Package 'psc'

May 29, 2025

Type Package

Title Personalised Synthetic Controls

Version 1.3.0

Maintainer Richard Jackson <richJ23@liverpool.ac.uk>

Description Allows the comparison of data cohorts (DC) against a Counter Factual Model (CFM) and measures the difference in terms of an efficacy parameter. Allows the application of Personalised Synthetic Controls.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

URL https://github.com/richjjackson/psc/,

https://github.com/richJJackson/psc

BugReports https://github.com/richJJackson/psc/issues

Depends R (>= 3.5.0)

Imports mvtnorm, survival, enrichwith, stats, flexsurv, ggplot2, survminer, gtsummary, RColorBrewer, waffle

Suggests knitr, rmarkdown, devtools, ggpubr, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Richard Jackson [cre, aut, cph] (ORCID: https://orcid.org/0000-0002-7814-5088>)

Repository CRAN

Date/Publication 2025-05-29 15:10:02 UTC

Contents

acc	. 3
bin.mod	. 3
cfmDataSumm	. 4
cfmDataVis	. 5
coef.psc	. 5
cont.mod	. 6
count.mod	6
data	
dataComb	
dataComb.flexsurvreg	
dataComb.glm	
dataComb.pscCFM	
dataSumm	
data_match	
e4_data	
facVis	
facVisComp	
gemCFM	
initParm	
initParm.flexsurvreg	
initParm.glm	
initParm.pscCFM	
lik.flexsurvreg	
lik.flexsurvreg.mtc	
lik.glm	
lik.glm.mtc	
linPred	
modelExtract	
modelExtract.flexsurvreg	
modelExtract.glm	
mode	
numVis	
numVisComp	
plot.psc	
plot.psc.binary	
plot.psc.cont	
plot.psc.count	
plot.psc.flexsurvreg	
	. 20
print.psc	. 20 . 27
print.quiet_gglist	. 27
print.quiet_gtsumm	. 27
print.quiet_list	
psc.object	. 28
pscCFM	. 29
pscEst	. 29
pscEst.flexsurvreg	. 30

pscEst.glm	31
pscEst.pscCFM	32
pscfit	32
pscSumm	34
summary.psc	35
surv.mod	35
surv_fpm	36
visComp	37
	- 38

Index

acc

acc

Description

Function to accept (or not) a proposed solution used as part of the MCMC procedure

Usage

acc(old, new)

Arguments

old	a numeric value
new	a numeric value

Details

A function for the evaluation of two likelihoods as part of the MCMC procedure

Value

returns the an evaluation of old/new > U where U is a draw from the uniform distribution

bin.mod

Example model for a survival outcome

Description

A generated model with a binary endpoint and a logistic link function. Data for the model were synthetically generated and are based on a dataset to evaluate the use of Sorafenib in HCC akin to the PROSASH model (see ?psc::surv.mod for more details)

Usage

bin.mod

Format

A model of class 'glm':

vi vascular invasion

ecog ECOG performance Status

logafp AFP - log scale

alb albumin

logcreat Creatinine - log scale

allmets metastesis

Source

simulated

cfmDataSumm

Summarising data within a CFM

Description

The pscCFM creates a model object which is stripped of identifiable information. The cfmData-Summ fuention supplies a tabulated form of the dataset for summary information

Usage

```
cfmDataSumm(cfm)
```

Arguments

cfm a 'glm' or 'flexsurvreg' model object

Value

a summary table

4

cfmDataVis

Description

The pscCFM creates a model object which is stripped of identifiable information. The cfmDataVis fucntion supplies a visualised form of the dataset for summary information

Usage

```
cfmDataVis(cfm)
```

Arguments

cfm a 'glm' or 'flexsurvreg' model object

Value

a list of grobs for each model covariate

coef.psc

Returns the coefficient estimate of a psc object.

Description

Returns basic measures of the posterior distribution obtained from the pscfit.R function

Usage

```
## S3 method for class 'psc'
coef(object, ..., level = 0.05)
```

Arguments

object	a 'psc' object
	not used
level	the level at which credibility intervals are assessed, defaults to 0.05

Value

The summary of the posterior distribution for the efficacy parameter in terms of the median and 95

cont.mod

Description

A generated model with a continuous data endpoint and a identity link function. Data for the model were synthetically generated and are based on a dataset to evaluate the use of Sorafenib in HCC akin to the PROSASH model (see ?psc::surv.mod for more details)

Usage

cont.mod

Format

A model of class 'glm':

ecog ECOG performance Statuslogafp AFP - log scalealb albuminlogcreat Creatinine - log scale

Source

simulated

count.mod

Example model for a survival outcome

Description

A generated model with a count data endpoint and a log link function. Data for the model were synthetically generated and are based on a dataset to evaluate the use of Sorafenib in HCC akin to the PROSASH model (see ?psc::surv.mod for more details)

Usage

count.mod

Format

A model of class 'glm':

ecog ECOG performance Status logafp AFP - log scale alb albumin logcreat Creatinine - log scale

data

Source

simulated

data

Example Dataset of patients with aHCC receiving Lenvetanib

Description

A dataset containing 100 simulated patients. Data are based on the data used to generate PROSASH survival model -see ?psc::surv.mod for more detials.

