Package ‘randotools’

November 7, 2025
Title Create Randomization Lists
Version 0.2.3

Description Randomization lists are an integral component of randomized clinical trials. 'rando-
tools' provides tools to easily create such lists.

License GPL (>= 3)

URL https://ctu-bern.github.io/randotools/,
https://github.com/CTU-Bern/randotools

BugReports https://github.com/CTU-Bern/randotools/issues
Encoding UTF-8

RoxygenNote 7.3.3

Imports cli, dplyr, glue, ggplot2, patchwork, purrr, rlang

Suggests knitr, rmarkdown, testthat (>= 3.0.0), tibble
Config/testthat/edition 3

VignetteBuilder knitr

Depends R (>=4.1)

LazyData true

NeedsCompilation no

Author Alan G Haynes [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1374-081X>)

Maintainer Alan G Haynes <alan.haynes@unibe.ch>
Repository CRAN
Date/Publication 2025-11-07 13:40:07 UTC

Contents

check_plan e
imbalance_seq_plots
imbalance test L L e e e e
imbalance_test_plot L

https://ctu-bern.github.io/randotools/
https://github.com/CTU-Bern/randotools
https://github.com/CTU-Bern/randotools/issues
https://orcid.org/0000-0003-1374-081X

2 check_plan

randoliSt e 6
randolist_to_db e 8
rando_balance e 9
summary.randolist L e 9
Index 11
check_plan Check randomisation plan
Description

Before committing to a randomisation plan (in terms of the number of strata, block sizes etc) it can
be useful to estimate the imbalance that might be expected. This function simulates trials of a given
sample size and returns the imbalance that might be expected.

Usage

check_plan(
n_rando,
n_strata,
arms = c("A", "B"),
blocksizes = c(1, 2),

n_sim = 1000
)
S3 method for class 'checkplan'
print(x, ...)
Arguments
n_rando number of participants to randomise
n_strata number of strata
arms arms that will be randomised
blocksizes number of each randomisation group per block (e.g. 1 = one of each arm per
block, 2 = per of each arm per block)
n_sim number of simulations
X check_plan object
options passed to print.data.frame
Value

list of class checkplan with slots the same slots as input to the function plus mean (mean imbalance),
counts (counts of the imbalances) and worst_case (randomisation results with the worst observed
imbalance)

imbalance_seq_plots 3

Functions

* print(checkplan): Print method for check_plan output

See Also

https://www.sealedenvelope.com/randomisation/simulation/

Examples

check_plan(50, 3, n_sim = 50)

imbalance_seq_plots Depict the imbalance of a randomisation sequence through time

Description

It can be useful to see how imbalance changes through time. This function allows such a depiction
by plotting the maximum imbalance as a function of randomisation number (assuming that the
observations are in the randomisation order). This is especially useful in the case of randomisation
via minimisation. As well as the overall imbalance, the function also depicts the imbalance within
each strata (i.e. the interaction among stratifying variables) and within strata identified by each
stratifying variable itself.

Usage
imbalance_seq_plots(
data,
randovar,
stratavars = NULL,
cross = TRUE,
stack = TRUE
)
Arguments
data a data frame
randovar variable name containing the randomisation result
stratavars variable names of stratification variables
cross logical whether to cross the stratification variables to create the individual strata
stack logical whether to use patchwork: :wrap_plots to combine the plots into a

single 2x3 figure

4 imbalance_test

Value

Up to six ggplots. Each has the randomisation sequence along the x-axis and imbalance on the
y-axis. The different lines denotes different groupings. All plots are paired: the first plot shows the
observed balance, the second shows the balance in a simulated dataset. There are up to three pairs
of plots.

¢ First the overall values are shown.

» Second, each line represents a group as defined by the stratification variables. E.g., if there is
a 2-level stratification variable and a 3-level variable, there will be 5 lines.

* The third pair shows the individual strata - the combination of all stratification variables. For
the 2- and 3-level example mentioned above, this would result in 6 lines. This can be skipped
by setting cross to FALSE. If stack = FALSE, a list of ggplots is returned.

