrr,
rlang, tibble, tidyr, tidyselect

Suggests rmarkdown, knitr, mvtnorm, palmerpenguins, patchwork,
testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Alex Reinhart [aut, cre] (<https://orcid.org/0000-0002-6658-514X>)

Maintainer Alex Reinhart <areinhar@stat.cmu.edu>

Repository CRAN

Date/Publication 2024-08-16 15:40:02 UTC

1

https://www.refsmmat.com/regressinator/
https://github.com/capnrefsmmat/regressinator
https://github.com/capnrefsmmat/regressinator/issues
https://orcid.org/0000-0002-6658-514X

2 augment_longer

Contents
augment_longer . 2
augment_quantile . 3
binned_residuals . 5
bin_by_interval . 7
by_level . 8
custom_family . 9
decrypt . 10
empirical_link . 10
model_lineup . 11
ols_with_error . 13
parametric_boot_distribution . 14
partial_residuals . 16
population . 19
predictor . 21
response . 22
rfactor . 25
sample_x . 25
sampling_distribution . 26

Index 29

augment_longer Augment a model fit with residuals, in "long" format

Description

Use broom::augment() to augment a model fit with residual and fit information, then reformat the
resulting data frame into a "long" format with one row per predictor per observation, to facilitate
plotting of the result.

Usage

augment_longer(x, ...)

Arguments

x A model fit object, such as those returned by lm() or glm(). See the broom
documentation for the full list of model types supported.

... Additional arguments passed to broom::augment().

Details

The name comes by analogy to tidyr::pivot_longer(), and the concept of long versus wide data
formats.

augment_quantile 3

Value

A data frame (tibble) in similar form to those produced by broom::augment(), but expanded to
have one row per predictor per observation. Columns .predictor_name and .predictor_value
identify the predictor and its value. An additional column .obs records the original observation
numbers so results can be matched to observations in the original model data.

Limitations

Factor predictors (as factors, logical, or character vectors) can’t coexist with numeric variables in
the .predictor_value column. If there are some numeric and some factor predictors, the factor
predictors will automatically be omitted. If all predictors are factors, they will be combined into one
factor with all levels. However, if a numeric variable is converted to factor in the model formula,
such as with y ~ factor(x), the function cannot determine the appropriate types and will raise an
error. Create factors as needed in the source data frame before fitting the model to avoid this issue.

See Also

partial_residuals(), binned_residuals()

Examples

fit <- lm(mpg ~ cyl + disp + hp, data = mtcars)

each observation appears 3 times, once per predictor:
augment_longer(fit)

augment_quantile Augment data with randomized quantile residuals

Description

Generates a data frame containing a model’s predictors, the residuals, and the randomized quantile
residuals as additional columns.

Usage

augment_quantile(x, ...)

augment_quantile_longer(x, ...)

Arguments

x Fitted model to obtain randomized quantile residuals from

... Additional arguments to pass to broom::augment()

4 augment_quantile

Details

Randomized quantile residuals provide more interpretable residuals for generalized linear models
(GLMs), such as logistic regression. See Dunn and Smyth (1996) for details, or review the examples
provided in vignette("DHARMa", package="DHARMa").

Let FY (y;x, β) be the predicted cumulative distribution function for Y when X = x, using the
fitted GLM. When the response is continuous, the randomized quantile residual for observation i is

rq,i = FY (yi;xi, β̂).

When the response is discrete, let

ai = lim
y↑yi

FY (y;xi, β̂)

and

bi = FY (yi;xi, β̂),

then draw the randomized quantile residual as

rq,i ∼ Uniform(ai, bi).

As cumulative distributions are left-continuous, this "jitters" the values between the discrete steps,
resulting in a residual that is uniformly distributed when the model is correct.

Some definitions of randomized quantile residuals transform the resulting values using the standard
normal inverse cdf, so they are normally distributed. That step is omitted here, as uniform residuals
are easy to work with.

Value

Data frame with one row per observation used to fit x, including a .quantile.resid column con-
taining the quantile residuals. See broom::augment() and its methods for details of other columns.

For augment_quantile_longer(), the output is in "long" format with one row per predictor per
observation. Columns .predictor_name and .predictor_value identify the predictor and its
value. An additional column .obs records the original observation numbers so results can be
matched to observations in the original model data. See Limitations in augment_longer() for
limitations on factor predictors.

Implementation details

Uses broom::augment() to generate the data frame, then uses the DHARMa package to generate
randomized quantile residuals for the model.

References

Dunn, Peter K., and Gordon K. Smyth (1996). "Randomized Quantile Residuals." Journal of Com-
putational and Graphical Statistics 5 (3): 236–44. doi:10.2307/1390802

https://cran.r-project.org/package=DHARMa
https://doi.org/10.2307/1390802

binned_residuals 5

See Also

vignette("logistic-regression-diagnostics") and vignette("other-glm-diagnostics")
for examples of plotting and interpreting randomized quantile residuals; augment_longer(); broom::augment()

binned_residuals Obtain binned residuals for a model

Description

Construct a data frame by binning the fitted values or predictors of a model into discrete bins of
equal width, and calculating the average value of the residuals within each bin.

Usage

binned_residuals(fit, predictors = !".fitted", breaks = NULL, ...)

