Package 'psycModel'

November 1, 2023

Type Package

Title Integrated Toolkit for Psychological Analysis and Modeling in R

Version 0.5.0

Description A beginner-friendly R package for modeling in psychology or related field. It allows fitting models, plotting, checking goodness of fit, and model assumption violations all in one place. It also produces beautiful and easy-to-read output.

License GPL (>= 3)

URL https://github.com/jasonmoy28/psycModel

Depends R (>= 3.2)

Imports dplyr, ggplot2, glue, insight, lavaan, lifecycle, lme4, lmerTest, parameters, patchwork, performance, psych, rlang (>= 0.1.2), stringr, tibble, tidyr, utils, tidyselect

Suggests correlation, covr, cowplot, fansi, ggrepel, GPArotation, gridExtra, interactions, knitr, nFactors, nlme, pagedown, qqplotr, rmarkdown, roxygen2, sandwich, see, semPlot, spelling, testthat (>= 3.0.0), lavaSearch2

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Language en-US

NeedsCompilation no

Author Jason Moy [aut, cre] (<https://orcid.org/0000-0001-8795-3311>)

Maintainer Jason Moy <jasonmoy28@gmail.com>

Repository CRAN

Date/Publication 2023-11-01 06:00:02 UTC

R topics documented:

anova_plot	2
cfa_groupwise	3
cfa_summary	4
compare_fit	7
cor_test	8
cronbach_alpha	9
descriptive_table	0
efa_summary	1
get_interaction_term	2
get_predict_df	3
glm_model	3
html_to_pdf	4
interaction_plot	5
knit_to_Rmd 1	6
label_name	17
lme_model	8
Ime_multilevel_model_summary 2	20
lm_model	23
lm_model_summary	24
lm_model_table	26
measurement_invariance	27
mediation_summary	29
model_summary 3	31
polynomial_regression_plot 3	32
popular	33
reliability_summary	34
simple_slope	35
three_way_interaction_plot	36
two_way_interaction_plot	37
3	<u>89</u>

Index

anova_plot

ANOVA Plot

Description

[Experimental]

Plot categorical variable with barplot. Continuous moderator are plotted at ± 1 SD from the mean.

```
anova_plot(model, predictor = NULL, graph_label_name = NULL)
```

Arguments

model	fitted model (usually 1m or aov object). Variables must be converted to correct data type before fitting the model. Specifically, continuous variables must be converted to type numeric and categorical variables to type factor.	
predictor	predictor variable. Must specified for non-interaction plot and must not specify for interaction plot.	
graph_label_name		
	vector or function. Vector should be passed in the form of c(response_var, predict_var1, predict_var2,). Function should be passed as a switch function that return the label based on the name passed (e.g., a switch function)	

Value

a ggplot object

Examples

```
# Main effect plot with 1 categorical variable
fit_1 = lavaan::HolzingerSwineford1939 %>%
 dplyr::mutate(school = as.factor(school)) %>%
 lm(data = ., grade ~ school)
anova_plot(fit_1,predictor = school)
# Interaction effect plot with 2 categorical variables
fit_2 = lavaan::HolzingerSwineford1939 %>%
 dplyr::mutate(dplyr::across(c(school,sex),as.factor)) %>%
 lm(data = ., grade ~ school*sex)
anova_plot(fit_2)
# Interaction effect plot with 1 categorical variable and 1 continuous variable
fit_3 = lavaan::HolzingerSwineford1939 %>%
 dplyr::mutate(school = as.factor(school)) %>%
 dplyr::mutate(ageyr = as.numeric(ageyr)) %>%
 lm(data = ., grade ~ ageyr*school)
anova_plot(fit_3)
```

cfa_groupwise

Confirmatory Factor Analysis (groupwise)

Description

[Stable]

This function will run N number of CFA where N = length(group), and report the fit measures of CFA in each group. The function is intended to help you get a better understanding of which group has abnormal fit indicator

Usage

cfa_groupwise(data, ..., group, model = NULL, ordered = FALSE)

Arguments

data	data frame
	CFA items. Support dplyr::select() syntax.
group	character. group variable. Support dplyr::select() syntax.
model	<pre>explicit lavaan model. Must be specify with model = lavaan_model_syntax. [Experimental]</pre>
ordered	logical. default is FALSE. If it is set to TRUE, lavaan will treat it as a ordinal variable and use DWLS instead of ML

Details

All argument must be explicitly specified. If not, all arguments will be treated as CFA items

Value

a data.frame with group-wise CFA result

Examples

```
# The example is used as the illustration of the function output only.
# It does not imply the data is appropriate for the analysis.
cfa_groupwise(
    data = lavaan::HolzingerSwineford1939,
    group = "school",
    x1:x3,
    x4:x6,
    x7:x9
)
```

cfa_summary

Confirmatory Factor Analysis

Description

[Stable]

The function fits a CFA model using the lavaan::cfa(). Users can fit single and multiple factors CFA, and it also supports multilevel CFA (by specifying the group). Users can fit the model by passing the items using dplyr::select() syntax or an explicit lavaan model for more versatile usage. All arguments (except the CFA items) must be explicitly named (e.g., model = your-model; see example for inappropriate behavior).

cfa_summary

Usage

```
cfa_summary(
  data,
  . . . ,
 model = NULL,
 group = NULL,
 ordered = FALSE,
 digits = 3,
  estimator = "ML",
 model_covariance = TRUE,
 model_variance = TRUE,
  plot = TRUE,
  group_partial = NULL,
  streamline = FALSE,
  quite = FALSE,
  return_result = FALSE
)
```

