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Abstract

Density-based clustering methods are well adapted to the clustering of high-dimensional

data and enable the discovery of core groups of various shapes despite large amounts of

noise. The opticskxi R package provides a novel density-based cluster extraction method,

OPTICS k-Xi, and a framework to compare k-Xi models using distance-based metrics

to investigate datasets with unknown number of clusters. This article �rst introduces

density-based algorithms with simulated datasets, then presents and evaluates the k-Xi

cluster extraction method. Finally, the models comparison framework is described and

experimented on 2 genetic datasets to identify groups and their discriminating features.

The k-Xi algorithm is a novel OPTICS cluster extraction method that speci�es directly

the number of clusters and does not require �ne-tuning of the steepness parameter as the

OPTICS Xi method. Combined with a framework that compares models with varying

parameters, the OPTICS k-Xi method can identify groups in noisy datasets with unknown

number of clusters.
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1. Introduction

Density-based clustering methods detect groups of similar observations based on their distance

to a given number of their nearest neighbors. In contrast with other clustering methods as

k-means or Gaussian mixture models, they do not expect the observed data to follow Gaussian

or other parametric distributions and they can thus detect groups of various shapes.

In this article, density-based clustering algorithms are �rst presented on simulated datasets

using the dbscan package (Hahsler and Piekenbrock 2016), and limitations due to clusters of

varying densities and �ne-tuning of parameters are described. A novel cluster extraction algo-

rithm, OPTICS k-Xi, is then presented and evaluated on the datasets. Finally, a framework

to compare multiple k-Xi models with varying parameters is detailed and experimented on 2

genetic datasets of Schizophrenia and Crohn's disease patients, to enable further investigation

of the best models and identify genetic signatures of core groups.

1.1. DBSCAN

DBSCAN (Ester, Kriegel, Sander, Xu et al. 1996) is a well-known density-based clustering

algorithm with 3 parameters: a distance matrix, a number of neighbors, and a reachability

distance threshold.

The algorithm �rst searches for core points in the distance matrix, i.e. points that have

distances from at least a given number of points, the number of neighbors, smaller than the
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reachability threshold. If one is found, the core point and its neighbors form a cluster, and if

additional core points are found within its neighbors, the cluster is expanded to also include

their neighbors, iteratively until no core points are discovered in the neighbors. Additional

clusters are then formed similarly for each core point not yet assigned and �nally remaining

non-assigned points are considered noise.

In the dbscan package, by default the euclidean distance is used, with 5 neighbors, and the

distance threshold must be �ne-tuned. In these simulated datasets from the factoextra and

dbscan R packages, points are organized by various shapes along with some noise, on 2 vari-

ables. With speci�c distance thresholds, DBSCAN successfully detects the shapes and the

noise (Figure 1).

R> library('opticskxi')

R> data('multishapes')

R> dbscan_shapes <- dbscan::dbscan(multishapes[1:2], eps = 0.15)

R> gg_shapes <- cbind(multishapes[1:2], Clusters = dbscan_shapes$cluster) %>%

+ ggpairs(group = 'Clusters')

R> data('DS3', package = 'dbscan')

R> dbscan_ds3 <- dbscan::dbscan(DS3, minPts = 25, eps = 12)

R> gg_ds3 <- cbind(DS3, Clusters = dbscan_ds3$cluster) %>%

+ ggpairs(group = 'Clusters')

R> cowplot::plot_grid(gg_shapes, gg_ds3, nrow = 2,

+ labels = c('(a)', '(b)'), label_x = 0.9)

However, DBSCAN uses a �xed distance threshold and thus can not detect clusters of varying

densities. In this simulated Gaussian data with 2 large clusters and 2 smaller, more dense,

clusters, DBSCAN detects either the pair of large or small clusters, depending on the distance

threshold, but can not detect all 4 clusters (Figure 2).

