## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- #> Install from CRAN (not yet available) #install.packages("pervasive") #> Install the development version from GitHub #devtools::install_github("dlajoiemoncton/pervasive") #load the package library(pervasive) ## ----message=FALSE------------------------------------------------------------ #>Example using the spi dataset from the psychTools package. #>Big 5 factor scores are calculated as suggested in the psych package documentation. Variables should be scored prior to the analysis. sc <- psych::scoreVeryFast(psychTools::spi.keys, psychTools::spi) #>scores for traits are combined to the original dataset spi_sc <- cbind(psychTools::spi, sc) #>Let's use age as the outcome of interest and the Big 5 as predictors for the regression models and sex as the outcome for binomial logistic regression models spi_sc_age_sex_B5 <- spi_sc |> dplyr::select(age, sex, Agree, Consc, Neuro, Extra, Open) |> na.omit() spi_sc_age <- spi_sc_age_sex_B5 |> dplyr::select(age, Agree, Consc, Neuro, Extra, Open) spi_sc_sex <- spi_sc_age_sex_B5 |> dplyr::select(sex, Agree, Consc, Neuro, Extra, Open) #>The glm() function expects outputs to be coded as 0 and 1 but sex is coded 1 and 2. There are some NAs for sex. spi_sc_sex$sex = spi_sc_sex$sex -1 ## ----------------------------------------------------------------------------- OPCP_mat(spi_sc_age_sex_B5) ## ----------------------------------------------------------------------------- formula <- age ~ Agree + Consc + Neuro + Extra + Open formula_glm <- sex ~ Agree + Consc + Neuro + Extra + Open #>This would also be acceptable: formula <- formula(age ~ Agree + Consc + Neuro + Extra + Open) #>It is possible to include a single predictor if one is working in a bivariate case ## ----------------------------------------------------------------------------- OPCP(formula = formula, data = spi_sc_age) OPCP_glm(formula = formula_glm, data = spi_sc_sex) ## ----message=FALSE------------------------------------------------------------ example <- pervasive_tric(formula = formula, data = spi_sc_age, min_support = .03) example #> or print(pervasive_tric(formula = formula, data = spi_sc_age, min_support = .03)) ## ----------------------------------------------------------------------------- example$freq_tables ## ----message=FALSE------------------------------------------------------------ example_dic <- pervasive_dic(formula = formula, data = spi_sc_age, min_support = .03) example_dic example_dic$freq_tables ## ----message=FALSE------------------------------------------------------------ example_dic_glm <- pervasive_dic_glm(formula = formula_glm, data = spi_sc_sex, min_support = .03) example_dic_glm example_tric_glm <- pervasive_tric_glm(formula = formula_glm, data = spi_sc_sex, min_support = .03) example_tric_glm