Arguments

fit The model to obtain residuals for. This can be a model fit with lm() or glm(),
or any model that has residuals() and fitted() methods.

predictors Predictors to calculate binned residuals for. Defaults to all predictors, skipping
factors. Predictors can be specified using tidyselect syntax; see help("language",
package = "tidyselect") and the examples below. Specify predictors =
.fitted to obtain binned residuals versus fitted values.

breaks Number of bins to create. If NULL, a default number of breaks is chosen based
on the number of rows in the data.

... Additional arguments passed on to residuals(). The most useful additional
argument is typically type, to select the type of residuals to produce (such as
standardized residuals or deviance residuals).

Details

In many generalized linear models, the residual plots (Pearson or deviance) are not useful because
the response variable takes on very few possible values, causing strange patterns in the residuals.
For instance, in logistic regression, plotting the residuals versus covariates usually produces two
curved lines.

If we first bin the data, i.e. divide up the observations into breaks bins based on their fitted values,
we can calculate the average residual within each bin. This can be more informative: if a region
has 20 observations and its average residual value is large, this suggests those observations are
collectively poorly fit. We can also bin each predictor and calculate averages within those bins,
allowing the detection of misspecification for specific model terms.

6 binned_residuals

Value

Data frame (tibble) with one row per bin per selected predictor, and the following columns:

.bin Bin number.
n Number of observations in this bin.
predictor_name Name of the predictor that has been binned.
predictor_min, predictor_max, predictor_mean, predictor_sd

Minimum, maximum, mean, and standard deviation of the predictor (or fitted
values).

resid_mean Mean residual in this bin.
resid_sd Standard deviation of residuals in this bin.

Limitations

Factor predictors (as factors, logical, or character vectors) are detected automatically and omit-
ted. However, if a numeric variable is converted to factor in the model formula, such as with y
~ factor(x), the function cannot determine the appropriate type and will raise an error. Create
factors as needed in the source data frame before fitting the model to avoid this issue.

References

Gelman, A., Hill, J., and Vehtari, A. (2021). Regression and Other Stories. Section 14.5. Cambridge
University Press.

See Also

partial_residuals() for the related partial residuals; vignette("logistic-regression-diagnostics")
and vignette("other-glm-diagnostics") for examples of use and interpretation of binned resid-
uals in logistic regression and GLMs; bin_by_interval() and bin_by_quantile() to bin data
and calculate other values in each bin

Examples

fit <- lm(mpg ~ disp + hp, data = mtcars)

Automatically bins both predictors:
binned_residuals(fit, breaks = 5)

Just bin one predictor, selected with tidyselect syntax. Multiple could be
selected with c().
binned_residuals(fit, disp, breaks = 5)

Bin the fitted values:
binned_residuals(fit, predictors = .fitted)

Bins are made using the predictor, not regressors derived from it, so here
disp is binned, not its polynomial
fit2 <- lm(mpg ~ poly(disp, 2), data = mtcars)
binned_residuals(fit2)

bin_by_interval 7

bin_by_interval Group a data frame into bins

Description

Groups a data frame (similarly to dplyr::group_by()) based on the values of a column, either by
dividing up the range into equal pieces or by quantiles.

Usage

bin_by_interval(.data, col, breaks = NULL)

bin_by_quantile(.data, col, breaks = NULL)

Arguments

.data Data frame to bin
col Column to bin by
breaks Number of bins to create. bin_by_interval() also accepts a numeric vector

of two or more unique cut points to use. If NULL, a default number of breaks is
chosen based on the number of rows in the data. In bin_by_quantile(), if the
number of unique values of the column is smaller than breaks, fewer bins will
be produced.

Details

bin_by_interval() breaks the numerical range of that column into equal-sized intervals, or into
intervals specified by breaks. bin_by_quantile() splits the range into pieces based on quantiles
of the data, so each interval contains roughly an equal number of observations.

Value

Grouped data frame, similar to those returned by dplyr::group_by(). An additional column .bin
indicates the bin number for each group. Use dplyr::summarize() to calculate values within each
group, or other dplyr operations that work on groups.

Examples

suppressMessages(library(dplyr))
cars |>

bin_by_interval(speed, breaks = 5) |>
summarize(mean_speed = mean(speed),

mean_dist = mean(dist))

cars |>
bin_by_quantile(speed, breaks = 5) |>
summarize(mean_speed = mean(speed),

mean_dist = mean(dist))

8 by_level

by_level Convert factor levels to numeric values

Description

Replace each entry in a vector with its corresponding numeric value, for instance to use a factor
variable to specify intercepts for different groups in a regression model.

Usage

by_level(x, ...)

Arguments

x Vector of factor values

... Mapping from factor levels to values. Can be provided either as a series of
named arguments, whose names correspond to factor levels, or as a single named
vector.

Value

Named vector of same length as x, with values replaced with those specified. Names are the original
factor level name.

See Also

rfactor() to draw random factor levels, and the forcats package https://forcats.tidyverse.
org/ for additional factor manipulation tools

Examples

foo <- factor(c("spam", "ham", "spam", "ducks"))

by_level(foo, spam = 4, ham = 10, ducks = 16.7)

by_level(foo, c("spam" = 4, "ham" = 10, "ducks" = 16.7))

to define a population with a factor that affects the regression intercept
intercepts <- c("foo" = 2, "bar" = 30, "baz" = 7)
pop <- population(

group = predictor(rfactor,
levels = c("foo", "bar", "baz"),
prob = c(0.1, 0.6, 0.3)),

x = predictor(runif, min = 0, max = 10),
y = response(by_level(group, intercepts) + 0.3 * x,

error_scale = 1.5)
)
sample_x(pop, 5)

https://forcats.tidyverse.org/
https://forcats.tidyverse.org/

custom_family 9

custom_family Family representing a GLM with custom distribution and link function

Description

Allows specification of the random component and link function for a response variable. In principle
this could be used to specify any GLM family, but it is usually easier to use the predefined families,
such as gaussian() and binomial().

