
Package ‘rcbalance’
October 14, 2022

Type Package

Title Large, Sparse Optimal Matching with Refined Covariate Balance

Version 1.8.8

Date 2022-3-25

Author Samuel D. Pimentel

Maintainer Samuel D. Pimentel <spi@berkeley.edu>

Description Tools for large, sparse optimal matching of treated units
and control units in observational studies. Provisions are
made for refined covariate balance constraints, which include
fine and near-fine balance as special cases. Matches are
optimal in the sense that they are computed as solutions to
network optimization problems rather than greedy algorithms.
See Pimentel, et al.(2015) <doi:10.1080/01621459.2014.997879>
and Pimentel (2016), Obs. Studies 2(1):4-23. The rrelaxiv
package, which provides an alternative solver for
the underlying network flow problems, carries an
academic license and is not available on CRAN, but
may be downloaded from Github at
<https://github.com/josherrickson/rrelaxiv/>.

Depends R (>= 3.2.0), MASS, plyr

Imports rlemon

License MIT + file LICENSE

Suggests optmatch, testthat, rrelaxiv

Additional_repositories https://errickson.net/rrelaxiv/

NeedsCompilation no

Repository CRAN

Date/Publication 2022-03-25 23:30:02 UTC

R topics documented:
rcbalance-package . 2

1

https://doi.org/10.1080/01621459.2014.997879
https://github.com/josherrickson/rrelaxiv/
https://errickson.net/rrelaxiv/

2 rcbalance-package

build.dist.struct . 3
callrelax . 5
count.pairings . 6
dist2net . 6
rcbalance . 8

Index 12

rcbalance-package Large, Sparse Optimal Matching with Refined Covariate Balance

Description

Tools for large, sparse optimal matching of treated units and control units in observational stud-
ies. Provisions are made for refined covariate balance constraints, which include fine and near-
fine balance as special cases. Matches are optimal in the sense that they are computed as solu-
tions to network optimization problems rather than greedy algorithms. See Pimentel, et al.(2015)
<doi:10.1080/01621459.2014.997879> and Pimentel (2016), Obs. Studies 2(1):4-23. The rre-
laxiv package, which provides an alternative solver for the underlying network flow problems, car-
ries an academic license and is not available on CRAN, but may be downloaded from Github at
<https://github.com/josherrickson/rrelaxiv/>.

Details

The DESCRIPTION file:

Package: rcbalance
Type: Package
Title: Large, Sparse Optimal Matching with Refined Covariate Balance
Version: 1.8.8
Date: 2022-3-25
Author: Samuel D. Pimentel
Maintainer: Samuel D. Pimentel <spi@berkeley.edu>
Description: Tools for large, sparse optimal matching of treated units and control units in observational studies. Provisions are made for refined covariate balance constraints, which include fine and near-fine balance as special cases. Matches are optimal in the sense that they are computed as solutions to network optimization problems rather than greedy algorithms. See Pimentel, et al.(2015) <doi:10.1080/01621459.2014.997879> and Pimentel (2016), Obs. Studies 2(1):4-23. The rrelaxiv package, which provides an alternative solver for the underlying network flow problems, carries an academic license and is not available on CRAN, but may be downloaded from Github at <https://github.com/josherrickson/rrelaxiv/>.
Depends: R (>= 3.2.0), MASS, plyr
Imports: rlemon
License: MIT + file LICENSE
Suggests: optmatch, testthat, rrelaxiv
Additional_repositories: https://errickson.net/rrelaxiv/

Index of help topics:

build.dist.struct Build Distance Structure for Matching with
Refined Balance

callrelax Solve Network Flow Problem using External
Solver

count.pairings Count treatment-control pairings.

build.dist.struct 3

dist2net Building and Manipulating Network Flow Problems
rcbalance Optimal Matching with Refined Covariate Balance
rcbalance-package Large, Sparse Optimal Matching with Refined

Covariate Balance

This package computes sparse matches that are optimal under a set of refined covariate balance
constraints. These constraints, provided by the user, are a set of nested categorical variables of
decreasing imporance which must be marginally balanced as closely as possible in the resulting
treated and matched control populations. For more detail see the references.