Arguments

data	data frame
	CFA items. Multi-factor CFA items should be separated by comma (as different argument). See below for examples. Support dplyr::select() syntax.
model	<pre>explicit lavaan model. Must be specify with model = lavaan_model_syntax. [Experimental]</pre>
group	optional character. used for multi-level CFA. the nested variable for multilevel dataset (e.g., Country). Support dplyr::select() syntax.
ordered	Default is FALSE. If it is set to TRUE, lavaan will treat it as a ordinal variable and use DWLS instead of ML
digits	number of digits to round to
estimator model_covariand	estimator for lavaan. Default is ML
	print model covariance. Default is TRUE
<pre>model_variance</pre>	print model variance. Default is TRUE
plot	print a path diagram. Default is TRUE
group_partial	Items for partial equivalence. The form should be $c('DV = -item1', 'DV = -item2')$.
streamline	print streamlined output
quite	suppress printing output
return_result	If it is set to TRUE, it will return the lavaan model

Details

First, just like researchers have argued against p value of 0.05 is not a good cut-of, researchers have also argue against that fit indicies (more importantly, the cut-off criteria) are not completely representative of the goodness of fit. Nonetheless, you are required to report them if you are publishing

an article anyway. I will summarize the general recommended cut-off criteria for CFA model below. Researchers consider models with CFI (Bentler, 1990) that is > 0.95 to be excellent fit (Hu & Bentler, 1999), and > 0.9 to be acceptable fit. Researchers considered a model is excellent fit if CFI > 0.95 (Hu & Bentler, 1999), RMSEA < 0.06 (Hu & Bentler, 1999), TLI > 0.95, SRMR < 0.08. The model is considered an acceptable fit if CFI > 0.9 and RMSEA < 0.08. I need some time to find all the relevant references, but this should be the general consensus.

Value

a lavaan object if return_result is TRUE

References

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55. https://doi.org/10.1080/107055199095401

Examples

```
# REMEMBER, YOU MUST NAMED ALL ARGUMENT EXCEPT THE CFA ITEMS ARGUMENT
# Fitting a multilevel single factor CFA model
fit <- cfa_summary(</pre>
 data = lavaan::HolzingerSwineford1939,
 x1:x3,
 x4:x6,
 x7:x9,
 group = "sex",
 model_variance = FALSE, # do not print the model_variance
 model_covariance = FALSE # do not print the model_covariance
)
# Fitting a CFA model by passing explicit lavaan model (equivalent to the above model)
# Note in the below function how I added `model = ` in front of the lavaan model.
# Similarly, the same rule apply for all arguments (e.g., `ordered = FALSE` instead of just `FALSE`)
fit <- cfa_summary(</pre>
 model = "visual =~ x1 + x2 + x3",
 data = lavaan::HolzingerSwineford1939,
 quite = TRUE # silence all output
)
## Not run:
# This will fail because I did not add `model = ` in front of the lavaan model.
# Therefore, you must add the tag in front of all arguments
# For example, `return_result = 'model'` instaed of `model`
cfa_summary("visual =~ x1 + x2 + x3
             textual = x4 + x5 + x6
             speed =~ x7 + x8 + x9 "
 data = lavaan::HolzingerSwineford1939
)
## End(Not run)
```

6

compare_fit

Description

[Stable]

Compare the fit indices of models (see below for model support)

Usage

```
compare_fit(
   ...,
   digits = 3,
   quite = FALSE,
   streamline = FALSE,
   return_result = FALSE
)
```

Arguments

	model. If it is a lavaan object, it will try to compute the measurement invari- ance. Other model types will be passed to performance::compare_performance().
digits	number of digits to round to
quite	suppress printing output
streamline	print streamlined output
return_result	If it is set to TRUE, it will return the the compare fit data frame.

Value

a dataframe with fit indices and change in fit indices

Examples

```
# lme model
fit1 <- lm_model(
    data = popular,
    response_variable = popular,
    predictor_var = c(sex, extrav)
)
fit2 <- lm_model(
    data = popular,
    response_variable = popular,
    predictor_var = c(sex, extrav),
    two_way_interaction_factor = c(sex, extrav)
)</pre>
```

```
compare_fit(fit1, fit2)
```

see ?measurement_invariance for measurement invariance example

cor_test

Correlation table

Description

[Stable]

This function uses the correlation::correlation() to generate the correlation table.

Usage

```
cor_test(
   data,
   cols,
   ...,
   digits = 3,
   method = "pearson",
   p_adjust = "none",
   streamline = FALSE,
   quite = FALSE,
   return_result = FALSE
)
```

Arguments

data	data frame
cols	correlation items. Support dplyr::select() syntax.
	additional arguments passed to correlation::correlation(). See ?correlation::correlation Note that the return data.frame from correlation::correlation() must contains r and p (e.g., passing baysesian = TRUE will not work)
digits	number of digits to round to
method	Default is "pearson". Options are "kendall", "spearman", "biserial", "polychoric", "tetrachoric", "biweight", "distance", "percentage", "blomqvist", "hoeffding", "gamma", "gaussian", "shepherd", or "auto". See ?correlation::correlation for detail
p_adjust	Default is "holm". Options are "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "somers" or "none". See ?stats::p.adjust for more detail
streamline	print streamlined output.
quite	suppress printing output
return_result	If it is set to TRUE, it will return the data frame of the correlation table

cronbach_alpha

Value

a data.frame of the correlation table

Examples

```
cor_test(iris, where(is.numeric))
```

cronbach_alpha Cronbach alpha

Description

[Stable] Computing the Cronbach alphas for multiple factors.

Usage

```
cronbach_alpha(
   ...,
   data,
   var_name,
   group = NULL,
   quite = FALSE,
   return_result = FALSE
)
```

Arguments

	Items. Group each latent factors using c() with when computing Cronbach alpha for 2+ factors (see example below)
data	data.frame. Must specify
var_name	character or a vector of characters. The order of var_name must be same as the order of the
group	optional character. Specify this argument for computing Cronbach alpha for group separetely
quite	suppress printing output
return_result	If it is set to TRUE, it will return a dataframe object

Value

a data.frame object if return_result is TRUE

Examples

```
cronbach_alpha(
  data = lavaan::HolzingerSwineford1939,
  var_name = c('Visual','Textual','Speed'),
  c(x1,x2,x3), # one way to pass the items of a factor is by wrapping it with c()
  x4:x6, # another way to pass the items is use tidyselect syntax
  x7:x9)
```

descriptive_table Descriptive Statistics Table

Description

[Stable]

This function generates a table of descriptive statistics (mainly using psych::describe()) and or a correlation table. User can export this to a csv file (optionally, using the file_path argument). Users can open the csv file with MS Excel then copy and paste the table into MS Word table.