R> n <- 1e3

R> set.seed(0)

R> multi_gauss <- cbind.data.frame(

+ x = c(rnorm(n / 2, -3), rnorm(n / 4, 3), rnorm(n / 4, 3, .2)),

+ y = c(rnorm(n * .75), rnorm(n / 8, 1, .2), rnorm(n / 8, -1, .2)))

R> dbscan_gauss <- dbscan::dbscan(multi_gauss, minPts = 30, eps = .5)

R> gg_mgauss <- cbind(multi_gauss, Clusters = dbscan_gauss$cluster) %>%

+ ggpairs(group = 'Clusters')

R> gg_mgauss_small <- dbscan::dbscan(multi_gauss, minPts = 30, eps = .2) %$%

+ cbind(multi_gauss, Clusters = cluster) %>% ggpairs(group = 'Clusters')

R> cowplot::plot_grid(gg_mgauss, gg_mgauss_small, nrow = 2,

+ labels = c('(a)', '(b)'), label_x = .9)

1.2. OPTICS

OPTICS (Ankerst, Breunig, Kriegel, and Sander 1999) is another density-based algorithm that

produces an ordering and a distance pro�le of observations, similar to a tree-like dendogram,



Thomas Charlon 3

x

y

−1 0 1

−3

−2

−1

0

1 Clusters

0

1

2

3

4

5

(a)

X

Y

0 200 400 600

100

200

300
Clusters

0

1

2

3

4

5

6

(b)

Figure 1: DBSCAN clusterings of various shapes and noise (cluster 0). (a): Multishapes

dataset. (b): DS3 dataset.

and enables the detection of clusters of varying densities with the cluster extraction method

OPTICS Xi (Ankerst et al. 1999).

OPTICS uses at least 2 parameters, a distance matrix and a number of neighbors, and produces

a distance pro�le that reveals the density structure of the dataset and can be used to extract

clusters. The algorithm iteratively explores point neighborhoods in the order of lowest to

highest core distance, i.e. the maximum distance from a point to a given number of its

nearest neighbors, and returns the orders and the reachability distances of successive points,

i.e. the maximum between the core distance of the point and the distance from it to the

previous point. Low reachability-distances regions, or valleys, thus represent clusters and are

separated by peaks, i.e. points with high reachability distances.

OPTICS can be used to �ne-tune the distance threshold in DBSCAN, as the DBSCAN method

is equivalent to a horizontal threshold on the reachability plot.
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Figure 2: DBSCAN clustering of hierarchical Gaussian clusters. (a): Detection of large clus-

ters. (b): Detection of small clusters.

1.3. OPTICS Xi

To extract clusters of varying densities from OPTICS pro�les, the OPTICS Xi (Ankerst et al.

1999) algorithm uses a steepness threshold. The di�erences between reachability distances of

successive points are �rst computed. Then, for each absolute distance di�erence above the

given threshold, all adjacent points with a smaller reachability distance form a cluster.

Two cases are distinguished when forming a cluster, steep down or steep up areas, in which the

reachability distance di�erences that delimit the cluster are negative or positive, i.e. when the

�rst observation has a reachability higher or lower than the second observation, respectively.

� In a steep down area, both observations that produce the large distance di�erence are

part of the cluster, and all successive points with a reachability distance smaller than

the �rst observation, are part of the cluster.

� In a steep up area, only the �rst observation is part of the cluster, and all previous

points with a reachability distance smaller than the second observation, and the adjacent

previous point, are part of the cluster.

OPTICS Xi thus detects clusters of varying densities, possibly hierarchical, although the Xi

steepness parameter must be �ne-tuned. In the simulated hierarchical Gaussian data, OPTICS

Xi successfully detects both the large and small clusters with Xi = 0.03 (Figure 3).
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R> optics_gauss <- dbscan::optics(multi_gauss, minPts = 30)

R> xi_gauss <- dbscan::extractXi(optics_gauss, xi = 0.03)

R> ggplot_optics(optics_gauss, groups = xi_gauss$cluster)
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Figure 3: OPTICS pro�le of the hierarchical Gaussian clusters, colored by OPTICS Xi clus-

tering.

2. OPTICS k-Xi

The opticskxi package provides a variant OPTICS cluster extraction algorithm, k-Xi, that

speci�es directly the number of clusters and does not require �ne-tuning a parameter. In-

stead of using a �xed distance di�erence threshold OPTICS Xi, the k-Xi algorithm iteratively

investigates the largest di�erences until at the given number of clusters are de�ned.