Usage

data

Format

A model of class 'flezsurvreg':

gamma cumulative baseline hazard parameters

vi vascular invasion

age60 patient age (centred at 60)

ecog ECOG performance Status

logafp AFP - log scale

alb albumin

logcreat Creatinine - log scale

allmets metastesis

ageVasInv centred age nested within vascular invasion

time survival time

cen censoring indicator

os survival time

count exapmple outcome for count data

trt exapmple identifier for mulitple treatment comparisons

aet Actiology

Source

simulated

dataComb

Description

A generic function for cleaning data ready for analysis

Usage

dataComb(CFM, DC, id = NULL, trt = NULL, cfmOb = FALSE)

Arguments

CFM	a model object supplied to pscfit
DC	a dataset including covariates to match the CFM
id	to specify which observations in the data cohort should be evaluated. Defualts to 'NULL' i.e all observations
trt	used to specify multiple treatment effects. Defaults to NULL
cfmOb	used to specify if a CFM object is supplies as the counter factual model

Value

datComb returns a list containing objects which detial the components of both the Counter Factual Model (CFM) and the Data Cohort (DC) the required exported components of the model and a cleaned data cohort.

Examples

```
bin.mod <- psc::bin.mod
data <- psc::data
dc <- dataComb(bin.mod,data)</pre>
```

dataComb.flexsurvreg Function for cleaning the data of a model with class 'flexsurvreg'

Description

The purpose of this function is to prepare the dataset and the counter-factual model for estimation and is the first step pf the pscfit.R process. The output is a complete-case dataset where the data names match the variables used in the CFM.

Usage

```
## S3 method for class 'flexsurvreg'
dataComb(CFM, DC, id = NULL, trt = NULL, cfmOb = FALSE)
```

dataComb.glm

Arguments

CFM	a model object supplied to pscfit
DC	a dataset including covariates to match the CFM
id	a vector specifiying whether a subset of the dataset should be selected. Defaults to 'NULL' e.g. all data points included
trt	An optional additional vector denoting treatment allocations for multiple treat- ment comparisons. Defaults to 'NULL'
cfmOb	used to specify if a CFM object is supplies as the counter factual model

Value

a list containing objects which specify the required exported components of the model and a cleaned data cohort. Attributes include

- 'model.type' specifying the class of model to be used as the CFM
- 'model_extract' sepcifying the model componets required for estimation
- 'cov' a cleaned dataset of covariates
- 'outcome' a cleaned dataset containing the outcomes

dataComb.glm Function for cleaning the data of a model with class 'flexsurvreg'

Description

The purpose of this function is to prepare the dataset and the counter-factual model for estimation and is the first step pf the pscfit.R process. The output is a complete-case dataset where the data names match the variables used in the CFM.

Usage

```
## S3 method for class 'glm'
dataComb(CFM, DC, id = NULL, trt = NULL, cfmOb = FALSE)
```

Arguments

CFM	a model object supplied to pscfit
DC	a dataset including covariates to match the CFM
id	to specify which observations in the data cohort should be evaluated. Defualts to 'NULL' i.e all observations
trt	used to specify multiple treatment effects. Defaults to NULL
cfmOb	used to specify if a CFM object is supplies as the counter factual model

a list containing objects which specify the required exported components of the model and a cleaned data cohort. Attirbutes of the 'cleaned' object include: Attributes include

- 'model.type' specifying the class of model to be used as the CFM
- 'model_extract' sepcifying the model componets required for estimation
- · 'cov' a cleaned dataset of covariates
- · 'outcome' a cleaned dataset containing the outcomes

dataComb.pscCFM Function for cleaning the data of a model with class

Description

The purpose of this function is to prepare the dataset and the counter-factual model for estimation and is the first step pf the pscfit.R process. The output is a complete-case dataset where the data names match the variables used in the CFM.