Usage

```
descriptive_table(
    data,
    cols,
    ...,
    digits = 3,
    descriptive_indicator = c("mean", "sd", "cor"),
    file_path = NULL,
    streamline = FALSE,
    quite = FALSE,
    return_result = FALSE
)
```

Arguments

data	data.frame	
cols	column(s) need to be included in the table. Support dplyr::select() syntax.	
	additional arguments passed to cor_test. See ?cor_test.	
digits	number of digit for the descriptive table	
descriptive_indicator		
	Default is mean, sd, cor. Options are missing (missing value count), non_missing (non-missing value count), cor (correlation table), n, mean, sd, median, trimmed (trimmed mean), median, mad (median absolute deviation from the median), min, max, range, skew, kurtosis, se (standard error)	
file_path	file path for export. The function will implicitly pass this argument to the write.csv(file = file_path)	

10

efa_summary

streamline	print streamlined output
quite	suppress printing output
return_result	If it is set to TRUE, it will return the data frame of the descriptive table

Value

a data.frame of the descriptive table

Examples

```
descriptive_table(iris, cols = where(is.numeric)) # all numeric columns
descriptive_table(iris,
    cols = where(is.numeric),
    # get missing count, non-missing count, and mean & sd & correlation table
    descriptive_indicator = c("missing", "non_missing", "mean", "sd", "cor")
)
```

efa_summary

Exploratory Factor Analysis

Description

[Stable]

The function is used to fit a exploratory factor analysis model. It will first find the optimal number of factors using parameters::n_factors. Once the optimal number of factor is determined, the function will fit the model using psych::fa(). Optionally, you can request a post-hoc CFA model based on the EFA model which gives you more fit indexes (e.g., CFI, RMSEA, TLI)

```
efa_summary(
   data,
   cols,
   rotation = "varimax",
   optimal_factor_method = FALSE,
   efa_plot = TRUE,
   digits = 3,
   n_factor = NULL,
   post_hoc_cfa = FALSE,
   quite = FALSE,
   streamline = FALSE,
   return_result = FALSE
)
```

Arguments

data	data.frame
cols	columns. Support dplyr::select() syntax.
rotation	the rotation to use in estimation. Default is 'oblimin'. Options are 'none', 'vari- max', 'quartimax', 'promax', 'oblimin', or 'simplimax'
optimal_factor_	method
	Show a summary of the number of factors by optimization method (e.g., BIC, VSS complexity, Velicer's MAP)
efa_plot	show explained variance by number of factor plot. default is TRUE.
digits	number of digits to round to
n_factor	number of factors for EFA. It will bypass the initial optimization algorithm, and fit the EFA model using this specified number of factor
post_hoc_cfa	a CFA model based on the extracted factor
quite	suppress printing output
streamline	print streamlined output
return_result	If it is set to TRUE (default is FALSE), it will return a fa object from psych

Value

a fa object from psych

Examples

efa_summary(lavaan::HolzingerSwineford1939, starts_with("x"), post_hoc_cfa = TRUE)

get_interaction_term get interaction term

Description

get interaction term

Usage

get_interaction_term(model)

Arguments

model model

Value

a list with predict vars names

get_predict_df get factor df to combine with mean_df

Description

get factor df to combine with mean_df

Usage

get_predict_df(data)

Arguments

data data

Value

factor_df

glm_model

Generalized Linear Regression

Description

[Experimental]

Fit a generalized linear regression using glm(). This function is still in early development stage.

```
glm_model(
   data,
   response_variable,
   predictor_variable,
   two_way_interaction_factor = NULL,
   three_way_interaction_factor = NULL,
   family,
   quite = FALSE
)
```

Arguments

data	data.frame		
response_variab	response_variable		
	response variable. Support dplyr::select() syntax.		
predictor_varia	ble		
	predictor variable. Support dplyr::select() syntax.		
two_way_interac	tion_factor		
	two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.		
three_way_interaction_factor			
	three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.		
family	a GLM family. It will passed to the family argument in glmer. See ?glmer for possible options.		
quite	suppress printing output		

Value

an object class of glm representing the linear regression fit

Examples

```
fit <- glm_model(
    response_variable = incidence,
    predictor_variable = period,
    family = "poisson", # or you can enter as poisson(link = 'log'),
    data = lme4::cbpp
)</pre>
```

html_to_pdf Convert HTML to PDF

Description

[Experimental]

This is a helper function for knitting Rmd. Due to technological limitation, the output cannot knit to PDF in Rmd directly (the problem is with the latex engine printing unicode character). Therefore, to bypass this problem, you will first need to knit to html file first, then use this function to convert it to a PDF file.

```
html_to_pdf(file_path = NULL, dir = NULL, scale = 1, render_exist = FALSE)
```

interaction_plot

Arguments

file_path	file path to the HTML file (can be relative if you are in a R project)
dir	file path to the directory of all HTML files (can be relative if you are in a R project)
scale	the scale of the PDF
render_exist	overwrite exist PDF. Default is FALSE

Value

no return value

Examples

```
## Not run:
html_to_pdf(file_path = "html_name.html")
# all HTML files in the my_html_folder will be converted
html_to_pdf(dir = "Users/Desktop/my_html_folder")
```

End(Not run)

interaction_plot Interaction plot

Description

[Stable]

The function creates a two-way or three-way interaction plot. It will creates a plot with ± 1 SD from the mean of the independent variable. See below for supported model. I recommend using concurrently with lm_model(), lme_model().

```
interaction_plot(
  model,
  data = NULL,
  graph_label_name = NULL,
  cateogrical_var = NULL,
  y_lim = NULL,
  plot_color = FALSE
)
```

