Package 'nhppp'

January 9, 2025

Title Simulating Nonhomogeneous Poisson Point Processes

Version 1.0.2

Description Simulates events from one dimensional nonhomogeneous Poisson point processes (NH-PPPs) as per Trikali-

nos and Sereda (2024, <doi:10.48550/arXiv.2402.00358> and 2024, <doi:10.1371/journal.pone.0311311>). Functions are based on three algorithms that provably sample from a target NHPPP: the timetransformation of a homogeneous Poisson process (of intensity one) via the inverse of the integrated intensity function (Cinlar E, ``Theory of stochastic processes" (1975, ISBN:0486497996)); the generation of a Poisson number of order statistics from a fixed density function; and the thinning of a majorizing NHPPP via an acceptancerejection scheme (Lewis PAW, Shedler, GS (1979) <doi:10.1002/nav.3800260304>).

License GPL (>= 3)

Imports lifecycle, rstream, Rcpp (>= 1.0.12)

LinkingTo Rcpp

Encoding UTF-8

Language es

RoxygenNote 7.3.2

Suggests data.table, knitr, rlecuyer, rmarkdown, testthat, tictoc, truncnorm, withr

Config/Needs/website rmarkdown

URL https://bladder-ca.github.io/nhppp/,

https://github.com/bladder-ca/nhppp

BugReports https://github.com/bladder-ca/nhppp/issues

VignetteBuilder knitr

Depends R (>= 2.10)

LazyData true

NeedsCompilation yes

Author Thomas Trikalinos [aut, cre, cph]

(<https://orcid.org/0000-0002-3990-1848>), Yuliia Sereda [aut] (<https://orcid.org/0000-0002-4017-4561>) Maintainer Thomas Trikalinos <thomas_trikalinos@brown.edu>

Repository CRAN

Date/Publication 2025-01-09 16:20:02 UTC

Contents

draw	2
draw_cumulative_intensity	3
draw_intensity	4
draw_sc_linear	5
draw_sc_loglinear	6
draw_sc_step	6
draw_sc_step_regular	7
get_step_majorizer	8
ppp	9
ppp_exactly_n	9
ppp_next_n	10
vdraw	
vdraw_cumulative_intensity	
vdraw_intensity	
vdraw_sc_step_regular	
ztdraw_cumulative_intensity	
ztdraw_culturative_intensity	
ztdraw_sc_loglinear	
ztppp	18
	19

Index

draw

Generic function for simulating from NHPPPs given the intensity function or the cumulative intensity function.

Description

This is a wrapper to the package's specific functions, and thus somewhat slower. For time-intensive simulations prefer one of the specific functions.

```
draw(
  Lambda = NULL,
  Lambda_inv = NULL,
  lambda = NULL,
  line_majorizer_intercept = NULL,
  line_majorizer_slope = NULL,
  line_majorizer_is_loglinear = FALSE,
```

```
step_majorizer_vector = NULL,
t_min = NULL,
t_max = NULL,
atmost1 = FALSE,
atleast1 = FALSE
)
```

Lambda	(function, double vector) the integrated (cumulative) rate of the NHPPP		
Lambda_inv	(function, double vector) the inverse of 'Lambda()'		
lambda	(function) the instantaneous rate		
line_majorizer_	intercept		
	The intercept alpha of the loglinear majorizer function: alpha + beta * t or		
	exp(alpha + beta * t)		
line_majorizer_	slope		
	The slope beta of the loglinear majorizer function: $alpha + beta * t $ or $exp(alpha + beta * t)$		
	+ beta * t)		
line_majorizer_is_loglinear			
	(boolean) if TRUE the majorizer is loglinear $exp(alpha + beta * t)$; if FALSE it		
	is a linear function		
<pre>step_majorizer_</pre>			
	(vector, double) K constant majorizing rates, one per interval; all intervals are of equal length (regular)		
t_min	(double) the lower bound of the interval		
t_max	(double) the upper bound of the interval		
atmost1	boolean, draw at most 1 event time		
atleast1	boolean, draw at least 1 event time in interval		

Value

a vector of event times

```
draw_cumulative_intensity
```

Simulate from a non homogeneous Poisson Point Process (NHPPP) over an interval when you know the cumulative intensity and its inverse.

Description

Sample NHPPP times using the inversion method

```
draw_cumulative_intensity(Lambda, Lambda_inv, t_min, t_max, atmost1 = FALSE)
```

Lambda	(function, double vector) a continuous increasing R to R map which is the inte- grated rate of the NHPPP
Lambda_inv	(function, double vector) the inverse of Lambda()
t_min	(double) the lower bound of the time interval
t_max	(double) the upper bound of the time interval
atmost1	boolean, draw at most 1 event time

Value

a vector of event times (t_); if no events realize, a vector of length 0

draw_intensity	<i>Generic function for simulating from NHPPPs given the intensity func-</i> <i>tion.</i>

Description

Sample from NHPPPs given the intensity function This is a wrapper to the package's specific functions, and thus somewhat slower. For time-intensive simulations prefer one of the specific functions.