The main function is rcbalance, which takes a distance/sparsity object containing information
about matchability of the treated and control units and a list of fine balance variables and produces
a match. The build.dist.struct function can be used to construct the distance/sparsity object
from covariate information. The count.pairings function can be used to assess the sparsity of a
proposed match. The other functions are largely for internal use and should not be needed by the
large majority of users.

By default the package uses the R package rlemon to solve the minimum-cost network flow op-
timization problems by which matches are computed. Alternatively, users may specify that the
rrelaxiv package should be used instead. However, this package carries an academic license and
is not available on CRAN so users must install it themselves.

Author(s)

Samuel D. Pimentel

Maintainer: Samuel D. Pimentel <spi@berkeley.edu>

References

Pimentel, S.D., Kelz, R.R., Silber, J.H., and Rosenbaum, P.R. (2015) Large, sparse optimal match-
ing with refined covariate balance in an observational study of the health outcomes produced by
new surgeons, JASA 110 (510), 515-527.

Pimentel, S.D. (2016) Large, sparse optimal matching with R package rcbalance, Obs. Studies 2,
4-23.

build.dist.struct Build Distance Structure for Matching with Refined Balance

Description

This function computes rank-based Mahalanobis distances between treated and control units and
returns an object suitable for use in the distance.structure argument of rcbalance.

Usage

build.dist.struct(z, X, exact = NULL, calip.option = "propensity",
calip.cov = NULL, caliper = 0.2, verbose = FALSE)

4 build.dist.struct

Arguments

z a vector of treatment and control indicators, 1 for treatment and 0 for control.

X a data frame or a numeric or logical matrix containing covariate information for
treated and control units. Its row count must be equal to the length of z.

exact an optional vector of the same length as z. If this argument is specified, treated
units will only be allowed to match to control units that have equal values in
the corresponding indices of the exact vector. For example, to match patients
within hospitals only, one could set exact equal to a vector of hospital IDs for
each patient.

calip.option one of ('propensity','user','none'). If ’propensity’ is specified (the de-
fault option), the function estimates a propensity score via logistic regression of
z on X and imposes a propensity score caliper. If ’user’ is specified, the user
must provide a vector of values on which a caliper will be enforced using the
calip.cov argument. If ’none’ is specified no caliper is used.

calip.cov see calip.option.

caliper gives the size of the caliper when the user specifies the calip.option argument
as ’propensity’ or ’calip.cov’.

verbose if TRUE, prints output describing specific adjustments made in creating the dis-
tance objects.

Details

If X is a data frame and contains any character variables they are converted to factors with a warn-
ing. If there are missing values in factor columns of X, they are treated as a new factor level. If
there are missing values in numeric or logical columns of X, an indicator of missingness for that
column is added to X and the missing values are imputed with the column mean. This follows the
recommendations of Rosenbaum (Design of Observational Studies section 9.4, 2010).

Value

A distance.structure object, the form of which is described in the documentation for the distance.structure
argument of rcbalance. Treated and control indices are numbered 1:nt and 1:nc respectively
based on the order in which they appear in the z vector.

Author(s)

Samuel D. Pimentel

See Also

rcbalance

callrelax 5

callrelax Solve Network Flow Problem using External Solver

Description

Solves network flow optimization problems by calling an external solver, either the Lemon Opti-
mization library or the RELAX-IV algorithm, as implemented in FORTRAN by Dimitri Bertsekas
and Paul Tseng.

IMPORTANT NOTE 1: the RELAX-IV code is bound by an academic license; as a result the
rrelaxiv package implementing it is not available on CRAN and must be downloaded separately.

Usage

callrelax(net, solver = 'rlemon')

Arguments

net a network flow problem, formatted as a list with the following arguments (where
the network contains nnode nodes, numbered 1 through nnode and narc arcs):

• startn: a vector of length narc containing the node numbers of the start
nodes of each arc in the network.