2.1. Algorithm

For each successive largest di�erence, OPTICS k-Xi will attempt to form a cluster of all

adjacent points with a smaller reachability-distance, distinguishing steep down and up areas

similarly as OPTICS Xi (detailed above). If the newly formed cluster contains less observations

than the pts parameter, or if it reduces the size of a previously formed cluster below the pts

parameter, the new cluster is discarded and the next largest di�erence is considered.

The algorithm then stops when the number of clusters has reached the n_xi parameter, or

when the number of largest di�erences considered has reached the max_loop threshold, by

default 50. The pts parameter is set by default to the minPts parameter used to compute the

OPTICS pro�le, and avoids introducing small clusters due to nearby large distance di�erences.

2.2. Results

In the hierarchical Gaussian data, OPTICS k-Xi successfully detects the large and small

clusters (Figure 4).

R> kxi_gauss <- opticskxi(optics_gauss, n_xi = 4, pts = 100)

R> ggplot_optics(optics_gauss, groups = kxi_gauss)
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Figure 4: OPTICS pro�le of the hierarchical Gaussian clusters, colored by OPTICS k-Xi

clustering.

In the multishapes and the DS3 datasets, OPTICS k-Xi also successfully detects the shapes,

but the noise is included in the largest cluster (Figure 5).

R> gg_shapes_optics <- dbscan::optics(multishapes[1:2]) %>%

+ ggplot_optics(groups = opticskxi(., n_xi = 5, pts = 30))

R> gg_ds3_optics <- dbscan::optics(DS3, minPts = 25) %>%

+ ggplot_optics(groups = opticskxi(., n_xi = 6, pts = 100))

R> cowplot::plot_grid(gg_shapes_optics, gg_ds3_optics, nrow = 2,

+ labels = c('(a)', '(b)'), label_x = .9)

3. Models comparisons by distance-based metrics

To explore complex datasets where clusters are not well de�ned, k-Xi models with various

distances, number of points, and number of clusters may be investigated and compared. Fur-

thermore, in datasets with many variables, dimension reduction methods as principal compo-

nent analysis (PCA) or independent component analysis (ICA) may be required prior to the

clustering to summarize information.

The opticskxi package provides a framework to e�ciently compare multiple k-Xi models with

varying parameters and to extract and visualize the models with highest metrics, to enable

further investigation of the clusters of the best models.

3.1. Framework

The main function, opticskxi_pipeline, inputs a data frame of k-Xi clustering parameters

and returns corresponding clustering results and their distance-based metrics.

Parameters are speci�ed using a data frame with the following columns:

� dim_red: Optional dimension reduction: 'PCA', 'ICA' (using the fastICA package (Mar-

chini, Heaton, and Ripley 2017))

� n_dim_red: Optional number of components of the dimension reduction
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Figure 5: OPTICS pro�les colored by OPTICS k-Xi clusterings. (a): Multishapes dataset.

(b): DS3 dataset.

� dist: Distance, one of the 11 distances from the amap package (Lucas 2019)

� pts: Number of points for OPTICS (minPts) and k-Xi

� n_xi: Number of clusters for k-Xi

To e�ciently compute multiple k-Xi models with varying dimension reductions and parame-

ters, the framework proceeds step-by-step, by �rst computing the unique dimension reduction

matrices required, then unique distance matrices, unique OPTICS models, and �nally k-Xi

cluster extractions.

Distance-based metrics are then measured for each model using the fpc package (Hennig 2019).

The following metrics are stored: avg.silwidth, bw.ratio, ch, pearsongamma, dunn, dunn2,

entropy, widestgap, sindex.

Finally, clusters and metrics are binded to the input parameter data frame that de�nes the

unique parameters of each model, in the columns clusters and metrics.

Three functions can be used directly on the results data frame to extract speci�c models and

investigate the distance pro�les and the clusterings:

� get_best_kxi: Subset the data frame by specifying a metric and one or more ranks, in

decreasing order of the metric.
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� ggplot_kxi_metrics: Plot metrics of the top ranked k-Xi models, by default the 8

models with highest average silhouette width. Additional metrics can be displayed next

to the one used for ranking, by default the between-within ratio.