Arguments

model	object from 1me, 1me4, 1merTest object.
data	data frame. If the function is unable to extract data frame from the object, then you may need to pass it directly
graph_label_nam	
-	vector of length 4 or a switch function (see ?two_way_interaction_plot example). Vector should be passed in the form of c(response_var, predict_var1, predict_var2, predict_var3).
cateogrical_var	,
	<pre>list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))</pre>
y_lim	the plot's upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)
plot_color	default if FALSE. Set to TRUE if you want to plot in color

Value

a ggplot object

Examples

```
lm_fit_2 <- lm(Sepal.Length ~ Sepal.Width + Petal.Length +
Sepal.Width*Petal.Length, data = iris)
interaction_plot(lm_fit_2)
lm_fit_3 <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width +
Sepal.Width*Petal.Length:Petal.Width, data = iris)
```

interaction_plot(lm_fit_3)

knit_to_Rmd Knit Rmd Files Instruction

Description

This is a helper function that instruct users of the package how to knit a R Markdown (Rmd) files

Usage

```
knit_to_Rmd()
```

Value

no return value

label_name

Examples

knit_to_Rmd()

label_name

get label name

Description

get label name

Usage

```
label_name(
  graph_label_name,
  response_var_name,
  predict_var1_name,
  predict_var2_name,
  predict_var3_name
)
```

Arguments

Value

vector of var name

lme_model

Description

[Stable]

Fit a linear mixed effect model (i.e., hierarchical linear model, multilevel linear model) using the nlme::lme() or the lmerTest::lmer() function. Linear mixed effect model is used to explore the effect of continuous / categorical variables in predicting a normally distributed continuous variable.

Usage

```
lme_model(
    data,
    model = NULL,
    response_variable,
    random_effect_factors = NULL,
    non_random_effect_factors = NULL,
    two_way_interaction_factor = NULL,
    three_way_interaction_factor = NULL,
    id,
    estimation_method = "REML",
    opt_control = "bobyqa",
    na.action = stats::na.omit,
    use_package = "lmerTest",
    quite = FALSE
)
```

Arguments

data	data.frame	
model	1me4 model syntax. Support more complicated model. Note that model_summary will only return fixed effect estimates.	
response_variab	le	
	DV (i.e., outcome variable / response variable). Length of 1. Support dplyr::select() syntax.	
random_effect_factors		
	random effect factors (level-1 variable for HLM people) Factors that need to estimate fixed effect and random effect (i.e., random slope / varying slope based on the id). Support dplyr::select() syntax.	
non_random_effect_factors		
	non-random effect factors (level-2 variable for HLM people). Factors only need to estimate fixed effect. Support dplyr::select() syntax.	
<pre>two_way_interaction_factor</pre>		
	two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.	

three_way_interaction_factor

three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.

id the nesting variable (e.g. group, time). Length of 1. Support dplyr::select() syntax.

estimation_method

· · · · · - · · ·	
	character. ML or REML default to REML.
opt_control	default is optim for lme and bobyqa for lmerTest
na.action	default is stats::na.omit. Another common option is na.exclude
use_package	Default is lmerTest. Only available for linear mixed effect model. Options are nlme, lmerTest, or lme4('lme4 return similar result as lmerTest except the return model)
quite	suppress printing output

Details

Here is a little tip. If you are using generic selecting syntax (e.g., contains() or start_with()), you don't need to remove the response variable and the id from the factors. It will be automatically remove. For example, if you have x1:x9 as your factors. You want to regress x2:x8 on x1. Your probably pass something like response_variable = x1, random_effect_factors = c(contains('x'), x1) to the function. However, you don't need to do that, you can just pass random_effect_factors = c(contains('x')) to the function since it will automatically remove the response variable from selection.

Value

an object representing the linear mixed-effects model fit (it maybe an object from lme or lmer depending of the package you use)

Examples

```
# two-level model with level-1 and level-2 variable with random intercept and random slope
fit1 <- lme_model(
    data = popular,
    response_variable = popular,
    random_effect_factors = c(extrav, sex),
    non_random_effect_factors = texp,
    id = class
)
# added two-way interaction factor
fit2 <- lme_model(
    data = popular,
    response_variable = popular,
    random_effect_factors = c(extrav, sex),
    non_random_effect_factors = texp,
```

```
two_way_interaction_factor = c(extrav, texp),
id = class
)
# pass a explicit lme model (I don't why you want to do that, but you can)
lme_fit <- lme_model(
  model = "popular ~ extrav*texp + (1 + extrav | class)",
  data = popular
)
```

lme_multilevel_model_summary

Model Summary for Mixed Effect Model

Description

[Stable]

An integrated function for fitting a multilevel linear regression (also known as hierarchical linear regression).

Usage

```
lme_multilevel_model_summary(
  data,
 model = NULL,
  response_variable = NULL,
  random_effect_factors = NULL,
  non_random_effect_factors = NULL,
  two_way_interaction_factor = NULL,
  three_way_interaction_factor = NULL,
  family = NULL,
  cateogrical_var = NULL,
  id = NULL,
  graph_label_name = NULL,
  estimation_method = "REML",
  opt_control = "bobyqa",
  na.action = stats::na.omit,
 model_summary = TRUE,
  interaction_plot = TRUE,
  y_lim = NULL,
  plot_color = FALSE,
  digits = 3,
  use_package = "lmerTest",
  standardize = NULL,
  ci_method = "satterthwaite",
  simple_slope = FALSE,
  assumption_plot = FALSE,
  quite = FALSE,
```