Usage

S3 method for class 'pscCFM'
dataComb(CFM, DC, id = NULL, trt = NULL, cfmOb = TRUE)

Arguments

CFM	a model object supplied to pscfit
DC	a dataset including covariates to match the CFM
id	to specify which observations in the data cohort should be evaluated. Defualts to 'NULL' i.e all observations
trt	used to specify multiple treatment effects. Defaults to NULL
cfmOb	used to specify if a CFM object is supplies as the counter factual model

Value

a list containing objects which specify the required exported components of the model and a cleaned data cohort. Attirbutes of the 'cleaned' object include: Attributes include

- · 'model.type' specifying the class of model to be used as the CFM
- · 'model_extract' sepcifying the model componets required for estimation
- 'cov' a cleaned dataset of covariates
- · 'outcome' a cleaned dataset containing the outcomes

dataSumm

Description

A function which provides basic summaries of data provided within a data frame of covariets. Summaries are in the form of frequencies of counts and associated percentages for categorical data and median (IQR) for continuous data. Intended for use with the pscCFM.R function to define the setting in which a model has been generated

Usage

dataSumm(x)

Arguments ×

a matrix of covariates

Details

Categorical/Character data are summarised by a table and Continuous data are summarised as median (IQR)

data_match	A function to ensure that data from the cfm and data cohort are com- patible
	•

Description

The purpose of this function is to run a series of checks to ensure that the data included in the data cohort is comparable to the counter-factual model

Usage

data_match(cls, lev, dc.data)

Arguments

cls	a list of extracted data classes
lev	a list of factor levels
dc.data	dataset to be 'cleaned'

Value

a dataset which is checked and compatible with the CFM

e4_data

Description

A dataset containing 346 simulated patients. Data are based on the patietns randomised to revceive GemCap in the ESPAC-4 trial

Usage

e4_data

Format

A model of class 'flezsurvreg':

time survival time

cen censoring indicator
nodes negative (n=1) or positive (n=2) lymph nodes
grade tumour grade (1,2 or 3)
lca199 log transformed ca19.9
t T-stage (1,2 or 3)

Source

simulated

facVis

Visualising Categorical Data

Description

A function which summarises categorical data using a waffle plot

Usage

facVis(x, nm)

Arguments

х	a covariate to be summarised
nm	a covariate name

Value

a ggplot object

facVisComp

Description

A function which compares visually a new categorical covariate against equivalent data from a CFM

Usage

facVisComp(p, x)

Arguments

р	a ggplot objects
х	a categorical covariate

Value

a ggplot object

gemCFM	Model for a survival outcome based on Gemcitbine patietns from
	ESPAC-3

Description

A generated model with a survival endpoint and a cuymulative hazard function estimated using flexible parametric splines. Data for the model were obtained from the ESPAC-3 trials

Usage

gemCFM

Format

A model of class 'pscCFM' containg a 'flexsurvreg' model:

gamma cumulative baseline hazard parameters

```
nodes negative (n=1) or positive (n=2) lymph nodes
```

grade tumour grade (1,2 or 3)

lca199 log transformed ca19.9

t T-stage (1,2 or 3)

Source

simulated

initParm

Description

A generic function for estimating the initial parameters for estimation as part of the pscfti.R function. Parameter estimates are obtained using standard optomisation methods provided by the 'optim' set of functions. For a single parameter a Brent method is applied. For multiple treatment comparisons the 'BFGS' method is applied.

Usage

initParm(CFM, DC_clean, trt)

Arguments

CFM	A counter-factual model
DC_clean	a cleaned dataset obsect obtained using dataComb.flexsurvreg
trt	An optional additional vector denoting treatment allocations for multiple treat- ment comparisons. Defaults to 'NULL'

Details

This function takes the liklihood for a 'flexsurvreg' model and uses 'optim' to fit the likelihood.

Value

an 'optim' output giving the parameter values to be supplied as a starting value for the mcmc routine.

initParm.flexsurvreg Fucntion for estimating initial parameter values 'flexsurvreg'

Description

Fucntion for estimating initial parameter values 'flexsurvreg'

Usage

```
## S3 method for class 'flexsurvreg'
initParm(CFM, DC_clean, trt = NULL)
```

Arguments

CFM	A counter-factual model
DC_clean	a cleaned dataset obsect obtained using dataComb.flexsurvreg
trt	An optional additional vector denoting treatment allocations for multiple treat-
	ment comparisons. Defaults to 'NULL'

initParm.glm

Details

This function takes the liklihood for a 'flexsurvreg' model and uses 'optim' to fit the likelihood.

Value

an 'optim' output giving the parameter values to be supplied as a starting value for the mcmc routine.

initParm.glm

Fucntion for estimating initial parameter values

Description

Fucntion for estimating initial parameter values

Usage

S3 method for class 'glm'
initParm(CFM, DC_clean, trt = trt)

Arguments

CFM	A counter-factual model
DC_clean	a cleaned dataset obsect obtained using dataComb.flexsurvreg
trt	An optional additional vector denoting treatment allocations for multiple treat- ment comparisons. Defaults to 'NULL'

Details

This function takes the liklihood for a 'flexsurvreg' model and uses 'optim' to fit the likelihood.