Usage

custom_family(distribution, inverse_link)

Arguments

distribution The distribution of the random component. This should be in the form of a
function taking one argument, the vector of values on the inverse link scale, and
returning a vector of draws from the distribution.

inverse_link The inverse link function.

Details

A GLM is specified by a combination of:

• Random component, i.e. the distribution that Y is drawn from

• Link function relating the mean of the random component to the linear predictor

• Linear predictor

Using custom_family() we can specify the random component and link function, while the linear
predictor is set in population() when setting up the population relationships. A family specified
this way can be used to specify a population (via population()), but can’t be used to estimate a
model (such as with glm()).

Value

A family object representing this family

See Also

ols_with_error() for the special case of linear regression with custom error distribution

10 empirical_link

Examples

A zero-inflated Poisson family
rzeroinfpois <- function(ys) {

n <- length(ys)
rpois(n, lambda = ys * rbinom(n, 1, prob = 0.4))

}

custom_family(rzeroinfpois, exp)

decrypt Decrypt message giving the location of the true plot in a lineup

Description

Decrypts the message printed by model_lineup() indicating the location of the true diagnostics in
the lineup.

Usage

decrypt(...)

Arguments

... Message to decrypt, specifying the location of the true diagnostics

Value

The decrypted message.

empirical_link Empirically estimate response values on the link scale

Description

Calculates the average value of the response variable, and places this on the link scale. Plotting these
against a predictor (by dividing the dataset into bins) can help assess the choice of link function.

Usage

empirical_link(response, family, na.rm = FALSE)

Arguments

response Vector of response variable values.
family Family object representing the response distribution and link function. Only the

link function will be used.
na.rm Should NA values of the response be stripped? Passed to mean() when calculat-

ing the mean of the response.

model_lineup 11

Value

Mean response value, on the link scale.

Examples

suppressMessages(library(dplyr))
suppressMessages(library(ggplot2))

mtcars |>
bin_by_interval(disp, breaks = 5) |>
summarize(
mean_disp = mean(disp),
link = empirical_link(am, binomial())

) |>
ggplot(aes(x = mean_disp, y = link)) +
geom_point()

model_lineup Produce a lineup for a fitted model

Description

A lineup hides diagnostics among "null" diagnostics, i.e. the same diagnostics calculated using
models fit to data where all model assumptions are correct. For each null diagnostic, model_lineup()
simulates new responses from the model using the fitted covariate values and the model’s error
distribution, link function, and so on. Hence the new response values are generated under ideal
conditions: the fitted model is true and all assumptions hold. decrypt() reveals which diagnostics
are the true diagnostics.

Usage

model_lineup(fit, fn = augment, nsim = 20, ...)

Arguments

fit A model fit to data, such as by lm() or glm()

fn A diagnostic function. The function’s first argument should be the fitted model,
and it must return a data frame. Defaults to broom::augment(), which pro-
duces a data frame containing the original data and additional columns .fitted,
.resid, and so on. To see a list of model types supported by broom::augment(),
and to find documentation on the columns reported for each type of model, load
the broom package and use methods(augment).

nsim Number of total diagnostics. For example, if nsim = 20, the diagnostics for fit
are hidden among 19 null diagnostics.

... Additional arguments passed to fn each time it is called.

12 model_lineup

Details

To generate different kinds of diagnostics, the user can provide a custom fn. The fn should take a
model fit as its argument and return a data frame. For instance, the data frame might contain one
row per observation and include the residuals and fitted values for each observation; or it might be
a single row containing a summary statistic or test statistic.

fn will be called on the original fit provided. Then parametric_boot_distribution() will be
used to simulate data from the model fit nsim - 1 times, refit the model to each simulated dataset,
and run fn on each refit model. The null distribution is conditional on X, i.e. the covariates used
will be identical, and only the response values will be simulated. The data frames are concatenated
with an additional .sample column identifying which fit each row came from.

When called, this function will print a message such as decrypt("sD0f gCdC En JP2EdEPn ZY").
This is how to get the location of the true diagnostics among the null diagnostics: evaluating this in
the R console will produce a string such as "True data in position 5".

Value

A data frame (tibble) with columns corresponding to the columns returned by fn. The additional
column .sample indicates which set of diagnostics each row is from. For instance, if the true data
is in position 5, selecting rows with .sample == 5 will retrieve the diagnostics from the original
model fit.

Model limitations

Because this function uses S3 generic methods such as model.frame(), simulate(), and update(),
it can be used with any model fit for which methods are provided. In base R, this includes lm() and
glm().

The model provided as fit must be fit using the data argument to provide a data frame. For
example:

fit <- lm(dist ~ speed, data = cars)

When simulating new data, this function provides the simulated data as the data argument and
re-fits the model. If you instead refer directly to local variables in the model formula, this will not
work. For example, if you fit a model this way:

will not work
fit <- lm(cars$dist ~ cars$speed)

It will not be possible to refit the model using simulated datasets, as that would require modifying
your environment to edit cars.