� gtable_kxi_profiles: Plot OPTICS pro�les of the top ranked k-Xi models, by default

the 4 models with highest average silhouette width.

3.2. Schizophrenia patients and controls

In this dataset from the gap R package (Zhao, colleagues with inputs from Kurt Hornik, and

Ripley 2015), 6 alleles from the chromosome 6 gene HLA were measured from 94 schizophrenia

patients and 177 controls.

All combinations of the following OPTICS k-Xi parameters are computed:

� Distance: Manhattan, Euclidean, absolute Pearson, absolute correlation

� Number of clusters: 3 to 5

� Number of points: 20, 30, 40

The 8 best models by average silhouette width are �rst visualized and reveal that all use

Manhattan or Euclidean distances and half use a pts parameter of 20 (Figure 6).

R> data('hla')

R> m_hla <- hla[-c(1:2)] %>% scale

R> df_params_hla <- expand.grid(n_xi = 3:5, pts = c(20, 30, 40),

+ dist = c('manhattan', 'euclidean', 'abscorrelation', 'abspearson'))

R> df_kxi_hla <- opticskxi_pipeline(m_hla, df_params_hla)

R> ggplot_kxi_metrics(df_kxi_hla, n = 8)

The OPTICS pro�les of the 4 best models are then visualized and reveal that the two best

models only di�er by their number of clusters, 3 or 4, and that the third and fourth models

have hierarchical clusters (Figure 7).

R> gtable_kxi_profiles(df_kxi_hla) %>% plot

The second best model is then selected to investigate the model with 4 clusters. To assess if

patients are signi�cantly enriched in each group, standardized Pearson residuals are computed

using chisq.test. One disease is enriched or depleted in one group if the residual is above or

below 2, respectively (Friendly 1994).

Results show cluster 4 is enriched in Schizophrenia patients (residual = 3.98): 58% of individ-

uals are patients, although the distribution in the complete dataset is 34%; and that cluster

2 is enriched in controls (residual = 2.45) (Table 1).

R> best_kxi_hla <- get_best_kxi(df_kxi_hla, rank = 2)

R> clusters_hla <- best_kxi_hla$clusters

R> hla$id %<>% `levels<-`(c('Controls', 'Sch. patients'))

R> residuals_table(clusters_hla, hla$id) %>% print_vignette_table('HLA')
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Figure 6: Distance-based metrics of the 8 best k-Xi clusterings of the HLA dataset, ranked

by decreasing average silhouette width. All the models use Manhattan or Euclidean distances

and half use a pts parameter of 20.

Controls Sch. patients Total Residuals: Controls Residuals: Sch. patients

1 56 27 83 1.22 -1.22

2 19 3 22 2.45 -2.45

3 23 9 32 1.19 -1.19

4 24 34 58 -3.98 3.98

NA 55 21 76 NA NA

Total 177 94 271 NA NA

Table 1: Contingency table of disease status and k-Xi clustering of the HLA dataset, with

standardized Pearson residuals.

The groups are �nally visualized using PCA dimension reduction, and the contributions of

variables are displayed to identify the contributions of the genetic markers. On PCA, the

genetic markers most discriminating cluster 4 from other observations are DQB.a2, DQR.a2,

and DQA.a2 (Figure 8).

R> fortify_pca(m_hla, sup_vars = data.frame(Clusters = clusters_hla)) %>%

+ ggpairs('Clusters', ellipses = TRUE, variables = TRUE)

3.3. Crohn's disease patients and relatives

In this other dataset from the gap package (Zhao et al. 2015), 212 single nucleotide polymor-

phisms (SNPs) from chromosome 5 (5q31) were measured from 129 Crohn's disease patients

and their 2 parents.
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Figure 7: OPTICS pro�les of the 4 best k-Xi clusterings of the HLA dataset, ranked by

decreasing average silhouette width. The two best models only di�er by their number of

clusters, 3 or 4, and the third and fourth models have hierarchical clusters.

