## ----------------------------------------------------------------------------- Pedigree <- data.frame( Indiv= c("Iffes", "Peter", "Anna-Lena", "Kevin", "Horst"), Sire = c("Kevin", "Kevin", NA, 0, "Horst"), Dam = c("Chantalle", "Angelika", "Chantalle", "", NA), Breed= c("Angler", "Angler", "Angler", "Holstein", "Angler"), Born = c(2015, 2016, 2011, 2010, 2015) ) Pedigree ## ----------------------------------------------------------------------------- library("optiSel") Pedig <- prePed(Pedigree) ## ----------------------------------------------------------------------------- Pedig[,-1] ## ----warning=FALSE------------------------------------------------------------ sPed <- subPed(Pedig, keep = c("Chantalle","Angelika"), prevGen = 2, succGen = 1) pedplot(sPed, label = c("Indiv", "Born", "Breed"), cex = 0.55) ## ----results="hide"----------------------------------------------------------- data("PedigWithErrors") data("Phen") Pedig <- prePed(PedigWithErrors) ## ----------------------------------------------------------------------------- compl <- completeness(Pedig, keep=Phen$Indiv, by="Indiv") head(compl) ## ----warning=FALSE------------------------------------------------------------ compl <- completeness(Pedig, keep=Phen$Indiv, by="Sex") library("ggplot2") ggplot(compl, aes(x=Generation, y=Completeness, col=Sex)) + geom_line() ## ----------------------------------------------------------------------------- Summary <- summary(Pedig, keep.only=Phen$Indiv) head(Summary[Summary$equiGen>3.0, -1]) ## ----------------------------------------------------------------------------- Animal <- pedInbreeding(Pedig) mean(Animal$Inbr[Animal$Indiv %in% Phen$Indiv]) ## ----------------------------------------------------------------------------- pKin <- pedIBD(Pedig, keep.only=Phen$Indiv) isMale <- Pedig$Sex=="male" & (Pedig$Indiv %in% Phen$Indiv[Phen$BV>1.0]) males <- Pedig$Indiv[isMale & summary(Pedig)$equiGen>5] pKin[males, "276000812750188", drop=FALSE] ## ----results="hide"----------------------------------------------------------- Pedig <- prePed(PedigWithErrors, thisBreed="Hinterwaelder", lastNative=1970) ## ----------------------------------------------------------------------------- cont <- pedBreedComp(Pedig, thisBreed="Hinterwaelder") Pedig$NC <- cont$native head(cont[rev(Phen$Indiv), 2:6]) ## ----results="hide"----------------------------------------------------------- pKinatN <- pedIBDatN(Pedig, thisBreed="Hinterwaelder", keep.only=Phen$Indiv) ## ----------------------------------------------------------------------------- pKinatN$of <- pKinatN$Q1/pKinatN$Q2 pKinatN$of["276000891862786","276000812497659"] ## ----------------------------------------------------------------------------- Pedig[c("276000891862786", "276000812497659"),c("Born","NC")] ## ----------------------------------------------------------------------------- pKinatN$mean ## ----------------------------------------------------------------------------- subKin <- pKin[Phen$Indiv, Phen$Indiv] subNatKin <- pKinatN$of[Phen$Indiv, Phen$Indiv] diag(subKin) <- NA diag(subNatKin) <- NA cor(c(subKin), c(subNatKin), use="complete.obs") ## ----------------------------------------------------------------------------- 1 - mean(pKin[Phen$Indiv, Phen$Indiv]) ## ----------------------------------------------------------------------------- pKinatN$mean ## ----------------------------------------------------------------------------- 1 - pKinatN$mean ## ----------------------------------------------------------------------------- pKinatN <- pedIBDatN(Pedig, thisBreed="Hinterwaelder", keep.only=Phen$Indiv, nGen=6) ## ----------------------------------------------------------------------------- attributes(pKinatN)$nativeNe ## ----------------------------------------------------------------------------- id <- Summary$Indiv[Summary$equiGen>=4 & Summary$Indiv %in% Phen$Indiv] g <- Summary[id, "equiGen"] N <- length(g) n <- (matrix(g, N, N, byrow=TRUE) + matrix(g, N, N, byrow=FALSE))/2 deltaC <- 1 - (1-pKin[id,id])^(1/n) Ne <- 1/(2*mean(deltaC)) Ne ## ----results="hide"----------------------------------------------------------- data("PedigWithErrors") Pedig <- prePed(PedigWithErrors, thisBreed="Hinterwaelder", lastNative=1970) set.seed(0) keep <- sampleIndiv(Pedig[Pedig$Breed=="Hinterwaelder",], from="Born", each=50) cand <- candes(phen = Pedig[keep,], pKin = pedIBD(Pedig, keep.only=keep), pKinatN= pedIBDatN(Pedig, thisBreed="Hinterwaelder", keep.only=keep), quiet=TRUE, reduce.data=FALSE) ## ----fig.show='hold'---------------------------------------------------------- sy <- summary(cand, tlim=c(1970, 2000), histNe=150, base=1800, df=4) ggplot(sy, aes(x=t, y=Ne)) + geom_line() + ylim(c(0,100)) ggplot(sy, aes(x=t, y=NGE)) + geom_line() + ylim(c(0,7)) ## ----fig.width = 5, fig.height = 3-------------------------------------------- use <- Pedig$Breed=="Hinterwaelder" & Pedig$Born %in% (1950:1995) cont <- pedBreedComp(Pedig, thisBreed="Hinterwaelder") contByYear <- conttac(cont, cohort=Pedig$Born, use=use, mincont = 0.01) ggplot(contByYear, aes(x=Year, y=Contribution, fill=Breed)) + geom_area(color="black")