References

Buja et al. (2009). Statistical inference for exploratory data analysis and model diagnostics.
Philosophical Transactions of the Royal Society A, 367 (1906), pp. 4361-4383. doi:10.1098/
rsta.2009.0120

Wickham et al. (2010). Graphical inference for infovis. IEEE Transactions on Visualization and
Computer Graphics, 16 (6), pp. 973-979. doi:10.1109/TVCG.2010.161

https://doi.org/10.1098/rsta.2009.0120
https://doi.org/10.1098/rsta.2009.0120
https://doi.org/10.1109/TVCG.2010.161

ols_with_error 13

See Also

parametric_boot_distribution() to simulate draws by using the fitted model to draw new re-
sponse values; sampling_distribution() to simulate draws from the population distribution,
rather than from the model

Examples

fit <- lm(dist ~ speed, data = cars)
model_lineup(fit, nsim = 5)

resids_vs_speed <- function(f) {
data.frame(resid = residuals(f),

speed = model.frame(f)$speed)
}
model_lineup(fit, fn = resids_vs_speed, nsim = 5)

ols_with_error Family representing a linear relationship with non-Gaussian errors

Description

The ols_with_error() family can represent any non-Gaussian error, provided random variates
can be drawn by an R function. A family specified this way can be used to specify a population (via
population()), but can’t be used to estimate a model (such as with glm()).

Usage

ols_with_error(error, ...)

Arguments

error Function that can draw random variables from the non-Gaussian distribution, or
a string giving the name of the function. For example, rt draws t-distributed
random variates. The function must take an argument n indicating how many
random variates to draw (as all random generation functions built into R do).

... Further arguments passed to the error function to draw random variates, such
as to specify degrees of freedom, shape parameters, or other parameters of the
distribution. These arguments are evaluated with the model data in the environ-
ment, so they can be expressions referring to model data, such as values of the
predictors.

Value

A family object representing this family.

14 parametric_boot_distribution

See Also

custom_family() for fully custom families, including for GLMs

Examples

t-distributed errors with 3 degrees of freedom
ols_with_error(rt, df = 3)

A linear regression with t-distributed error, using error_scale to make
errors large
population(

x1 = predictor(rnorm, mean = 4, sd = 10),
x2 = predictor(runif, min = 0, max = 10),
y = response(0.7 + 2.2 * x1 - 0.2 * x2,

family = ols_with_error(rt, df = 4),
error_scale = 2.5)

)

Cauchy-distributed errors
ols_with_error(rcauchy, scale = 3)

A contaminated error distribution, where
95% of observations are Gaussian and 5% are Cauchy
rcontaminated <- function(n) {

contaminant <- rbinom(n, 1, prob = 0.05)

return(ifelse(contaminant == 1,
rcauchy(n, scale = 20),
rnorm(n, sd = 1)))

}
ols_with_error(rcontaminated)

parametric_boot_distribution

Simulate the distribution of estimates by parametric bootstrap

Description

Repeatedly simulates new response values by using the fitted model, holding the covariates fixed.
By default, refits the same model to each simulated dataset, but an alternative model can be pro-
vided. Estimates, confidence intervals, or other quantities are extracted from each fitted model and
returned as a tidy data frame.

Usage

parametric_boot_distribution(
fit,
alternative_fit = fit,
data = model.frame(fit),

parametric_boot_distribution 15

fn = tidy,
nsim = 100,
...

)

Arguments

fit A model fit to data, such as by lm() or glm(), to simulate new response values
from.

alternative_fit

A model fit to data, to refit to the data sampled from fit. Defaults to fit, but an
alternative model can be provided to examine its behavior when fit is the true
model.

data Data frame to be used in the simulation. Must contain the predictors needed for
both fit and alternative_fit. Defaults to the predictors used in fit.

fn Function to call on each new model fit to produce a data frame of estimates.
Defaults to broom::tidy(), which produces a tidy data frame of coefficients,
estimates, standard errors, and hypothesis tests.

nsim Number of total simulations to run.

... Additional arguments passed to fn each time it is called.

Details

The default behavior samples from a model and refits the same model to the sampled data; this is
useful when, for example, exploring how model diagnostics look when the model is well-specified.
Another common use of the parametric bootstrap is hypothesis testing, where we might simulate
from a null model and fit an alternative model to the data, to obtain the null distribution of a partic-
ular estimate or statistic. Provide alternative_fit to have a specific model fit to each simulated
dataset, rather than the model they are simulated from.

Only the response variable from the fit (or alternative_fit, if given) is redrawn; other response
variables in the population are left unchanged from their values in data.

Value

A data frame (tibble) with columns corresponding to the columns returned by fn. The additional
column .sample indicates which fit each row is from.

Model limitations

Because this function uses S3 generic methods such as model.frame(), simulate(), and update(),
it can be used with any model fit for which methods are provided. In base R, this includes lm() and
glm().

The model provided as fit must be fit using the data argument to provide a data frame. For
example:

fit <- lm(dist ~ speed, data = cars)

16 partial_residuals

When simulating new data, this function provides the simulated data as the data argument and
re-fits the model. If you instead refer directly to local variables in the model formula, this will not
work. For example, if you fit a model this way:

will not work
fit <- lm(cars$dist ~ cars$speed)

It will not be possible to refit the model using simulated datasets, as that would require modifying
your environment to edit cars.