Examples

data(rando_balance)

without stratification variables

imbalance_seq_plots(rando_balance, "rando_res")

with stratification factors

imbalance_seq_plots(rando_balance, "rando_res”,
c("stratl1”, "strat2"))

do not cross the stratification factors

imbalance_seq_plots(rando_balance, "rando_res”,
c("stratl1”, "strat2"),
cross = FALSE)

imbalance_test Test the imbalance of randomisation via simulation

Description

This function tests whether the observed imbalance is less than might be expected via a random
draw, via a permutation test.

Usage

imbalance_test(
data,
randovar,
n_iter = 1000,
stratavars = NULL,
arms = NULL,
cross = TRUE,

imbalance_test_plot 5

Arguments
data a dataframe with the variables indicated in randovar and, optionally, stratavars
randovar character with the variable name indicating the randomisation
n_iter integer. number of simulations to perform
stratavars character vector with the variable names indicating the stratification variables
arms character vector of arms in the appropriate balance. If NULL the levels in
randovar are used and assumed to be balanced
cross logical. Whether to cross the stratification variables.
other arguments passed onto other methods
Value
a list with:

¢ n_rando: the number of randomisations

e stratavars: the names of the stratification variables

* arms: the arms

* observed: a dataframe with the observed imbalance

e simulated: a dataframe with the simulated imbalances (number of rows = nrow(n_iter))

* tests: a dataframe with the p-values

See Also

imbalance_test_plot()

Examples

data(rando_balance)
without stratification variables
imbalance_test(rando_balance, "rando_res", n_iter = 50)

imb <- imbalance_test(rando_balance, "rando_res"”, stratavars = "strat1”, n_iter = 50)
imbalance_test(rando_balance, "rando_res”, stratavars = c("strat1”, "strat2"), n_iter = 50)
imb <- imbalance_test(rando_balance, "rando_res2", stratavars = c("stratl1”, "strat2"), n_iter = 50)

imbalance_test_plot Plot imbalance and simulation and test results

Description

Plot histograms of imbalance values from simulated random allocation and a vertical lines to indi-
cate the observed imbalance for each randomisation level (overall, stratification variable level, and
strata level, where appropriate). The p-values from the tests are included in the figure captions.

6 randolist

Usage

imbalance_test_plot(test, vline_col = "red”, stack = TRUE)

Arguments
test imbalance_test object
vline_col colour for the vertical line indicating the observed imbalance
stack logical, whether to use patchwork: :wrap_plots to stack the plots in one col-
umn (TRUE) or return a list of ggplot objects (FALSE)
Value

list of ggplots or a patchwork off ggplots (if stack = TRUE)

See Also

imbalance_test()

Examples

example code

data(rando_balance)

without stratification variables

imb <- imbalance_test(rando_balance, "rando_res2", stratavars = c("stratl1”, "strat2"), n_iter = 50)
imbalance_test_plot(imb)

randolist Generate randomisation lists

Description

Randomisation lists are central to randomised trials. This function allows to generate randomisation
lists simply, via (optionally) stratified block randomisation

Usage

randolist(
n,
arms = LETTERS[1:2],
strata = NA,
blocksizes = 1:3,
pascal = TRUE,

randolist 7

Arguments
n total number of randomizations (per stratum)
arms arms to randomise
strata named list of stratification variables (see examples)
blocksizes numbers of each arm to include in blocks (see details)
pascal logical, whether to use pascal’s triangle to determine block sizes
arguments passed on to other methods
Details

blocksizes defines the number of allocations to each arm in a block. For example, if there are
two arms, and blocksizes = 1, each block will contain 2 randomisations. If blocksizes =1:2,
each block will contain either one of each arm, or two of each arm. Total block sizes are therefore
blocksizes x length(arms).

By default, frequency of the different block sizes is determined using Pascal’s triangle. This has the
advantage that small and large block sizes are less common than intermediate sized blocks, which
helps with making it more difficult to guess future allocations, and reduces the risk of finishing in
the middle of a large block.

Unbalanced randomization is possible by specifying the same arm label multiple times.

To disable block randomisation, set blocksizes to the same value as n.

