## ---- echo = FALSE------------------------------------------------------- library(perturbR) ## ------------------------------------------------------------------------ fort5_60 <- as.matrix(read.csv("fort5_60.csv", header = F)) ## ---- eval = FALSE------------------------------------------------------- # perturbR(sym.matrix = fort5_60, plot = TRUE, errbars = TRUE, resolution = 0.01, reps = 100) ## ---- echo=FALSE, fig.cap="Figure 1", out.width = '100%'----------------- knitr::include_graphics("fig2.png") ## ---- eval = FALSE------------------------------------------------------- # fit5_60 <- perturbR(sym.matrix = fort5_60, plot = FALSE) ## ---- echo = FALSE------------------------------------------------------- fit5_60 <- readRDS("fit5_60.RDS") ## ------------------------------------------------------------------------ fit5_60$vi20mark ## ------------------------------------------------------------------------ min(which(colMeans(fit5_60$VI)>fit5_60$vi20mark)) ## ------------------------------------------------------------------------ fit5_60$percent[36] ## ------------------------------------------------------------------------ fit5_60$ari20mark mean(fit5_60$ARI[,which(round(fit5_60$percent, digits = 2) == .20)]) ## ------------------------------------------------------------------------ fit5_60$cutoff ## ------------------------------------------------------------------------ fit5_60$modularity[1,1] ## ---- echo=TRUE, eval = FALSE-------------------------------------------- # hist(fit5_60$modularity[,which(round(fit5_60$percent, digits = 2) ==1.00)], xlim = c(0,1)) # abline(v = fit5_60$modularity[1,1], col = "red") ## ---- echo=FALSE, fig.cap="Figure 2", out.width = '100%'----------------- knitr::include_graphics("fig3.png")