--- title: "Shape AIC for Nominal Variables" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Shape AIC for Nominal Variables} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup, include=FALSE} library(nomiShape) ``` ## Shape AIC for Nominal Variables This vignette demonstrates how to compute the Shape AIC for nominal variables using the `shape_aic` function from the `nomiShape` package. Shape AIC quantifies the goodness-of-fit of different shape models to the distribution of a nominal variable. ### Computing Shape AIC ```{r shape-aic-example-1} # Example usage of shape_aic shape_aic(categories, "animal") ``` ```{r shape-aic-example-2} # Example usage of shape_aic shape_aic(categories2, "animal") ``` ```{r shape-aic-example-3} # Example usage of shape_aic shape_aic(categories3, "animal") ``` ```{r shape-aic-example-4} # Example usage of shape_aic shape_aic(starwars, "species") ``` ```{r} # approximate rate from top counts obs <- sort(table(starwars$species), decreasing = TRUE) ranks <- seq_along(obs) rate_est <- -coef(lm(log(obs + 1e-6) ~ ranks))[2] # linear fit in log-space rate_est ``` ```{r} shape_aic(starwars, "species") ``` ```{r} shape_aic (starwars,"species") ``` ```{r} shape_aic (mpg,"manufacturer") ```