Value

an 'optim' output giving the parameter values to be supplied as a starting value for the mcmc routine.

initParm.pscCFM

Description

Fucntion for estimating initial parameter values

Usage

```
## S3 method for class 'pscCFM'
initParm(CFM, DC_clean, trt = NULL)
```

Arguments

CFM	A counter-factual model
DC_clean	a cleaned dataset obsect obtained using dataComb.flexsurvreg
trt	An optional additional vector denoting treatment allocations for multiple treat- ment comparisons. Defaults to 'NULL'

Details

This function takes the liklihood for a 'flexsurvreg' model and uses 'optim' to fit the likelihood.

Value

an 'optim' output giving the parameter values to be supplied as a starting value for the mcmc routine.

lik.flexsurvreg Likelihood function for a psc model of class 'flexsurvreg'

Description

A function which defines the likelihood for a PSC model where the Counter Factual Model (CFM) takes the form of a 'flexsurvreg' object and an efficacy parameter (β) is being estimated. For more details on fitting please see 'pscfit and 'pscEst

Usage

lik.flexsurvreg(beta, DC_clean)

Arguments

beta	a parameter to be estimate
DC_clean	a cleaned dataset including covariates to match the CFM

Details

A likelihood function for use by pscfit for a model of class 'flexsurvreg'

lik.flexsurvreg.mtc Likelihood function for a psc model of class 'flexsurv' with multiple treatment comparisons

Description

A function which defines the likelihood for a PSC model where the Counter Factual Model (CFM) takes the form of a 'flexsurvreg' object and a mulitple efficacy parameters (β) is being estimated. For more details on fitting please see ?pscfit and ?pscEst

Usage

lik.flexsurvreg.mtc(beta, DC_clean)

Arguments

beta	a parameter to be estimate
DC_clean	a cleaned dataset including covariates to match the CFM

Details

A likelihood function for use by pscfit for a model of class 'flexsurvreg' where multiple treatment comparisons are required

lik.glm Likelihood function for a psc model of class 'glm'	
--	--

Description

A function which defines the likelihood for a PSC model where the Counter Factual Model (CFM) takes the form of a 'glm' object and an efficacy parameter (β) is being estimated. For more details on fitting please see ?pscfit and ?pscEst

Usage

lik.glm(beta, DC_clean)

Arguments

beta	a parameter to be estimate
DC_clean	a cleaned dataset including covariates to match the CFM

Details

A likelihood function for use by pscfit for a model of class 'glm'

lik.glm.mtc

Description

A function which defines the likelihood for a PSC model where the Counter Factual Model (CFM) takes the form of a 'glm' object and a mulitple efficacy parameters (β) is being estimated. For more details on fitting please see 'pscfit and 'pscEst

Usage

lik.glm.mtc(beta, DC_clean)

Arguments

beta	a parameter to be estimate
DC_clean	a cleaned dataset including covariates to match the CFM

Details

A likelihood function for use by pscfit for a model of class 'flexsurvreg' where multiple treatment comparisons are required

linPredEstimates the linear predictor of a psc object	linPred	Estimates the linear predictor of a psc object	
---	---------	--	--

Description

A function which created a linear predictor from a model and an external dataset. If required, linear predictors will be provided on the response scale. For a survival outcome, this will take the form of median survival estimates.

Usage

linPred(DC_clean, resp = FALSE)

Arguments

DC_clean	a cleaned data obhject created using dataComb()
resp	detailing whether the linear predictor should be returned on the natural or re-
	sponse level. Defaults to the natural scale (resp=F)

Details

A function which combines the data from the data cohort against the model parameters of the PSC

modelExtract

Value

Extracts the linear predictor from a object containing both a counter factual model and a data cohort which is created using the dataComb() function.

modelExtract A generic function for extracting model information

Description

A generic function for extracting model information

Usage

modelExtract(CFM)

Arguments CFM

a model of class either 'glm' or 'flexsurvreg'

Details

A function for extracting the model information required for using pscfit

Value

a list of extracted model components

modelExtract.flexsurvreg

A generic function for extracting model information

Description

This function extracts model information for use with the pscfit.R function.