Since the number of variables is high, dimension reduction methods are applied to the clus-

tering. All combinations of the following OPTICS k-Xi parameters are computed:

� Dimension reduction: PCA, ICA

� Number of dimension reduction components: 4, 6, 8

� Distance: Euclidean, absolute Pearson, absolute correlation

� Number of clusters: 3 to 5

� Number of points: 30, 40, 50

The 8 best models by average silhouette width mostly use the Absolute Pearson or Absolute

Correlation distances and 3 clusters (Figure 9).

R> data('crohn')

R> m_crohn <- crohn[-c(1:6)] %>% scale

R> df_params_crohn <- expand.grid(n_xi = 3:5, dim_red = c('PCA', 'ICA'),

+ dist = c('euclidean', 'abscorrelation', 'abspearson'),

+ pts = c(30, 40, 50), n_dimred_comp = c(4, 6, 8))
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Figure 8: PCA of the HLA dataset colored by k-Xi clustering with 95% con�dence ellipses.

R> df_kxi_crohn <- opticskxi_pipeline(m_crohn, df_params_crohn)

R> ggplot_kxi_metrics(df_kxi_crohn)

The OPTICS pro�les of the 4 best models reveal that all have hierarchical clusters (Figure 10).

R> gtable_kxi_profiles(df_kxi_crohn) %>% plot

In the best model, cluster 2 is enriched in Crohn's disease patients (residual = 3.73): 46% of

individuals are patients, although only 37% in the complete dataset; and cluster 3 is enriched

in controls (residual = 3.05) (Table 2).

R> best_kxi_crohn <- get_best_kxi(df_kxi_crohn, rank = 1)

R> clusters_crohn <- best_kxi_crohn$clusters

R> crohn$crohn %<>% factor %>% `levels<-`(c('Controls', 'Crohn patients'))

R> residuals_table(clusters_crohn, crohn$crohn) %>%

+ print_vignette_table('Crohn')

The groups are then visualized using the corresponding dimension reduction, ICA with 4

components, which reveals the hierarchical structure of clusters 1 and 2, discriminated from

cluster 3 mostly by the second and third components (Figure 11).

R> ica <- fortify_ica(m_crohn, n.comp = 4,

+ sup_vars = data.frame(Clusters = clusters_crohn))

R> ggpairs(ica, 'Clusters', axes = 1:4, ellipses = TRUE, level = .75) %>%

+ plot

The dimension reduction visualization is then focused on the second and third components to

reveal the variables with strong contributions (Figure 12).
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Figure 9: Distance-based metrics of the 8 best k-Xi clusterings of the Crohn dataset, ranked

by decreasing average silhouette width.

Controls Crohn patients Total Residuals: Controls Residuals: Crohn patients

1 45 17 62 1.08 -1.08

2 51 44 95 -3.73 3.73

3 49 10 59 3.05 -3.05

NA 98 73 171 NA NA

Total 243 144 387 NA NA

Table 2: Contingency table of disease status and k-Xi clustering of the Crohn dataset, with

standardized Pearson residuals.

R> ggpairs(ica, 'Clusters', axes = 2:3, ellipses = TRUE, variables = TRUE,

+ n_vars = 3)

4. Conclusions

The OPTICS k-Xi algorithm attempts directly to de�ne a given number of clusters and does

not require �ne-tuning of a steepness parameter as OPTICS Xi. Combined with a framework

to compare models with varying parameters, the k-Xi method can identify core groups in noisy

datasets with an unknown number of clusters.

Recent density-based algorithms as HDBSCAN (Campello, Moulavi, and Sander 2013) also

enable to detect clusters of varying densities and to specify directly the number of clusters

to de�ne. In contrast with OPTICS k-XI which iteratively attempts to de�ne clusters until

the speci�ed number is reached, HDBSCAN can provide any given number of clusters, based

on a hierarchical structure. Future work may thus include comparing OPTICS k-Xi with
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Figure 10: OPTICS pro�les of the 4 best k-Xi clusterings of the Crohn dataset, ranked by

decreasing average silhouette width.

more recent density-based algorithms as HDBSCAN, and expanding the models comparison

framework to include other density-based algorithms.
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dence ellipses. Clusters 1 and 2 are hierarchical and are discriminated from cluster 3 mostly
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Figure 12: ICA with 2 axes of the Crohn dataset, colored by k-Xi clustering with 95% con�-

dence ellipses.
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