See Also

model_lineup() to use resampling to aid in regression diagnostics; sampling_distribution()
to simulate draws from the population distribution, rather than the null

Examples

Bootstrap distribution of estimates:
fit <- lm(mpg ~ hp, data = mtcars)
parametric_boot_distribution(fit, nsim = 5)

Bootstrap distribution of estimates for a quadratic model, when true
relationship is linear:
quad_fit <- lm(mpg ~ poly(hp, 2), data = mtcars)
parametric_boot_distribution(fit, quad_fit, nsim = 5)

Bootstrap distribution of estimates for a model with an additional
predictor, when it's truly zero. data argument must be provided so
alternative fit has all predictors available, not just hp:
alt_fit <- lm(mpg ~ hp + wt, data = mtcars)
parametric_boot_distribution(fit, alt_fit, data = mtcars, nsim = 5)

partial_residuals Augment a model fit with partial residuals for all terms

Description

Construct a data frame containing the model data, partial residuals for all quantitative predictors,
and predictor effects, for use in residual diagnostic plots and other analyses. The result is in tidy
form (one row per predictor per observation), allowing it to be easily manipulated for plots and
simulations.

Usage

partial_residuals(fit, predictors = everything())

partial_residuals 17

Arguments

fit The model to obtain residuals for. This can be a model fit with lm() or glm(),
or any model with a predict() method that accepts a newdata argument.

predictors Predictors to calculate partial residuals for. Defaults to all predictors, skipping
factors. Predictors can be specified using tidyselect syntax; see help("language",
package = "tidyselect") and the examples below.

Value

Data frame (tibble) containing the model data and residuals in tidy form. There is one row per
selected predictor per observation. All predictors are included as columns, plus the following addi-
tional columns:

.obs Row number of this observation in the original model data frame.

.predictor_name

Name of the predictor this row gives the partial residual for.
.predictor_value

Value of the predictor this row gives the partial residual for.

.partial_resid Partial residual for this predictor for this observation.

.predictor_effect

Predictor effect µ̂(Xif , 0) for this observation.

Predictors and regressors

To define partial residuals, we must distinguish between the predictors, the measured variables we
are using to fit our model, and the regressors, which are calculated from them. In a simple linear
model, the regressors are equal to the predictors. But in a model with polynomials, splines, or other
nonlinear terms, the regressors may be functions of the predictors.

For example, in a regression with a single predictor X , the regression model Y = β0 + β1X + e
has one regressor, X . But if we choose a polynomial of degree 3, the model is Y = β0 + β1X +
β2X

2 + β3X
3, and the regressors are {X,X2, X3}.

Similarly, if we have predictors X1 and X2 and form a model with main effects and an interaction,
the regressors are {X1, X2, X1X2}.

Partial residuals are defined in terms of the predictors, not the regressors, and are intended to al-
low us to see the shape of the relationship between a particular predictor and the response, and to
compare it to how we have chosen to model it with regressors. Partial residuals are not useful for
categorical (factor) predictors, and so these are omitted.

Linear models

Consider a linear model where E[Y | X = x] = µ(x). The mean function µ(x) is a linear
combination of regressors. Let µ̂ be the fitted model and β̂0 be its intercept.

Choose a predictor Xf , the focal predictor, to calculate partial residuals for. Write the mean function
as µ(Xf , Xo), where Xf is the value of the focal predictor, and Xo represents all other predictors.

If ei is the residual for observation i, the partial residual is

18 partial_residuals

rif = ei + (µ̂(xif , 0)− β̂0).

Setting Xo = 0 means setting all other numeric predictors to 0; factor predictors are set to their first
(baseline) level.

Generalized linear models

Consider a generalized linear model where g(E[Y | X = x]) = µ(x), where g is a link function.
Let µ̂ be the fitted model and β̂0 be its intercept.

Let ei be the working residual for observation i, defined to be

ei = (yi − g−1(xi))g
′(xi).

Choose a predictor Xf , the focal predictor, to calculate partial residuals for. Write µ as µ(Xf , Xo),
where Xf is the value of the focal predictor, and Xo represents all other predictors. Hence µ(Xf , Xo)
gives the model’s prediction on the link scale.

The partial residual is again

rif = ei + (µ̂(xif , 0)− β̂0).

Interpretation

In linear regression, because the residuals ei should have mean zero in a well-specified model,
plotting the partial residuals against xf should produce a shape matching the modeled relationship
µ. If the model is wrong, the partial residuals will appear to deviate from the fitted relationship.
Provided the regressors are uncorrelated or approximately linearly related to each other, the plotted
trend should approximate the true relationship between xf and the response.

In generalized linear models, this is approximately true if the link function g is approximately linear
over the range of observed x values.

Additionally, the function µ(Xf , 0) can be used to show the relationship between the focal predictor
and the response. In a linear model, the function is linear; with polynomial or spline regressors,
it is nonlinear. This function is the predictor effect function, and the estimated predictor effects
µ̂(Xif , 0) are included in this function’s output.

Limitations

Factor predictors (as factors, logical, or character vectors) are detected automatically and omit-
ted. However, if a numeric variable is converted to factor in the model formula, such as with y
~ factor(x), the function cannot determine the appropriate type and will raise an error. Create
factors as needed in the source data frame before fitting the model to avoid this issue.