• endn: a vector of length narc containing the node numbers of the end nodes
of each arc in the network.

• ucap: a vector of length narc containing the (integer) upper capacity of each
arc in the network.

• cost: a vector of length narc containing the (integer) cost of each arc in the
network.

• b: a vector of length nnode containing the (integer) supply or demand of
each node in the network. Supplies are given as positive numbers and de-
mands as negative numbers.

solver the name of the package used to solve the network flow optimization problem
underlying the match, one of ’rlemon’ (which uses the Lemon Optimization
Library) and ’rrelaxiv’ (which uses the RELAX-IV algorithm).

Value

A list with the following elements:

crash an integer equal to zero (included in order to support legacy versions of code).

feasible an integer, equal to zero if the problem is infeasible and equal to 1 if it is feasible.
A network with a supply/demand vector of all zeroes may also be flagged as
infeasible.

x a vector equal in length to the number of arcs in argument problem net, giving
in each coordinate the number of units of flow passing across the corresponding
edge in the optimal network flow.

6 dist2net

Author(s)

Samuel D. Pimentel

count.pairings Count treatment-control pairings.

Description

Given a treatment indicator and a potential blocking variable, counts the number of allowed treatment-
control pairings in the whole match within blocks of the proposed variable.

Usage

count.pairings(z, exact)

Arguments

z a vector of treatment indicators. Must contain exactly 2 distinct values, one for
treated and one for control.

exact a vector of categories of a potential blocking variable. Must be the same length
as argument z.

Value

The number of within-block treatment-control edges contained in the sparse match with the pro-
posed blocks.

Author(s)

Samuel D. Pimentel

dist2net Building and Manipulating Network Flow Problems

Description

These are internal rcbalance methods not meant to be called directly by users. They are used to
construct a network flow problem from the information about a matching problem that is passed to
the rcbalance method.

dist2net 7

Usage

dist2net(dist.struct, k, exclude.treated = FALSE, ncontrol = NULL)

dist2net.matrix(dist.struct, k, exclude.treated = FALSE)

add.layer(net.layers, new.layer)

penalty.update(net.layers, newtheta, newp = NA)

penalize.near.exact(net.layers, near.exact)

Arguments

dist.struct An object specifying the sparsity structure of the match. For the dist2net method
it is a list of vectors, and for the dist2net.matrix method it is a matrix or Infini-
tySparseMatrix. See rcbalance documentation for more details.

k a nonnegative integer. The number of control units to which each treated unit
will be matched.

exclude.treated

if TRUE, then when there is no feasible match using all treated units, a minimal
number of treated units may be dropped so that a match can be formed. Spec-
ifying this argument adds penalized edges to the network so that such a match
can be computed. NOTE: this argument is incompatible with values of k greater
than 1.

ncontrol the number of controls in the matching problem. If left NULL (the default value),
the value will be intuited from the maximum control label in the sparsity object.

net.layers a layered network object of the type produced by the dist2net function.

new.layer a vector equal in length to the number of treated and control units in the matching
problem. Each coordinate contains the value of a new fine balance variable for
the corresponding unit.

newtheta optional argument giving a new value for the theta field of the net.layers object
(see value section for description of this field).

newp optional argument giving a new value for the p field of the net.layers object (see
value section for description of this field).

near.exact a vector equal in length to the number of treated and control units in the match-
ing problem. Edges between units with different values of this variable will be
penalized.

Details

dist2net and dist2net.matrix take the distance structure given to rcbalance encoding infor-
mation about the matching problem and converts it into a network flow problem. add.layer adds
network structure to handle an individual fine balance variable (it can be called iteratively to add
many such variables). penalty.update is used to change the penalties for each layer (and the
penalties for edges used to exclude treated units if they are present) and penalize.near.exact is
used to add penalties to the treated-control edges to allow near-exact matching. See the references
for a detailed description of how the matching problem is transformed into a network.