20

```
streamline = FALSE,
return_result = FALSE
)
```

Arguments

data	data.frame
model	lme4 model syntax. Support more complicated model structure from lme4. It is not well-tested to ensure accuracy [Experimental]
response_variat	ble
	DV (i.e., outcome variable / response variable). Length of 1. Support dplyr::select() syntax.
<pre>random_effect_f</pre>	Factors
	random effect factors (level-1 variable for HLM from a HLM perspective) Fac- tors that need to estimate fixed effect and random effect (i.e., random slope / varying slope based on the id). Support dplyr::select() syntax.
non_random_effe	ect_factors
	non-random effect factors (level-2 variable from a HLM perspective). Factors only need to estimate fixed effect. Support dplyr::select() syntax.
two_way_interac	ction_factor
	two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.
three_way_inter	raction_factor
	three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.
family	a GLM family. It will passed to the family argument in glmer. See ?glmer for possible options. [Experimental]
cateogrical_var	•
	<pre>list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))</pre>
id	the nesting variable (e.g. group, time). Length of 1. Support dplyr::select() syntax.
graph_label_nam	ne
	optional vector or function. vector of length 2 for two-way interaction graph. vector of length 3 for three-way interaction graph. Vector should be passed in the form of c(response_var, predict_var1, predict_var2,). Function should be passed as a switch function (see ?two_way_interaction_plot for an example)
estimation_meth	nod
	character. ML or REML default is REML.
opt_control	default is optim for lme and bobyqa for lmerTest.
na.action	default is stats::na.omit. Another common option is na.exclude
model_summary	print model summary. Required to be TRUE if you want assumption_plot.

interaction_plot		
	generate interaction plot. Default is TRUE	
y_lim	the plot's upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)	
plot_color	If it is set to TRUE (default is FALSE), the interaction plot will plot with color.	
digits	number of digits to round to	
use_package	Default is lmerTest. Only available for linear mixed effect model. Options are nlme, lmerTest, or lme4('lme4 return similar result as lmerTest except the return model)	
standardize	The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in parameters::standardize_parameters()	
ci_method	see options in the Mixed model section in ?parameters::model_parameters()	
simple_slope	Slope estimate at ± 1 SD and the mean of the moderator. Uses interactions::sim_slope() in the background.	
assumption_plot		
	Generate an panel of plots that check major assumptions. It is usually recom- mended to inspect model assumption violation visually. In the background, it calls performance::check_model().	
quite	suppress printing output	
streamline	print streamlined output.	
return_result	If it is set to TRUE (default is FALSE), it will return the model, model_summary, and plot (plot if the interaction term is included)	

Value

a list of all requested items in the order of model, model_summary, interaction_plot, simple_slope

Examples

```
fit <- lme_multilevel_model_summary(
    data = popular,
    response_variable = popular,
    random_effect_factors = NULL, # you can add random effect predictors here
    non_random_effect_factors = c(extrav,texp),
    two_way_interaction_factor = NULL, # you can add two-way interaction plot here
    graph_label_name = NULL, #you can also change graph lable name here
    id = class,
    simple_slope = FALSE, # you can also request simple slope estimate
    assumption_plot = FALSE, # you can also request assumption plot
    plot_color = FALSE, # you can also request the plot in color
    streamline = FALSE # you can change this to get the least amount of info
)</pre>
```

lm_model

Description

[Stable]

Fit a linear regression using lm(). Linear regression is used to explore the effect of continuous variables / categorical variables in predicting a normally-distributed continuous variables.

Usage

```
lm_model(
    data,
    response_variable,
    predictor_variable,
    two_way_interaction_factor = NULL,
    three_way_interaction_factor = NULL,
    quite = FALSE
)
```

Arguments

data	data.frame	
response_variab	le	
	response variable. Support dplyr::select() syntax.	
predictor_varia	ble	
	<pre>predictor variable. Support dplyr::select() syntax. It will automatically re- move the response variable from predictor variable, so you can use contains() or start_with() safely.</pre>	
two_way_interac	tion_factor	
	two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.	
three_way_inter	action_factor	
	three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.	
quite	suppress printing output	

Value

an object class of 1m representing the linear regression fit

Examples

```
fit <- lm_model(
   data = iris,
   response_variable = Sepal.Length,
   predictor_variable = dplyr::everything(),
   two_way_interaction_factor = c(Sepal.Width, Species)
)</pre>
```

lm_model_summary Model Summary for Linear Regression

Description

[Stable]

An integrated function for fitting a linear regression model.

Usage

```
lm_model_summary(
  data,
  response_variable = NULL,
 predictor_variable = NULL,
  two_way_interaction_factor = NULL,
  three_way_interaction_factor = NULL,
  family = NULL,
  cateogrical_var = NULL,
  graph_label_name = NULL,
 model_summary = TRUE,
  interaction_plot = TRUE,
 y_lim = NULL,
  plot_color = FALSE,
 digits = 3,
  simple_slope = FALSE,
  assumption_plot = FALSE,
  quite = FALSE,
 streamline = FALSE,
  return_result = FALSE
)
```

Arguments

```
data data.frame
response_variable
    DV (i.e., outcome variable / response variable). Length of 1. Support dplyr::select()
    syntax.
predictor_variable
    IV. Support dplyr::select() syntax.
```

24

two_way_interaction_factor

two-way interaction factors. You need to pass 2+ factor. Support dplyr::select() syntax.

three_way_interaction_factor

three-way interaction factor. You need to pass exactly 3 factors. Specifying three-way interaction factors automatically included all two-way interactions, so please do not specify the two_way_interaction_factor argument. Support dplyr::select() syntax.

family a GLM family. It will passed to the family argument in glm. See ?glm for possible options. [Experimental]

cateogrical_var

list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1, lower_bound1),var_name2 = c(upper_bound2, lower_bound2))

graph_label_name

optional vector or function. vector of length 2 for two-way interaction graph. vector of length 3 for three-way interaction graph. Vector should be passed in the form of c(response_var, predict_var1, predict_var2, ...). Function should be passed as a switch function (see ?two_way_interaction_plot for an example)

model_summary print model summary. Required to be TRUE if you want assumption_plot.
interaction_plot

generate the interaction plot. Default is TRUE

y_lim	the plot's upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit,
	upper_limit)

- plot_color If it is set to TRUE (default is FALSE), the interaction plot will plot with color.
- digits number of digits to round to
- simple_slope Slope estimate at +1/-1 SD and the mean of the moderator. Uses interactions::sim_slope() in the background.
- assumption_plot Generate an panel of plots that check major assumptions. It is usually recommended to inspect model assumption violation visually. In the background, it calls performance::check_model() quite suppress printing output
- quitesuppress printing outputstreamlineprint streamlined output

return_result If it is set to TRUE (default is FALSE), it will return the model, model_summary, and plot (if the interaction term is included)