References

R. Dennis Cook (1993). "Exploring Partial Residual Plots", Technometrics, 35:4, 351-362. doi:10.1080/
00401706.1993.10485350

Cook, R. Dennis, and Croos-Dabrera, R. (1998). "Partial Residual Plots in Generalized Linear Mod-
els." Journal of the American Statistical Association 93, no. 442: 730–39. doi:10.2307/2670123

https://doi.org/10.1080/00401706.1993.10485350
https://doi.org/10.1080/00401706.1993.10485350
https://doi.org/10.2307/2670123

population 19

Fox, J., & Weisberg, S. (2018). "Visualizing Fit and Lack of Fit in Complex Regression Models with
Predictor Effect Plots and Partial Residuals." Journal of Statistical Software, 87(9). doi:10.18637/
jss.v087.i09

See Also

binned_residuals() for the related binned residuals; augment_longer() for a similarly format-
ted data frame of ordinary residuals; vignette("linear-regression-diagnostics"), vignette("logistic-regression-diagnostics"),
and vignette("other-glm-diagnostics") for examples of plotting and interpreting partial resid-
uals

Examples

fit <- lm(mpg ~ cyl + disp + hp, data = mtcars)
partial_residuals(fit)

You can select predictors with tidyselect syntax:
partial_residuals(fit, c(disp, hp))

Predictors with multiple regressors are supported:
fit2 <- lm(mpg ~ poly(disp, 2), data = mtcars)
partial_residuals(fit2)

Allowing an interaction by number of cylinders is fine, but partial
residuals are not generated for the factor. Notice the factor must be
created first, not in the model formula:
mtcars$cylinders <- factor(mtcars$cyl)
fit3 <- lm(mpg ~ cylinders * disp + hp, data = mtcars)
partial_residuals(fit3)

population Define the population generalized regression relationship

Description

Specifies a hypothetical infinite population of cases. Each case has some predictor variables and
one or more response variables. The relationship between the variables and response variables are
defined, as well as the population marginal distribution of each predictor variable.

Usage

population(...)

Arguments

... A sequence of named arguments defining predictor and response variables. These
are evaluated in order, so later response variables may refer to earlier predictor
and response variables. All predictors should be provided first, before any re-
sponse variables.

https://doi.org/10.18637/jss.v087.i09
https://doi.org/10.18637/jss.v087.i09

20 population

Value

A population object.

See Also

predictor() and response() to define the population; sample_x() and sample_y() to draw
samples from it

Examples

A population with a simple linear relationship
linear_pop <- population(

x1 = predictor(rnorm, mean = 4, sd = 10),
x2 = predictor(runif, min = 0, max = 10),
y = response(0.7 + 2.2 * x1 - 0.2 * x2, error_scale = 1.0)

)

A population whose response depends on local variables
slope <- 2.2
intercept <- 0.7
sigma <- 2.5
variable_pop <- population(

x = predictor(rnorm),
y = response(intercept + slope * x, error_scale = sigma)

)

Response error scale is heteroskedastic and depends on predictors
heteroskedastic_pop <- population(

x1 = predictor(rnorm, mean = 4, sd = 10),
x2 = predictor(runif, min = 0, max = 10),
y = response(0.7 + 2.2 * x1 - 0.2 * x2,

error_scale = 1 + x2 / 10)
)

A binary outcome Y, using a binomial family with logistic link
binary_pop <- population(

x1 = predictor(rnorm, mean = 4, sd = 10),
x2 = predictor(runif, min = 0, max = 10),
y = response(0.7 + 2.2 * x1 - 0.2 * x2,

family = binomial(link = "logit"))
)

A binomial outcome Y, with 10 trials per observation, using a logistic link
to determine the probability of success for each trial
binomial_pop <- population(

x1 = predictor(rnorm, mean = 4, sd = 10),
x2 = predictor(runif, min = 0, max = 10),
y = response(0.7 + 2.2 * x1 - 0.2 * x2,

family = binomial(link = "logit"),
size = 10)

)

predictor 21

Another binomial outcome, but the number of trials depends on another
predictor
binom_size_pop <- population(

x1 = predictor(rnorm, mean = 4, sd = 10),
x2 = predictor(runif, min = 0, max = 10),
trials = predictor(rpois, lambda = 20),
y = response(0.7 + 2.2 * x1 - 0.2 * x2,

family = binomial(link = "logit"),
size = trials)

)

A population with a simple linear relationship and collinearity. Because X
is bivariate, there will be two predictors, named x1 and x2.
library(mvtnorm)
collinear_pop <- population(

x = predictor(rmvnorm, mean = c(0, 1),
sigma = matrix(c(1, 0.8, 0.8, 1), nrow = 2)),

y = response(0.7 + 2.2 * x1 - 0.2 * x2, error_scale = 1.0)
)

predictor Specify the distribution of a predictor variable

Description

Predictor variables can have any marginal distribution as long as a function is provided to sample
from the distribution. Multivariate distributions are also supported: if the random generation func-
tion returns multiple columns, multiple random variables will be created. If the columns are named,
the random variables will be named accordingly; otherwise, they will be successively numbered.

Usage

predictor(dist, ...)

Arguments

dist Function to generate draws from this predictor’s distribution, provided as a func-
tion or as a string naming the function.

... Additional arguments to pass to dist when generating draws.

Details

The random generation function must take an argument named n specifying the number of draws.
For univariate distributions, it should return a vector of length n; for multivariate distributions, it
should return an array or matrix with n rows and a column per variable.