8 rcbalance

Value

A layered network object, formatted as a list with the following arguments (where narcs is the
number of arcs and nnodes is the number of nodes in the network):

startn a vector of length narc containing the node numbers of the start nodes of each
arc in the network.

endn a vector of length narc containing the node numbers of the end nodes of each
arc in the network.

ucap a vector of length narc containing the (integer) upper capacity of each arc in the
network.

cost a vector of length narc containing the (integer) cost of each arc in the network.

b a vector of length nnode containing the (integer) supply or demand of each node
in the network. Supplies are given as positive numbers and demands as negative
numbers.

tcarcs an integer giving the total number of arcs between the treated and control nodes
in the network.

layers a list object containing information about the refined covariate balance layers of
the network.

z a vector of treatment indicators.

fb.structure a matrix containing information about the membership of the treated and control
units in the different classes of refined balance covariates.

penalties a vector of integer penalties, one for each fine balance layer.

theta a value no less than 1 giving the ratio by which the penalty is increased with
each additional layer of fine balance.

p a nonnegative value giving the penalty for the finest level of fine balance.

Author(s)

Samuel D. Pimentel

rcbalance Optimal Matching with Refined Covariate Balance

Description

This function computes an optimal match with refined covariate balance.

Usage

rcbalance(distance.structure, near.exact = NULL, fb.list = NULL,
treated.info = NULL, control.info = NULL, exclude.treated = FALSE, target.group = NULL,
k = 1, penalty = 3, tol = 1e-5, solver = 'rlemon')

rcbalance 9

Arguments

distance.structure

a list of vectors that encodes information about covariate distances between
treated and control units. The list is equal in length to the number of treated
units. Each vector corresponds to a treated unit and is equal in length to the
number of control units to which it can be matched. It is assumed that there are
a total of nc control units in the problem and that they are numbered from 1 to
nc. The names of each vector in the list give the index (in the vector 1:nc) of
the control units to which the treated unit in question can be matched, and the
elements of each vector are the covariate distances between the treated unit and
the corresponding control. Note that for a dense matching problem (in which
each treated unit can be matched to any control), every vector in the list will
have length nc and rownames 1 through nc.
Alternatively, this same information can be passed as a matrix or InfinitySparseMatrix
with rows corresponding to treated units and columns corresponding to controls.
Entries given as Inf correspond to pairs that cannot be matched.

near.exact an optional character vector specifying names of covariates for near-exact match-
ing. This argument takes precedence over any refined covariate balance con-
straints, so the match will produce the best refined covariate balance subject to
matching exactly on this variable wherever possible. If multiple covariates are
named, near-exact matching will be done on their interaction.

fb.list an optional list of character vectors specifying covariates to be used for refined
balance. Each element of the list corresponds to a level of refined covariate
balance, and the levels are assumed to be in decreasing order of priority. Each
character vector should contain one or more names of categorical covariates on
which the user would like to enforce near fine balance. If multiple covariates
are specified, an interaction is created between the categories of the covariates
and near fine balance is enforced on the interaction. IMPORTANT: covariates
or interactions coming later in the list must be nested within covariates coming
earlier in the list; if this is not the case the function will stop with an error. An
easy way to ensure that this occurs is to include in each character vector all the
variables named in earlier list elements. If the fb.list argument is specified,
the treated.info and control.info arguments must also be specified.

treated.info an optional data frame containing covariate information for the treated units in
the problem. The row count of this data frame must be equal to the length of the
distance.structure argument, and it is assumed that row i contains covariate
information for the treated unit described by element i of distance.structure.
In addition, the column count and column names must be identical to those of
the control.info argument, and the column names must include all of the co-
variate names mentioned in the near.exact and fb.list arguments.

control.info an optional data frame containing covariate information for the control units in
the problem. The row count of this data frame must be no smaller than the max-
imum control index in the distance.structure argument, and it is assumed
that row i contains the covariate information for the control indexed by i in
distance.structure. In addition, the column count and column names must be
identical to those of the treated.info argument.