Value

a list of all requested items in the order of model, model_summary, interaction_plot, simple_slope

Examples

```
fit <- lm_model_summary(
   data = iris,
   response_variable = "Sepal.Length",</pre>
```

```
predictor_variable = dplyr::everything(),
two_way_interaction_factor = c(Sepal.Width, Species),
interaction_plot = FALSE, # you can also request the interaction plot
simple_slope = FALSE, # you can also request simple slope estimate
assumption_plot = FALSE, # you can also request assumption plot
streamline = FALSE #you can change this to get the least amount of info
```

lm_model_table	Linear Regression Model Table Generate tables with multiple response
	and predictor variable (only 1m models are supported)

Description

)

Linear Regression Model Table Generate tables with multiple response and predictor variable (only 1m models are supported)

Usage

```
lm_model_table(
   data,
   response_variable,
   predictor_variable,
   control_variable = NULL,
   marginal_alpha = 0.1,
   return_result = FALSE,
   verbose = TRUE,
   show_p = FALSE
)
```

Arguments

```
data.frame
data
response_variable
                  response variable. Support dplyr::select() syntax.
predictor_variable
                  predictor variable. Support dplyr::select() syntax. It will automatically re-
                  move the response variable from predictor variable, so you can use contains()
                  or start_with() safely.
control_variable
                  control variables. Support dplyr::select() syntax.
marginal_alpha the set marginal_alpha level for marginally significant (denoted by .). Set to
                  0.05 if do not want marginally significant denotation.
                  It set to TRUE, it return the model estimates data frame.
return_result
verbose
                  default is TRUE. Set to FALSE to suppress outputs
                  show the p-value in parenthesis
show_p
```

26

measurement_invariance

Value

data.frame

Examples

```
lm_model_table(data = iris,
            response_variable = c(Sepal.Length,Sepal.Width),
            predictor_variable = Petal.Width)
```

measurement_invariance

Measurement Invariance

Description

[Stable]

Compute the measurement invariance model (i.e., measurement equivalence model) using multigroup confirmatory factor analysis (MGCFA; Jöreskog, 1971). This function uses the lavaan::cfa() in the backend. Users can run the configural-metric or the configural-metric-scalar comparisons (see below for detail instruction). All arguments (except the CFA items) must be explicitly named (like model = your-model; see example for inappropriate behavior).

Usage

```
measurement_invariance(
   data,
    ...,
   model = NULL,
   group,
   ordered = FALSE,
   group_partial = NULL,
   invariance_level = "scalar",
   estimator = "ML",
   digits = 3,
   quite = FALSE,
   streamline = FALSE,
   return_result = FALSE
)
```

Arguments

data	data.frame
	CFA items. Multi-factor CFA items should be separated by comma (as different argument). See below for examples. Support dplyr::select() syntax.
model	<pre>explicit lavaan model. Must be specify with model = lavaan_model_syntax. [Experimental]</pre>

group	the nested variable for multilevel dataset (e.g., Country). Support dplyr::select() syntax.
ordered	Default is FALSE. If it is set to TRUE, lavaan will treat it as a ordinal variable and use DWLS instead of ML
group_partial	items for partial equivalence. The form should be $c('DV = -item1', 'DV = -item2')$. See details for recommended practice.
invariance_leve	1
	"metric" or "scalar". Default is 'metric'. Set as 'metric' for configural-metric comparison, and set as 'scalar' for configural-metric-scalar comparison.
estimator	estimator for lavaan. Default is ML
digits	number of digits to round to
quite	suppress printing output except the model summary.
streamline	print streamlined output
return_result	If it is set to TRUE, it will return a data frame of the fit measure summary

Details

Chen (2007) suggested that change in CFI \leq I-0.010l supplemented by RMSEA \leq 0.015 indicate non-invariance when sample sizes were equal across groups and larger than 300 in each group (Chen, 2007). And, Chen (2007) suggested that change in CFI \leq I-0.005l and change in RMSEA \leq 0.010 for unequal sample size with each group smaller than 300. For SRMR, Chen (2007) recommend change in SRMR < 0.030 for metric-invariance and change in SRMR < 0.015 for scalar-invariance. For large group size, Rutowski & Svetina (2014) recommended a more liberal cut-off for metric non-invariance for CFI (change in CFI \leq I-0.020l) and RMSEA (RMSEA \leq 0.030). However, this more liberal cut-off DOES NOT apply to testing scalar non-invariance. If measurement-invariance is not achieved, some researchers suggesting partial invariance is acceptable (by releasing the constraints on some factors). For example, Steenkamp and Baumgartner (1998) suggested that ideally more than half of items on a factor should be invariant. However, it is important to note that no empirical studies were cited to support the partial invariance guideline (Putnick & Bornstein, 2016).

Value

a data.frame of the fit measure summary

References

Chen, F. F. (2007). Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504. https://doi.org/10.1080/10705510701301834

Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36(4), 409-426.

Putnick, D. L., & Bornstein, M. H. (2016). Measurement Invariance Conventions and Reporting: The State of the Art and Future Directions for Psychological Research. Developmental Review: DR, 41, 71–90. https://doi.org/10.1016/j.dr.2016.06.004

Rutkowski, L., & Svetina, D. (2014). Assessing the Hypothesis of Measurement Invariance in the Context of Large-Scale International Surveys. Educational and Psychological Measurement, 74(1), 31–57. https://doi.org/10.1177/0013164413498257

mediation_summary

Steenkamp, J.-B. E. M., & Baumgartner, H. (n.d.). Assessing Measurement Invariance in Cross-National Consumer Research. JOURNAL OF CONSUMER RESEARCH, 13.