Multivariate predictors are successively numbered. For instance, if predictor X is specified with

22 response

library(mvtnorm)
predictor(dist = rmvnorm, mean = c(0, 1),

sigma = matrix(c(1, 0.5, 0.5, 1), nrow = 2))

then the population predictors will be named X1 and X2, and will have covariance 0.5.

If the multivariate predictor has named columns, the names will be used instead. For instance, if
predictor X generates a matrix with columns A and B, the population predictors will be named XA
and XB.

Value

A predictor_dist object, to be used in population() to specify a population distribution

Examples

Univariate normal distribution
predictor(dist = rnorm, mean = 10, sd = 2.5)

Multivariate normal distribution
library(mvtnorm)
predictor(dist = rmvnorm, mean = c(0, 1, 7))

Multivariate with named columns
rmulti <- function(n) {

cbind(treatment = rbinom(n, size = 1, prob = 0.5),
confounder = rnorm(n)

)
}
predictor(dist = rmulti)

response Specify a response variable in terms of predictors

Description

Response variables are related to predictors (and other response variables) through a link function
and response distribution. First the expression provided is evaluated using the predictors, to give this
response variable’s value on the link scale; then the inverse link function and response distribution
are used to get the response value. See Details for more information.

Usage

response(expr, family = gaussian(), error_scale = NULL, size = 1L)

response 23

Arguments

expr An expression, in terms of other predictor or response variables, giving this
predictor’s value on the link scale.

family The family of this response variable, e.g. gaussian() for an ordinary Gaussian
linear relationship.

error_scale Scale factor for errors. Used only for linear families, such as gaussian() and
ols_with_error(). Errors drawn while simulating the response variable will
be multiplied by this scale factor. The scale factor can be a scalar value (such
as a fixed standard deviation), or an expression in terms of the predictors, which
will be evaluated when simulating response data. For generalized linear models,
leave as NULL.

size When the family is binomial(), this is the number of trials for each observa-
tion. Defaults to 1, as in logistic regression. May be specified either as a vector
of the same length as the number of observations or as a scalar. May be writ-
ten terms of other predictor or response variables. For other families, size is
ignored.

Details

Response variables are drawn based on a typical generalized linear model setup. Let Y represent
the response variable and X represent the predictor variables. We specify that

Y | X ∼ SomeDistribution,

where

E[Y | X = x] = g−1(µ(x)).

Here µ(X) is the expression expr, and both the distribution and link function g are specified by
the family provided. For instance, if the family is gaussian(), the distribution is Normal and the
link is the identity function; if the family is binomial(), the distribution is binomial and the link
is (by default) the logistic link.

Response families:
The following response families are supported.

gaussian() The default family is gaussian() with the identity link function, specifying the
relationship

Y | X ∼ Normal(µ(X), σ2),

where σ2 is given by error_scale.
ols_with_error() Allows specification of custom non-Normal error distributions, specifying

the relationship

Y = µ(X) + e,

where e is drawn from an arbitrary distribution, specified by the error argument to ols_with_error().

24 response

binomial() Binomial responses include binary responses (as in logistic regression) and responses
giving a total number of successes out of a number of trials. The response has distribution

Y | X ∼ Binomial(N, g−1(µ(X))),

where N is set by the size argument and g is the link function. The default link is the logistic
link, and others can be chosen with the link argument to binomial(). The default N is 1,
representing a binary outcome.

poisson() Poisson-distributed responses with distribution

Y | X ∼ Poisson(g−1(µ(X))),

where g is the link function. The default link is the log link, and others can be chosen with
the link argument to poisson().

custom_family() Responses drawn from an arbitrary distribution with arbitrary link function,
i.e.

Y | X ∼ SomeDistribution(g−1(µ(X))),

where both g and SomeDistribution are specified by arguments to custom_family().

Evaluation and scoping:
The expr, error_scale, and size arguments are evaluated only when simulating data for this
response variable. They are evaluated in an environment with access to the predictor variables and
the preceding response variables, which they can refer to by name. Additionally, these arguments
can refer to variables in scope when the enclosing population() was defined. See the Examples
below.

Value

A response_dist object, to be used in population() to specify a population distribution

See Also

predictor() and population() to define populations; ols_with_error() and custom_family()
for custom response distributions

Examples

Defining a binomial response. The expressions can refer to other predictors
and to the environment where the `population()` is defined:
slope1 <- 2.5
slope2 <- -3
intercept <- -4.6
size <- 10
population(

x1 = predictor(rnorm),
x2 = predictor(rnorm),
y = response(intercept + slope1 * x1 + slope2 * x2,

family = binomial(), size = size)
)

rfactor 25

rfactor Draw random values from a factor variable

Description

To specify the population distribution of a factor variable, specify the probability for each of its
factor levels. When drawn from the population, factor levels are drawn with replacement according
to their probability.

Usage

rfactor(n, levels, prob = rep_len(1/length(levels), length(levels)))

Arguments

n Number of values to draw

levels Character vector specifying the levels for the factor

prob Vector specifying the probability for each factor level

Value

Sample of n values from levels, drawn in proportion to their probabilities. By default, levels are
equally likely.

See Also

by_level() to assign numeric values based on factor levels, such as to set population regression
coefficients by factor level

Examples

rfactor(5, c("foo", "bar", "baz"), c(0.4, 0.3, 0.3))

sample_x Draw a data frame from the specified population.