Usage

```
## S3 method for class 'flexsurvreg'
modelExtract(CFM)
```

Arguments

CFM a model of class 'flexsurvreg'

Details

A function for extracting the model information required for using pscfit

Value

a list of extracted model components. Included are

- mod_class: The class of the model object
- terms: The terms included in the model
- cov_cls: The classes of the model covariates
- cov_lev: The levels of categorical variables
- cov_co: covariate coefficients
- sig: variance-covariance matrix
- haz_co: hazard parameter coefficients
- k: number of knots
- knots: knot position
- lam: lambda parameter
- form: model formula

modelExtract.glm A generic function for extracting model information

Description

A generic function for extracting model information

Usage

```
## S3 method for class 'glm'
modelExtract(CFM)
```

Arguments

CFM a model of class 'glm'

Details

A function for extracting the model information required for using pscfit

modp

Value

a list of extracted model components. Included are

- mod_class: The class of the model object
- terms: The terms included in the model
- cov_cls: The classes of the model covariates
- cov_lev: The levels of categorical variables
- cov_co: covariate coefficients
- sig: variance-covariance matrix
- form: model formula
- family: model family
- out.nm: outcome covariates names

modp

modp

Description

A function which rrturns either the input value (if positive) or zero (if negative)

Usage

modp(x)

Arguments

x a numberic vector

Details

A fucntion which returns a version of x with negative values replacd with 0

Value

a numeric vector with negative values replaced with 0

numVis

Description

A function which summarises categorical data using a waffle plot

Usage

numVis(x, nm)

Arguments

х	a covariate to be summarised
nm	a covariate name

Value

a ggplot object

Description

A function which summarises numerical data using a density plots

Usage

numVisComp(p, x)

Arguments

р	a ggplot object
х	a numeric vector

Value

a ggplot object

plot.psc

Description

A function which illustrates the predicted response under the Counter Factual Model (CFM) and the observed response under the experimental treatment(s). Form of the output will depend on the form of the CFM used

Usage

```
## S3 method for class 'psc'
plot(x, ...)
```

Arguments

Х	an object of class 'psc'
	not used

Details

This function plots the expected response of the control treatment along with the observe response rates of the experimental arms

Value

a survival plot corresponding to the psc fit

Examples

```
bin.mod <- psc::bin.mod
data <- psc::data
bin.psc <- pscfit(bin.mod,data,nsim=3000)
plot(bin.psc)</pre>
```

plot.psc.binary Function for Plotting PSC objects

Description

A function which illustrates the predicted response under the counter factual model and the observed response under the experimental treatment(s).

Usage

S3 method for class 'psc.binary'
plot(x, ...)

Arguments

х	an object of class 'psc'
	not used

Details

This function plots the expected response of the control treatment along with the observe response rates of the experimental arms

Value

a survival plot corresponding to the psc fit

Examples

```
bin.mod <- psc::bin.mod
data <- psc::data
bin.psc <- pscfit(bin.mod,data,nsim=3000)
plot(bin.psc)</pre>
```

plot.psc.cont Function for Plotting PSC objects

Description

A function which illustrates the predicted response under the counter factual model and the observed response under the experimental treatment(s).

Usage

```
## S3 method for class 'psc.cont'
plot(x, ...)
```

Arguments

х	an object of class 'psc'
	not used

Details

This function plots the expected response of the control treatment along with the observe response rates of the experimental arms

Value

a survival plot corresponding to the psc fit

plot.psc.count

Examples

```
cont.mod <- psc::cont.mod
data <- psc::data
cont.psc <- pscfit(cont.mod,data,nsim=3000)
plot(cont.psc)</pre>
```

plot.psc.count Function for Plotting PSC objects #' A function which illustrates the predicted response under the counter factual model and the observed response under the experimental treatment(s).

Description

Function for Plotting PSC objects #' A function which illustrates the predicted response under the counter factual model and the observed response under the experimental treatment(s).

Usage

S3 method for class 'psc.count'
plot(x, ...)

Arguments

х	an object of class 'psc'
	not used

Details

This function plots the expected response of the control treatment along with the observe response rates of the experimental arms

Value

a survival plot corresponding to the psc fit

Examples

```
count.mod <- psc::count.mod
data <- psc::data
count.psc <- pscfit(count.mod,data,nsim=3000)
plot(count.psc)</pre>
```

plot.psc.flexsurvreg Function for Plotting PSC objects

Description

Function for Plotting PSC objects

Usage

S3 method for class 'psc.flexsurvreg'
plot(x, ...)

Arguments

Х	an object of class 'psc'
	not used

Details

making use of 'ggsurvplot' in the survminer package, this function plots the expected survival function for the 'control' treatment estimated from the CFM along with the Kaplan Meier estimates of the observed events

Value

a survival plot corresponding to the psc fit

print.psc

Personalised Synthetic Controls - print

Description

Personalised Synthetic Controls - print

Usage

S3 method for class 'psc'
print(x, ...)