Examples

```
# REMEMBER, YOU MUST NAMED ALL ARGUMENT EXCEPT THE CFA ITEMS ARGUMENT
# Fitting a multiple-factor measurement invariance model by passing items.
measurement_invariance(
  x1:x3,
  x4:x6,
  x7:x9.
  data = lavaan::HolzingerSwineford1939,
  group = "school",
  invariance_level = "scalar" # you can change this to metric
)
# Fitting measurement invariance model by passing explicit lavaan model
# I am also going to only test for metric invariance instead of the default scalar invariance
measurement_invariance(
  model = "visual = x1 + x2 + x3;
           textual = x4 + x5 + x6;
           speed = x7 + x8 + x9'',
  data = lavaan::HolzingerSwineford1939,
  group = "school",
  invariance_level = "metric"
)
## Not run:
# This will fail because I did not add `model = ` in front of the lavaan model.
# Therefore,you must add the tag in front of all arguments
# For example, `return_result = 'model'` instaed of `model`
measurement_invariance(
  "visual =~ x1 + x2 + x3;
             textual = x4 + x5 + x6;
             speed = x7 + x8 + x9'',
  data = lavaan::HolzingerSwineford1939
)
## End(Not run)
```

mediation_summary Mediation Analysis

Description

[Experimental]

It currently only support simple mediation analysis using the path analysis approach with the

lavaan package. I am trying to implement multilevel mediation in lavaan. In the future, I will try supporting moderated mediation (through lavaan or mediation) and mediation with latent variable (through lavaan).

Usage

```
mediation_summary(
    data,
    response_variable,
    mediator,
    predictor_variable = NULL,
    group = NULL,
    standardize = TRUE,
    digits = 3,
    quite = FALSE,
    streamline = FALSE,
    return_result = FALSE
)
```

Arguments

data	data.frame
response_variable	
	response variable. Support dplyr::select() syntax.
mediator	mediator. Support dplyr::select() syntax.
predictor_variable	
	predictor variable. Support dplyr::select() syntax.
control_variable	
	control variables / covariate. Support dplyr::select() syntax.
group	nesting variable for multilevel mediation. Not confident about the implementa- tion method. [Experimental]
standardize	standardized coefficients. Default is TRUE
digits	number of digits to round to
quite	suppress printing output
streamline	print streamlined output
return_result	If it is set to TRUE, it will return the lavaan object

Value

an object from lavaan

Examples

```
mediation_summary(
    data = lmerTest::carrots,
    response_variable = Preference,
```

model_summary

```
mediator = Sweetness,
predictor_variable = Crisp
)
```

model_summary

Model Summary for Regression Models

Description

[Stable]

The function will extract the relevant coefficients from the regression models (see below for supported model).

Usage

```
model_summary(
  model,
  digits = 3,
  assumption_plot = FALSE,
  quite = FALSE,
  streamline = TRUE,
  return_result = FALSE,
  standardize = NULL,
  ci_method = "satterthwaite"
)
```

Arguments

model	an model object. The following model are tested for accuracy: lm, glm, lme, lmer, glmer. Other model object may work if it work with parameters::model_parameters()
digits	number of digits to round to
assumption_plot	
	Generate an panel of plots that check major assumptions. It is usually recom- mended to inspect model assumption violation visually. In the background, it calls performance::check_model().
quite	suppress printing output
streamline	print streamlined output. Only print model estimate and performance.
return_result	It set to TRUE, it return the model estimates data frame.
standardize	The method used for standardizing the parameters. Can be NULL (default; no standardization), "refit" (for re-fitting the model on standardized data) or one of "basic", "posthoc", "smart", "pseudo". See 'Details' in parameters::standardize_parameters()
ci_method	see options in the Mixed model section in ?parameters::model_parameters()

Value

a list of model estimate data frame, model performance data frame, and the assumption plot (an ggplot object)

References

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

Examples

```
# I am going to show the more generic usage of this function
# You can also use this package's built in function to fit the models
# I recommend using the integrated_multilevel_model_summary to get everything
# lme example
lme_fit <- lme4::lmer("popular ~ texp + (1 | class)",
    data = popular
)
model_summary(lme_fit)
# lm example
lm_fit <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,
    data = iris
)
model_summary(lm_fit)
```

```
polynomial_regression_plot
Polynomial Regression Plot
```

Description

[Experimental]

The function create a simple regression plot (no interaction). Can be used to visualize polynomial regression.

```
polynomial_regression_plot(
  model,
  model_data = NULL,
  predictor,
  graph_label_name = NULL,
  x_lim = NULL,
  y_lim = NULL,
  plot_color = FALSE
)
```

popular

Arguments

model	object from 1m
model_data	optional dataframe (in case data cannot be retrieved from the model)
predictor	predictor variable name (must be character)
graph_label_nam	le
	vector of length 3 or function. Vector should be passed in the form of c(response_var, predict_var1, predict_var2). Function should be passed as a switch function that return the label based on the name passed (e.g., a switch function)
x_lim	the plot's upper and lower limit for the x-axis. Length of 2. Example: c(lower_limit, upper_limit)
y_lim	the plot's upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)
plot_color	default if FALSE. Set to TRUE if you want to plot in color

Details

It appears that predict cannot handle categorical factors. All variables are converted to numeric before plotting.

Value

an object of class ggplot

Examples

```
fit = lm(data = iris, Sepal.Length ~ poly(Petal.Length,2))
polynomial_regression_plot(model = fit,predictor = 'Petal.Length')
```

popular

Popular dataset

Description

Classic data-set from Chapter 2 of Joop Hox's Multilevel Analysis (2010). The popular dataset included student from different class (i.e., class is the nesting variable). The outcome variable is a self-rated popularity scale. Individual-level (i.e., level 1) predictors are sex, extroversion. Class level (i.e., level 2) predictor is teacher experience.