Description

Sampling is split into two steps, for predictors and for response variables, to allow users to choose
which to simulate. sample_x() will only sample predictor variables, and sample_y() will augment
a data frame of predictors with columns for response variables, overwriting any already present.
Hence one can use sample_y() as part of a simulation with fixed predictors, for instance.

26 sampling_distribution

Usage

sample_x(population, n)

sample_y(xs)

Arguments

population Population, as defined by population().

n Number of observations to draw from the population.

xs Data frame of predictor values drawn from the population, as obtained from
sample_x().

Value

Data frame (tibble) of n rows, with columns matching the variables specified in the population.

Examples

A population with a simple linear relationship
pop <- population(

x1 = predictor(rnorm, mean = 4, sd = 10),
x2 = predictor(runif, min = 0, max = 10),
y = response(0.7 + 2.2 * x1 - 0.2 * x2, error_scale = 1.0)

)

xs <- pop |>
sample_x(5)

xs

xs |>
sample_y()

sampling_distribution Simulate the sampling distribution of estimates from a population

Description

Repeatedly refits the model to new samples from the population, calculates estimates for each fit,
and compiles a data frame of the results.

Usage

sampling_distribution(fit, data, fn = tidy, nsim = 100, fixed_x = TRUE, ...)

sampling_distribution 27

Arguments

fit A model fit to data, such as by lm() or glm(), to refit to each sample from the
population.

data Data drawn from a population(), using sample_x() and possibly sample_y().
The population() specification is used to draw the samples.

fn Function to call on each new model fit to produce a data frame of estimates.
Defaults to broom::tidy(), which produces a tidy data frame of coefficients,
estimates, standard errors, and hypothesis tests.

nsim Number of simulations to run.

fixed_x If TRUE, the default, the predictor variables are held fixed and only the response
variables are redrawn from the population. If FALSE, the predictor and response
variables are drawn jointly.

... Additional arguments passed to fn each time it is called.

Details

To generate sampling distributions of different quantities, the user can provide a custom fn. The fn
should take a model fit as its argument and return a data frame. For instance, the data frame might
contain one row per estimated coefficient and include the coefficient and its standard error; or it
might contain only one row of model summary statistics.

Value

Data frame (tibble) of nsim + 1 simulation results, formed by concatenating together the data frames
returned by fn. The .sample column identifies which simulated sample each row came from. Rows
with .sample == 0 come from the original fit.

Model limitations

Because this function uses S3 generic methods such as model.frame(), simulate(), and update(),
it can be used with any model fit for which methods are provided. In base R, this includes lm() and
glm().

The model provided as fit must be fit using the data argument to provide a data frame. For
example:

fit <- lm(dist ~ speed, data = cars)

When simulating new data, this function provides the simulated data as the data argument and
re-fits the model. If you instead refer directly to local variables in the model formula, this will not
work. For example, if you fit a model this way:

will not work
fit <- lm(cars$dist ~ cars$speed)

It will not be possible to refit the model using simulated datasets, as that would require modifying
your environment to edit cars.

28 sampling_distribution

See Also

parametric_boot_distribution() to simulate draws from a fitted model, rather than from the
population

Examples

pop <- population(
x1 = predictor(rnorm, mean = 4, sd = 10),
x2 = predictor(runif, min = 0, max = 10),
y = response(0.7 + 2.2 * x1 - 0.2 * x2, error_scale = 4.0)

)

d <- sample_x(pop, n = 20) |>
sample_y()

fit <- lm(y ~ x1 + x2, data = d)
using the default fn = broom::tidy(). conf.int argument is passed to
broom::tidy()
samples <- sampling_distribution(fit, d, conf.int = TRUE)
samples

suppressMessages(library(dplyr))
the model is correctly specified, so the estimates are unbiased:
samples |>

group_by(term) |>
summarize(mean = mean(estimate),

sd = sd(estimate))

instead of coefficients, get the sampling distribution of R^2
rsquared <- function(fit) {

data.frame(r2 = summary(fit)$r.squared)
}
sampling_distribution(fit, d, rsquared, nsim = 10)

Index

augment_longer, 2
augment_longer(), 5, 19
augment_quantile, 3
augment_quantile_longer

(augment_quantile), 3

bin_by_interval, 7
bin_by_interval(), 6
bin_by_quantile (bin_by_interval), 7
bin_by_quantile(), 6
binned_residuals, 5
binned_residuals(), 3, 19
broom::augment(), 5
by_level, 8
by_level(), 25

custom_family, 9
custom_family(), 14, 24

decrypt, 10

empirical_link, 10

model_lineup, 11
model_lineup(), 16

ols_with_error, 13
ols_with_error(), 9, 24

parametric_boot_distribution, 14
parametric_boot_distribution(), 13, 28
partial_residuals, 16
partial_residuals(), 3, 6
population, 19
population(), 24
predictor, 21
predictor(), 20, 24

response, 22
response(), 20
rfactor, 25

rfactor(), 8

sample_x, 25
sample_y (sample_x), 25
sampling_distribution, 26
sampling_distribution(), 13, 16

29

	augment_longer
	augment_quantile
	binned_residuals
	bin_by_interval
	by_level
	custom_family
	decrypt
	empirical_link
	model_lineup
	ols_with_error
	parametric_boot_distribution
	partial_residuals
	population
	predictor
	response
	rfactor
	sample_x
	sampling_distribution
	Index