Arguments

x an object of class 'psc' ... not used

Value

printing psc results

print.quiet_gglist quiet_gglist

Description

Ensuring a quiet list of the grobs data are supplied to cfmDataVis

Usage

```
## S3 method for class 'quiet_gglist'
print(x, ...)
```

Arguments

Х	an object of class 'psc'
	not used

Value

A quiet list

print.quiet_gtsumm quiet_gtsumm

Description

Ensuring a quiet list of the grobs data are supplied to cfmDataVis

Usage

```
## S3 method for class 'quiet_gtsumm'
print(x, ...)
```

Arguments

Х	an object of class 'psc'
	not used

Value

A quiet list

print.quiet_list quiet_gtsumm

Description

Ensuring a quiet list of the grobs data are supplied to cfmDataVis

Usage

```
## S3 method for class 'quiet_list'
print(x, ...)
```

Arguments

х	an object of class 'psc'
•••	not used

Value

A quiet list

psc.object	Fitted psc object	

Description

An object returned by the pscfit function, inheriting from class psc and representing a fitted personlised synthetic control model.

Usage

psc.object

Format

An object of class NULL of length 0.

Author(s)

Richard Jasckson (<richj23@liverpool.ac.uk>)

pscCFM

Description

Standard R model objects contain within them the datasets used to create the model and as such care is needed when sharing these objects for research. The psc.cfm function creates an object with all identifiable information retracted and includes only the information required to use the models within the psc package

Usage

pscCFM(cfm, dataSumm = T, dataVis = T)

Arguments

cfm	a 'glm' or 'flexsurvreg' model object
dataSumm	a logical indicator specifying whether a summary of the data should be provided, defaults to TRUE.
dataVis	a logical indicator specifying whether a visualisations of the data should be pro- vided, defaults to TRUE.

Value

a list containing objects which specifiy the required exported components of the model.

pscEst Function for performing estimation procedures in 'pscfit'
--

Description

Function for performing estimation procedures in 'pscfit'

Usage

```
pscEst(CFM, DC_clean, nsim, start, start.se, trt)
```

Arguments

CFM	a model object supplied to pscfit
DC_clean	a cleaned dataset ontained using dataComb().
nsim	the number of MCMC simulations to run
start	the stating value for
start.se	the stating value for
trt	an optional vector denoting treatment allocations where mulitple treatment com- parisons are bieng made

Details

Define the set of model parameters B to contain Γ which summarize the parameters of the CFM. Prior distributions are defined for B using a multivariate normal distribution $\pi(B) \sim MVN(\mu, \Sigma)$ where μ is the vector of coefficient estimates from the validated model and Σ is the variancecovariance matrix. This information is taken directly from the outputs of the parametric model and no further elicitation is required. The prior distirbution for the efficacy parameter ($\pi(\beta)$) is set as an uniformative N(0, 1000).

Ultimately the aim is to estimate the posterior distribution for β conditional on the distribution of B and the observed data. A full form for the posterior distribution is then given as

$$P(\beta|B,D) \propto L(D|B,\beta)\pi(B)\pi(\beta)$$

Please see 'pscfit' for more details on liklihood formation.

For each iteration of the MCMC procedure, the following algorithm is performed

- 1. Set and indicator s=1, and define an initial state based on prior hyperparameters for $\pi(B)$ and $\pi(\beta)$ such that $b_s = \mu and\tau_s = 0$
- 2. Update s = s + 1 and draw model parameters b_s from $\pi(B)$ and an draw a proposal estimate of β from some target distribution
- 3. Estimate Γ(i, S) = ν^Tx_i where ν is the subset of parameters from b_s which relate to the model covariates and define 2 new likelihood functions Θ(s, 1) = L(D|B = b_s, β = τ(s 1)) & Θ(s, 2) = L(D|B = b_s, β = τ_s)
- 4. Draw a single value ψ from a Uniform (0,1) distribution and estimate the condition $\omega = \Theta(s, 1)/\Theta(s, 2)$. If $\omega > \psi$ then accept τ_s as belonging to the posterior distribution $P(\beta|B, D)$ otherwise retain $\tau(s 1)$
- 5. Repeat steps 2 4 for the required number of iterations

The result of the algorithm is a posterior distribution for the log hazard ratio, β , captures the variability in B through the defined priors $\pi(\beta)$.

Value

A matrix containing the draws form the posterior distribution

pscEst.flexsurvreg Function for estimating initial parameter values 'flexsurvreg'

Description

A function which performs the Bayesian MCMC estimation procedure for estimating the efficacy parameter (β) using personalised sunthetic controls methodology.

Usage

```
## S3 method for class 'flexsurvreg'
pscEst(CFM, DC_clean, nsim, start, start.se, trt = trt)
```

30

pscEst.glm

Arguments

CFM	a model object supplied to pscfit
DC_clean	a cleaned dataset ontained using dataComb().
nsim	the number of MCMC simulations to run
start	the stating value for
start.se	the stating value fo
trt	an optional vector denoting treatment allocations where multiple treatment com- parisons are being made

Details

An MCMC routine for fitting a psc model

Value

A matrix containing the draws form the posterior distribution

```
pscEst.glm
```

Function for estimating initial parameter values 'flexsurvreg'

Description

A function which performs the Bayesian MCMC estimation procedure for estimating the efficacy parameter (β) using personalised sunthetic controls methodology.