Usage

popular

Format

A data frame with 2000 rows and 6 variables:

pupil Subject ID
popular Self-rated popularity scale ranging from 1 to 10
class the class that students belong to (nesting variable)
extrav extraversion scale (individual-level)
sex gender of the student (individual-level)
texp teacher experience (class-level)

Source

http://joophox.net/mlbook2/DataExchange.zip

reliability_summary Reliability Analysis

Description

[Stable]

First, it will determine whether the data is uni-dimensional or multi-dimensional using parameters::n_factors(). If the data is uni-dimensional, then it will print a summary consists of alpha, G6, single-factor CFA, and descriptive statistics result. If it is multi-dimensional, it will print a summary consist of alpha, G6, omega result. You can bypass this by specifying the dimensionality argument.

Usage

```
reliability_summary(
   data,
   cols,
   dimensionality = NULL,
   digits = 3,
   descriptive_table = TRUE,
   quite = FALSE,
   streamline = FALSE,
   return_result = FALSE
)
```

Arguments

data	data.frame
cols	items for reliability analysis. Support dplyr::select() syntax.
dimensionality	Specify the dimensionality. Either uni (uni-dimensionality) or multi (multi dimensionality). Default is NULL that determines the dimensionality using EFA
digits	number of digits to round to

34

simple_slope

descriptive_table		
	Get descriptive statistics. Default is TRUE	
quite	suppress printing output	
streamline	print streamlined output	
return_result	If it is set to TRUE (default is FALSE), it will return psych::alpha for uni- dimensional scale, and psych::omega for multidimensional scale.	

Value

a psych::alpha object for unidimensional scale, and a psych::omega object for multidimensional scale.

Examples

```
fit <- reliability_summary(data = lavaan::HolzingerSwineford1939, cols = x1:x3)
fit <- reliability_summary(data = lavaan::HolzingerSwineford1939, cols = x1:x9)</pre>
```

simple_slope

```
Slope Estimate at Varying Level of Moderators
```

Description

[Stable]

The function uses the interaction::sim_slopes() to calculate the slope estimate at varying level of moderators (+/- 1 SD and mean). Additionally, it will produce a Johnson-Newman plot that shows when the slope estimate is not significant

Usage

```
simple_slope(model, data = NULL)
```

Arguments

model	model object from lm, lme, lmer
data	data.frame

Value

a list with the slope estimate data frame and a Johnson-Newman plot.

Examples

```
fit <- lm_model(
   data = iris,
   response_variable = Sepal.Length,
   predictor_variable = dplyr::everything(),
   three_way_interaction_factor = c(Sepal.Width, Petal.Width, Petal.Length)
)
simple_slope_fit <- simple_slope(
   model = fit,
)</pre>
```

three_way_interaction_plot

Three-way Interaction Plot

Description

[Deprecated]

The function creates a two-way interaction plot. It will creates a plot with ± 1 SD from the mean of the independent variable. See below for supported model. I recommend using concurrently with $lm_model()$, $lme_model()$.

Usage

```
three_way_interaction_plot(
  model,
  data = NULL,
  cateogrical_var = NULL,
  graph_label_name = NULL,
  y_lim = NULL,
  plot_color = FALSE
)
```

Arguments

model	object from lme, lme4, lmerTest object.
data	data.frame. If the function is unable to extract data frame from the object, then you may need to pass it directly
cateogrical_var	
	<pre>list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))</pre>
graph_label_name	
	vector of length 4 or a switch function (see ?two_way_interaction_plot example). Vector should be passed in the form of c(response_var, predict_var1, predict_var2, predict_var3).

36

y_lim	the plot's upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)
plot_color	default if FALSE. Set to TRUE if you want to plot in color

Details

It appears that "predict' cannot handle categorical factors. All variables are converted to numeric before plotting.

Value

a ggplot object

Examples

```
lm_fit <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width +
   Sepal.Width:Petal.Length:Petal.Width, data = iris)</pre>
```

```
three_way_interaction_plot(lm_fit, data = iris)
```

two_way_interaction_plot

Two-way Interaction Plot

Description

[Deprecated]

The function creates a two-way interaction plot. It will creates a plot with ± 1 SD from the mean of the independent variable. See supported model below. I recommend using concurrently with lm_model or lme_model .

```
two_way_interaction_plot(
  model,
  data = NULL,
  graph_label_name = NULL,
  cateogrical_var = NULL,
  y_lim = NULL,
  plot_color = FALSE
)
```

Arguments

model	object from lm, nlme, lme4, or lmerTest	
data	data.frame. If the function is unable to extract data frame from the object, then you may need to pass it directly	
graph_label_name		
	vector of length 3 or function. Vector should be passed in the form of c(response_var, predict_var1, predict_var2). Function should be passed as a switch func- tion that return the label based on the name passed (e.g., a switch function)	
cateogrical_var		
	<pre>list. Specify the upper bound and lower bound directly instead of using ± 1 SD from the mean. Passed in the form of list(var_name1 = c(upper_bound1, lower_bound1), var_name2 = c(upper_bound2, lower_bound2))</pre>	
y_lim	the plot's upper and lower limit for the y-axis. Length of 2. Example: c(lower_limit, upper_limit)	
plot_color	default if FALSE. Set to TRUE if you want to plot in color	

Details

It appears that "predict' cannot handle categorical factors. All variables are converted to numeric before plotting.

Value

an object of class ggplot

Examples

```
lm_fit <- lm(Sepal.Length ~ Sepal.Width * Petal.Width,
    data = iris
)
two_way_interaction_plot(lm_fit, data = iris)
```

Index

* datasets popular, 33 anova_plot, 2 cfa_groupwise, 3 cfa_summary, 4 compare_fit,7 cor_test, 8 cronbach_alpha,9 descriptive_table, 10 efa_summary, 11 get_interaction_term, 12 get_predict_df, 13 glm_model, 13 html_to_pdf, 14 interaction_plot, 15 knit_to_Rmd, 16 label_name, 17 lm_model, 23 lm_model_summary, 24 lm_model_table, 26 lme_model, 18 lme_multilevel_model_summary, 20 measurement_invariance, 27 mediation_summary, 29 model_summary, 31 polynomial_regression_plot, 32 popular, 33 reliability_summary, 34 simple_slope, 35

three_way_interaction_plot, 36
two_way_interaction_plot, 37