Value

object of class randolist which is a dataframe with additional attributes ratio (randomisation ratio,
e.g. 1:1, 2:1), arms (arm labels), stratified (logical whether the list is stratified), and stratavars (the
stratification variables)

Examples

example code
randolist(10)
one stratifying variable
randolist(10, strata = list(sex = c("M", "F")))
two stratifying variables
randolist(10, strata = list(sex = c("M", "F"),
age = c("child”, "adult"”)))

different arm labels
randolist (10, arms = c("arm 1", "arm 2"))

unbalanced (2:1) randomization
randolist(10, arms = c("arm 1", "arm 1", "arm 2"))

8 randolist_to_db

randolist_to_db Reformat a randolist object to the requirements of a database

Description

Databases generally require a specific format to be able to import a randomization list. This function
converts the randolist object to the format required by REDCap or secuTrial.

Usage

randolist_to_db(
randolist,
target_db = c("REDCap”, "secuTrial"),
strata_enc = NA,
rando_enc = NA

)
Arguments
randolist a randolist object from randolist or blockrand
target_db the target database, either "REDCap" or "secuTrial"
strata_enc a list of data frames with the encoding of each stratification variable. Should
have two columns - the value used in randolist and code with the values used
in the database. See the examples for details.
rando_enc a data frame with the randomization encoding
Details

rando_enc should contain an arm column containing the values supplied to randolist, and a
variable with the name required by the database with the values that map to those in arm. See the
examples.

Value

dataframe with columns required for import into target_db

Examples

r <- randolist(10,
strata = list(sex = c("M", "F")),
arms = c("T1", "T2"))
randolist_to_db(r,

rando_enc = data.frame(arm = c("T1", "T2"),
rando_res = c(1, 2)),
strata_enc = list(sex = data.frame(sex = c("M", "F"),
code = 1:2)),

target_db = "REDCap")

rando_balance

randolist_to_db(r,

rando_enc = data.frame(arm = c("T1", "T2"),
rando_res = c(1, 2)),
strata_enc = list(sex = data.frame(sex = c("M", "F"),
code = 1:2)),

target_db = "secuTrial”)

rando_balance rando_balance demonstration dataset

Description

A synthetic dataset used in examples. The dataset contains two randomisation result variables
(rando_res and rando_res2) and two stratification variables (strat1 and strat2).

Usage

rando_balance

Format
rando_balance:
A data frame with 100 rows and 3 columns:
stratl, strat2 Binary stratification variables

rando_res Balanced randomisation result
rando_res2 Unbalanced randomisation result

summary.randolist Summary method fro randolist objects

Description

Create a short summary report of the aspects of the randomisation list, which could be used for
quality control.

Usage
S3 method for class 'randolist'’
summary (object, ...)

Arguments
object randolist object

additional arguments (currently unused)

10 summary.randolist

Value
object of class randolistsum, which is a list with elements

* n_rando: total number of randomisations

* n_blocks: maximum number of blocks

* block_sizes: table of block sizes

¢ arms: table of arms

e ratio: randomisation ratio (character)

* stratified: logical

* stratavars: names of stratifying variables (character)

* stratavars_tabs: tabulation of arms by each stratifcation variable
¢ strata: names of each individual stratum

e stratum_tabs: list with an element for each strata with n_rando, n_blocks, block_sizes,
arms and ratio.

Examples

r <- randolist(20)
print(summary(r))

r2 <- randolist(20, strata = list(sex = c("M", "F")))
print(summary(r2))

NOTE: explicitly printing isn't technically necessary

Index

x datasets
rando_balance, 9

check_plan, 2

imbalance_seqg_plots, 3
imbalance_test, 4
imbalance_test(), 6
imbalance_test_plot, 5
imbalance_test_plot(), 5

print.checkplan (check_plan), 2

rando_balance, 9
randolist, 6
randolist_to_db, 8

summary.randolist, 9

11

	check_plan
	imbalance_seq_plots
	imbalance_test
	imbalance_test_plot
	randolist
	randolist_to_db
	rando_balance
	summary.randolist
	Index

