## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) palette(c("#0073C2", "#EFC000", "#868686", "#CD534C")) library(lattice) ## ----load_opa----------------------------------------------------------------- library(opa) ## ----str_data----------------------------------------------------------------- str(pituitary) ## ----plot_data, fig.width=6, fig.height=6------------------------------------- xyplot(distance ~ age | individual, pituitary, type = c("g", "p", "l"), groups = sex, cex = 1.2, pch = 21, fill = c("#EFC00070", "#0073C270"), col = c("#EFC000", "#0073C2"), scales = list(x = list(at = c(8, 10, 12, 14))), xlab = "Age (years)", ylab = "Distance (mm)", main = "Pituitary-Pterygomaxillary Fissure Distance", key = list(space = "bottom", columns = 2, text = list(c("Female", "Male")), lines = list(col = c("#EFC000", "#0073C2")), points = list(pch = 21, fill = c("#EFC00070", "#0073C270"), col = c("#EFC000", "#0073C2")))) ## ----reshape_data------------------------------------------------------------- dat_wide <- reshape(data = pituitary, direction = "wide", idvar = c("individual", "sex"), timevar = "age", v.names = "distance") ## ----------------------------------------------------------------------------- head(dat_wide) ## ----define_h1---------------------------------------------------------------- h1 <- hypothesis(c(1, 2, 3, 4), type = "pairwise") ## ----print_h1----------------------------------------------------------------- print(h1) ## ----plot_h1, fig.width=4, fig.height=4--------------------------------------- plot(h1) ## ----fit_model1--------------------------------------------------------------- m1 <- opa(dat_wide[,3:6], h1) ## ----summary_model1----------------------------------------------------------- summary(m1) ## ----plot_model1, fig.width=7, fig.height=5----------------------------------- plot(m1) ## ----compare_conds_model1----------------------------------------------------- compare_conditions(m1) ## ----define_h2---------------------------------------------------------------- h2 <- hypothesis(c(2, 1, 3, 4)) ## ----plot_h2, fig.width=4, fig.height=4--------------------------------------- plot(h2) ## ----print_h2----------------------------------------------------------------- print(h2) ## ----fit_model2--------------------------------------------------------------- m2 <- opa(dat_wide[,3:6], h2) ## ----compare_hypotheses------------------------------------------------------- (comp_h1_h2 <- compare_hypotheses(m1, m2)) ## ----------------------------------------------------------------------------- plot(comp_h1_h2) ## ----fit_model3--------------------------------------------------------------- m3 <- opa(dat_wide[,3:6], h1, group = dat_wide$sex) ## ----plot_model3-------------------------------------------------------------- plot(m3) ## ----compare_groups----------------------------------------------------------- (comp_m_f <- compare_groups(m3, "M", "F")) ## ----------------------------------------------------------------------------- plot(comp_m_f) ## ----fit_model4--------------------------------------------------------------- m4 <- opa(dat_wide[,3:6], h1, group = dat_wide$sex, diff_threshold = 1) ## ----diff_threshold_results--------------------------------------------------- group_results(m4) ## ----compare_groups_with_diff_threshold--------------------------------------- compare_groups(m4, "M", "F")