## ----global_options, echo=FALSE, eval=TRUE------------------------------------------------------------------------------------------------------------------------------------------------------------ knitr::opts_chunk$set(fig.width = 7, fig.height = 5, fig.align = "center", echo = TRUE, eval = TRUE, warning = FALSE, message = FALSE) # increasing the width of the stdout-stream options(width = 200) ## ----loading_example, echo=TRUE----------------------------------------------------------------------------------------------------------------------------------------------------------------------- library(refineR) fit <- findRI(Data = testcase1) print(fit, uncertaintyRegion = "uncertaintyMargin") ## ----plot_example, echo=TRUE-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # The uncertainty margins are shown in the plot plot(fit, uncertaintyRegion = "uncertaintyMargin") ## ----verification_1, echo=TRUE------------------------------------------------------------------------------------------------------------------------------------------------------------------------ # Suppose the currently used reference interval is [9.1, 31.5] verifyRI(RIdata = fit, RIcand = c(9.1, 31.5)) ## ----one_sided, echo=TRUE----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- verifyRI(RIdata = fit, RIcand = 67, RIperc = 0.99) ## ----show_possible_inputs_of_verifyRI, fig.show='hold'------------------------------------------------------------------------------------------------------------------------------------------------ # compare RWDRI object with a numeric reference interval verifyRI(RIdata = fit, RIcand = c(9.1, 33.5), title = "Comparison of RWDRI with Numeric RI", printResults = FALSE) # compare two numeric RIs verifyRI(RIdata = c(4, 26), RIcand = c(1, 29), title = "Comparison of two Numeric RIs", printResults = FALSE) # compare two RWDRI objects # custom RWDRI object describing the reference distribution # Mu and Sigma define the mean and standard deviation of a normal distribution. # Then the inverse Box-Cox transformation is applied to the data with the power parameter Lambda. # The Shift parameter is used to shift the distribution to the desired location. custom_RWDRI <- list(Mu = 20, Sigma = 5, Lambda = 0.9, Shift = 0) class(custom_RWDRI) <- "RWDRI" verifyRI(RIdata = fit, RIcand = custom_RWDRI, title = "Comparison of two RWDRI objects", printResults = FALSE) ## ----similarity, echo=TRUE---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # Suppose the currently used reference interval is [9.1, 55] getRISimilarity(RIdata = fit, RIcand = c(9.1, 55)) ## ----output_verifyRI, echo=TRUE----------------------------------------------------------------------------------------------------------------------------------------------------------------------- # We deactivate the printing of the results and plotting verification_result <- verifyRI(RIdata = fit, RIcand = c(9.1, 33), printResults = FALSE, generatePlot = FALSE) verification_tab <- verification_result$RIVerificationTab # The verification table also contains the values of the power parameter (Lambda) of each estimated model. # The Lambda values of the models of the candidate distribution and the local distribution are the same when and RWDRI object is compared to a numeric candidate RI. print(paste0("All Lambdas are equal: ", identical(verification_tab$RICandLambda, verification_tab$RIdataLambda))) # For this example, the Lambda values are irrelevant, as they are the same. cols_of_interest <- colnames(verification_tab) cols_of_interest <- cols_of_interest[!cols_of_interest %in% c("RICandLambda", "RIdataLambda")] knitr::kable(verification_tab[, cols_of_interest]) ## ----adjust_uncertainty_margins, fig.show='hold'------------------------------------------------------------------------------------------------------------------------------------------------------ verifyRI(RIdata = custom_RWDRI, RIcand = c(9.1, 31.5), title = "n=120, UMprop=0.9") # increasing n may be desired to get a more strict verification verifyRI(RIdata = custom_RWDRI, RIcand = c(9.1, 31.5), n = 1000, UMprop = 0.95, title = "n=1000, UMprop=0.95") ## ----adjust_uncertainty_margins_2, echo=TRUE---------------------------------------------------------------------------------------------------------------------------------------------------------- plot(fit, uncertaintyRegion = "uncertaintyMargin", n = 1000, UMprop = 0.95, asymmetryCorr = TRUE) getRI(fit, n = 1000, UMprop = 0.95, asymmetryCorr = TRUE) print(fit, uncertaintyRegion = "uncertaintyMargin", n = 1000, UMprop = 0.95, asymmetryCorr = TRUE) ## ----adjust_plot_1, echo=TRUE, fig.show='hold'-------------------------------------------------------------------------------------------------------------------------------------------------------- scaleOptions <- c("original", "splitXAxis", "transformed") labels <- c("default", "Laboratory", "Timepoint") for(i in 1:3) { if(i == 1){ candLabel <- dataLabel <- NULL } if(i == 2){ candLabel <- "Lab A" dataLabel <- "Lab B" } if(i == 3){ candLabel <- "Timepoint A" dataLabel <- "Timepoint B" } verifyRI( RIdata = fit, RIcand = c(9.1, 33), printResults = FALSE, xlab = paste("x-axis scale:", scaleOptions[i]), title = paste("Verification plot with", scaleOptions[i], "scale"), Scale = scaleOptions[i], candLabel = candLabel, dataLabel = dataLabel ) } ## ----similarity_2, echo=TRUE-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- # Suppose the currently used reference interval is [9.1, 55] getRISimilarity(RIdata = fit, RIcand = c(9.1, 55), UMprop = 0.95, asymmetryCorr = FALSE, Overlap = "OverlapPointEst") ## ----equivalence_limits, echo=TRUE-------------------------------------------------------------------------------------------------------------------------------------------------------------------- verifyRI( RIdata = fit, RIcand = c(9.1, 33), printResults = TRUE, marginType = "EL", title = "Verification with Equivalence Limits" )