10 rcbalance

exclude.treated

if TRUE, then when there is no feasible match using all treated units, a minimal
number of treated units will be dropped so that a match can be formed. The ex-
cluded treated units will be selected optimally so that the cost of the matching is
reduced as much as possible. NOTE: exclude.treated = TRUE is incompatible
with arguments to target.group and with values of k larger than 1.

target.group an optional data frame of observations with the desired covariate distribution
for the selected control group, if it differs from the covariate distribution of the
treated units. This argument will be ignored unless fb.list, treated.info
and control.info are also specified, and it must have the same dimensions as
treated.info.

k a nonnegative integer. The number of control units to which each treated unit
will be matched.

penalty a value greater than 1. This is a tuning parameter that helps ensure the different
levels of refined covariate balance are prioritized correctly. Setting the penalty
higher tends to improve the guarantee of match optimality up to a point, but
penalties above a certain level cause integer overflows and throw errors. Usually
it is not recommended that the user change this parameter from its default value.

tol edge cost tolerance. This is the smallest tolerated difference between matching
costs; cost differences smaller than this will be considered zero. Match distances
will be scaled by inverse tolerance, so when matching with large edge costs or
penalties the tolerance may need to be increased.

solver the name of the package used to solve the network flow optimization problem
underlying the match, one of ’rlemon’ (which uses the Lemon Optimization
Library) and ’rrelaxiv’ (which uses the RELAX-IV algorithm).

Details

To use the option solver = 'rrelaxiv', the user must install the rrelaxiv manually; it is not
hosted on CRAN because it carries an academic license.

Value

A list with the following components:

matches a nt by k matrix containing the matched sets produced by the algorithm (where
nt is the number of treated units). The rownames of this matrix are the numbers
of the treated units (indexed by their position in distance.structure), and the ele-
ments of each row contain the indices of the control units to which this treated
unit has been matched.

fb.tables a list of matrices, equal in length to the fb.list argument. Each matrix is a con-
tingency table giving the counts among treated units and matched controls for
each level of the categorical variable specified by the corresponding element of
fb.list.

Author(s)

Samuel D. Pimentel

rcbalance 11

References

Pimentel, S.D., Kelz, R.R., Silber, J.H., and Rosenbaum, P.R. (2015) Large, sparse optimal match-
ing with refined covariate balance in an observational study of the health outcomes produced by
new surgeons, JASA 110 (510), 515-527.

Examples

Not run:
library(optmatch)
data(nuclearplants)

#require exact match on variables ne and pt, use rank-based Mahalanobis distance
my.dist.struct <- build.dist.struct(z = nuclearplants$pr,
X = subset(nuclearplants[c('date','t1','t2','cap','bw','cum.n')]),
exact = paste(nuclearplants$ne, nuclearplants$pt, sep = '.'))

#match with refined covariate balance, first on ct then on (ct x bw)
rcbalance(my.dist.struct, fb.list = list('ct',c('ct','bw')),

treated.info = nuclearplants[which(nuclearplants$pr ==1),],
control.info = nuclearplants[which(nuclearplants$pr == 0),])

#repeat the same match using match_on tool from optmatch and regular Mahalanobis distance
exact.mask <- exactMatch(pr ~ ne + pt, data = nuclearplants)
my.dist.matrix <- match_on(pr ~ date + t1 + t2 + cap + bw + cum.n,
within = exact.mask, data = nuclearplants)
match.matrix <-
rcbalance(my.dist.matrix*100, fb.list = list('ct',c('ct','bw')),
treated.info = nuclearplants[which(nuclearplants$pr ==1),],
control.info = nuclearplants[which(nuclearplants$pr == 0),])

End(Not run)

Index

add.layer (dist2net), 6

build.dist.struct, 3

callrelax, 5
count.pairings, 6

dist2net, 6

penalize.near.exact (dist2net), 6
penalty.update (dist2net), 6

rcbalance, 4, 8
rcbalance-package, 2
remove.layer (dist2net), 6

12

	rcbalance-package
	build.dist.struct
	callrelax
	count.pairings
	dist2net
	rcbalance
	Index