Usage

S3 method for class 'glm'
pscEst(CFM, DC_clean, nsim, start, start.se, trt = trt)

Arguments

CFM	a model object supplied to pscfit
DC_clean	a cleaned dataset ontained using dataComb().
nsim	the number of MCMC simulations to run
start	the stating value for
start.se	the stating value fo
trt	an optional vector denoting treatment allocations where multiple treatment com- parisons are being made

Details

An MCMC routine for fitting a psc model

Value

a matrix containing the draws form the posterior distribution

pscEst.pscCFM

Description

A function which performs the Bayesian MCMC estimation procedure for estimating the efficacy parameter (β) using personalised sunthetic controls methodology.

Usage

```
## S3 method for class 'pscCFM'
pscEst(CFM, DC_clean, nsim, start, start.se, trt = NULL)
```

Arguments

CFM	a model object supplied to pscfit
DC_clean	a cleaned dataset ontained using dataComb().
nsim	the number of MCMC simulations to run
start	the stating value for
start.se	the stating value fo
trt	an optional vector denoting treatment allocations where multiple treatment com- parisons are being made

Details

An MCMC routine for fitting a psc model

Value

A matrix containing the draws form the posterior distribution

pscfit

Personalised Synthetic Controls model fit

Description

Function which allows comparison of a data cohort against a parametric Counter Factual Model (CFM). The function allows models of the type 'flexsurvreg' and 'glm' to be supplied. The function performs by calculating the linear predictor as a combination of the CFM and the dataset supplied and then selects a likelihood based on the type of model specified. Likelihood is estimated using a Baysian MCMC procedure wherebey the parameters of the CFM acts as informative priors.

Usage

```
pscfit(CFM, DC, nsim = 5000, id = NULL, trt = NULL)
```

pscfit

Arguments

CFM	An R model object of class 'glm' or 'flexsurvspline'
DC	A dataset including columns to match to covariates in the model
nsim	The number of simulations for the MCMC routine
id	Numeric vector stating which patient(s) from the dataset should be included in the analysis. Defaults to all patients
trt	An optional vector denoting treatment allocations for multiple treatment com- parisons. Defaults to NULL.

Details

Model currently supports estimation of more than one treatment (using the 'trt') option and esitmation restricted to sub-groups of the data cohort (using the 'id' option.

the pscfit function compares a dataset ('DC') against a parametric model. This is done by selecting a likelihood which is identified by the type of CFM that is supplied. At present, two types of model are supported, a flexible parmaeteric survival model of type 'flexsurvreg' and a geleneralised linear model of type 'glm'.

Where the CFM is of type 'flexsurvreg' the likelhood supplied is of the form:

$$L(D|\Lambda,\Gamma_i) = \prod_{i=1}^n f(t_i|\Lambda,\Gamma_i)^{c_i} S(t_i|\Lambda,\Gamma_i)^{(1-c_i)}$$

Where Λ defines the cumulative baseline hazard function, Γ is the linear predictor and t and c are the event time and indicator variables.

Where the CFM is of the type 'glm' the likelihood supplied is of the form:

$$L(x|\Gamma_i) = \prod_{i=1}^n b(x|\Gamma_i) \exp\left\{\Gamma_i^T t(x) - c(\Gamma_i)\right\}$$

Where b(.), t(.) and c(.) represent the functions of the exponential family. In both cases, Γ is defined as:

$$\Gamma = \gamma x + \beta$$

Where γ are the model coefficients supplied by the CFM and β is the parameter set to measure the difference between the CFM and the DC.

Estimation is performed using a Bayesian MCMC procedure. Prior distributions for Γ (& Λ) are derived directly from the model coefficients (mean and variance covariance matrix) or the CFM. A bespoke MCMC routine is performed to estimate β . Please see '?mcmc' for more detials.

For the standard example where the DC contains information from only a single treatment, trt need not be specified. Where comparisons between the CFM and multiple treatments are require, a covariate of treamtne allocations must be specified sperately (using the 'trt' option).

Value

a object of class 'psc' with attributes model.type, the cleaned Dataset and the posterior distribution of the fitted model

Attributes include

- A 'cleaned' dataset including extracted components of the CFM and the cleaned DC included in the procedure
- An object defining the class of model (and therefore the procedure applied see above)
- A matrix containing the draws of the posterior distributions

Examples

```
library(psc)
e4_data <-psc::e4_data
gemCFM <- psc::gemCFM
psc <- pscfit(gemCFM,e4_data)
summary(psc)</pre>
```

pscSumm

Personalised Synthetic Controls - summary

Description

A function which provides a summary of a DC_clean object. To be used either in conjunction with dataComb.R or summary.psc.R

Usage

```
pscSumm(DC_clean)
```

Arguments

DC_clean a cleaned dataset ontained using dataComb().

Value

psc summary results including an estimate of the linear predictor combing the data and the model, an estimate of patient level response and summary statistics of the average responses for the sythenthic and observed populations

summary.psc

Description

A generic function to provide a summary of a 'psc' object obtained from pscfit.R

Usage

```
## S3 method for class 'psc'
summary(object, ...)
```

Arguments

object	an object of class 'psc'
	not used

Value

A summary of a psc object obtained using pscSumm and a copy of the pscfit object

Examples

```
library(psc)
e4_data <-psc::e4_data
gemCFM <- psc::gemCFM
psc <- pscfit(gemCFM,e4_data)
summary(psc)</pre>
```

surv.mod

Example model for a survival outcome

Description

A generated model with a survival endpoint and a cuymulative hazard function estimated using flexible parametric splines. Data for the model were synthetically generated and are based on a dataset to evaluate the use of Sorafenib in HCC akin to the PROSASH model

Usage

surv.mod

Format

A model of class 'flezsurvreg':

gamma cumulative baseline hazard parameters

vi vascular invasion

age60 patient age (centred at 60)

ecog ECOG performance Status

logafp AFP - log scale

alb albumin

logcreat Creatinine - log scale

allmets metastesis

ageVasInv centred age nested within vascular invasion

time survival time

cen censoring indicator

os survival timede

count exapmple outcome for count data

trt exapmple identifier for mulitple treatment comparisons

aet Aetiology

Source

simulated

References

Using prognostic and predictive clinical features to make personalised survival prediction in advanced hepatocellular carcinoma patients undergoing sorafenib treatment. Berhane S, et al., Br J Cancer. 2019 Jul;121(2):117-124

surv_fpm	A function to obtain survival estimates from a flexible parametric	ic
	model	

Description

This function provides basic survival estimates from a flexible parametric survival model

Usage

surv_fpm(DC_clean, beta = 0, s = NULL)

visComp

Arguments

DC_clean	a cleaned dataset ontained using dataComb().
beta	a parameter to determine if the survival probabilities should be adjusted by some (log) hazard ratio. Defaults to beta=0, i.e. no adjustment.
S	if specified will return the time at which some threshold is passed (e.g. s=0.5 for median survival time)

Details

A fucntion which extracts survival probabilities from a flexsurvreg object

Value

a list of times and assoicated survival probabilities

Description

The visComp function takes the data visualisations supplied as part of the CFM model and appends summaries of the equivalent datapoints from the Data Cohort.

Usage

visComp(CFM, DC, id = NULL)

Arguments

CFM	an object of class pscCFM
DC	A dataset including columns to match to covariates in the model
id	Numeric vector stating which patient(s) from the dataset should be included in the analysis. Defaults to all patients

Value

a list of grobs for each model covariate

Index

* datasets bin.mod, 3 cont.mod, 6 count.mod, 6 data, 7 e4_data, 12 gemCFM, 13 psc.object, 28 surv.mod, 35 acc, 3 bin.mod, 3 cfmDataSumm, 4 cfmDataVis, 5 coef.psc, 5 cont.mod, 6 count.mod, 6data, 7 data_match, 11 dataComb, 8 dataComb.flexsurvreg, 8 dataComb.glm, 9 dataComb.pscCFM, 10 dataSumm, 11 e4_data, 12 facVis, 12 facVisComp, 13 gemCFM, 13 initParm, 14 initParm.flexsurvreg, 14 initParm.glm, 15

initParm.pscCFM, 16
lik.flexsurvreg, 16

lik.flexsurvreg.mtc, 17
lik.glm, 17
lik.glm.mtc, 18
linPred, 18

modelExtract, 19
modelExtract.flexsurvreg, 19
modelExtract.glm, 20
modp, 21

numVis, 22
numVisComp, 22

plot.psc, 23 plot.psc.binary, 23 plot.psc.cont, 24 plot.psc.count, 25 plot.psc.flexsurvreg, 26 print.psc, 26 print.quiet_gglist, 27 print.quiet_gtsumm, 27 print.quiet_list, 28 psc.object, 28 pscCFM, 29 pscEst, 29 pscEst.flexsurvreg, 30 pscEst.glm, 31 pscEst.pscCFM, 32 pscfit, 32 pscSumm, 34

summary.psc, 35
surv.mod, 35
surv_fpm, 36

visComp, 37