Usage

```
draw_intensity(
  lambda,
  line_majorizer_intercept = NULL,
  line_majorizer_slope = NULL,
  line_majorizer_is_loglinear = FALSE,
  step_majorizer_vector = NULL,
  t_min = NULL,
  t_max = NULL,
  atmost1 = FALSE
)
```

```
lambda (function) the instantaneous rate
line_majorizer_intercept
The intercept alpha of the loglinear majorizer function: alpha + beta * t or
exp(alpha + beta * t)
line_majorizer_slope
The slope beta of the loglinear majorizer function: alpha + beta * t or exp(alpha
+ beta * t)
line_majorizer_is_loglinear
(boolean) if TRUE the majorizer is loglinear exp(alpha + beta * t); if FALSE it
is a linear function
```

draw_sc_linear

step_majorizer_vector			
	(vector, double) K constant majorizing rates, one per interval; all intervals are of equal length (regular)		
t_min	(double) the lower bound of the interval		
t_max	(double) the upper bound of the interval		
atmost1	boolean, draw at most 1 event time		

Value

a vector of event times

draw_sc_linear	Special case: Simulate from a non homogeneous Poisson Point Pro-
	cess (NHPPP) from (t_min, t_max) with linear intensity function (in-
	version method)

Description

Sample NHPPP times from a linear intensity function using the inversion method, optionally using an rstream generator

Usage

```
draw_sc_linear(intercept, slope, t_min, t_max, atmost1 = FALSE)
```

Arguments

intercept	(double) the intercept
slope	(double) the slope
t_min	(double) lower bound of the time interval
t_max	(double) upper bound of the time interval
atmost1	boolean, draw at most 1 event time

Value

a vector of event times (t_); if no events realize, a vector of length 0

Examples

```
x <- draw_sc_linear(intercept = 0, slope = 0.2, t_min = 0, t_max = 10)</pre>
```

draw_sc_loglinear

Special case: Simulate from a non homogeneous Poisson Point Process (NHPPP) from (t_min, t_max) with log-linear intensity function (inversion method)

Description

Sample NHPPP times from an log linear intensity function using the inversion method, optionally using an rstream generator

Usage

```
draw_sc_loglinear(intercept, slope, t_min, t_max, atmost1 = FALSE)
```

Arguments

intercept	(double) the intercept in the exponent
slope	(double) the slope in the exponent
t_min	(double) lower bound of the time interval
t_max	(double) upper bound of the time interval
atmost1	boolean, draw at most 1 event time

Value

a vector of event times (t_); if no events realize, a vector of length 0

Examples

```
x <- draw_sc_loglinear(intercept = 0, slope = 0.2, t_min = 0, t_max = 10)</pre>
```

draw_sc_step	Simulate	a	piecewise	constant-rate	Poisson	Point	Process	over
	(t_min, t	t_r	max](<i>inver</i>	rsion method) [The interv	als nee	ed not hav	e the
	same lengt	th.						

Description

Simulate a piecewise constant-rate Poisson Point Process over (t_min, t_max] (inversion method) The intervals need not have the same length.

```
draw_sc_step(lambda_vector, time_breaks, atmost1 = FALSE, atleast1 = FALSE)
```

lambda_vector	(scalar, double) K constant rates, one per interval		
time_breaks	<pre>(vector, double) K+1 time points defining K interval the first interval [t_k, [t_{K}, t_{K+1} = range_t[2]): the K-th (lass)</pre>	t_{k+1}): the k-th interval	t_2):
atmost1	boolean, draw at most 1 event time		
atleast1	boolean, draw at least 1 event time		

Value

a vector of event times t if no events realize, it will have 0 length

Examples

```
x <- draw_sc_step(lambda_vector = rep(1, 5), time_breaks = c(0:5))</pre>
```

draw_sc_step_regular	Sampling from NHPPPs with piecewise constant intensities with same
	interval lengths (non-vectorized)

Description

Sampling from NHPPPs with piecewise constant intensities with same interval lengths (non-vectorized)

Usage

```
draw_sc_step_regular(
  Lambda_vector = NULL,
  lambda_vector = NULL,
  t_min = NULL,
  t_max = NULL,
  atmost1 = FALSE,
  atleast1 = FALSE
)
```

Lambda_vector	(scalar, double) K integrated intensity rates at the end of each interval
lambda_vector	(scalar, double) K constant intensity rates, one per interval
t_min	(scalar, double) lower bound of the time interval
t_max	(scalar, double) upper bound of the time interval
atmost1	boolean, draw at most 1 event time
atleast1	boolean, draw at least 1 event time

Value

a vector of event times t if no events realize, it will have 0 length

Examples

x <- draw_sc_step_regular(Lambda_vector = 1:5, t_min = 0, t_max = 5)</pre>

get_step_majorizer	Piecewise constant (step) majorizer for K-Lipschitz functions over an
	interval (vectorized over the breaks argument).

Description

Return a piecewise constant (step) majorizer for K-Lipschitz functions over an interval. The function is vectorized over the breaks argument. The returned object has the same dimensions as breaks.

Usage

```
get_step_majorizer(fun, breaks, is_monotone = TRUE, K = 0)
```

Arguments

fun	A function object with a single argument x . If x is a matrix, fun should be vectorized over it.
breaks	(vector or matrix) The set of M+1 boundaries for the M subintervals in x. If breaks is a matrix, each row is treated as a separate set of breaks.
is_monotone	(boolean) Is the function monotone? (Default is TRUE.)
К	(double) A non-negative number for the Lipschitz cone. (Default is 0.)

Value

A vector of length M with the values of the piecewise constant majorizer

Examples

```
get_step_majorizer(fun = abs, breaks = -5:5, is_monotone = FALSE, K = 1)
```

9

Description

Simulate a homogeneous Poisson Point Process in (t_min, t_max]

Usage

ppp(rate, t_min, t_max, atmost1 = FALSE, tol = 10^-6)

Arguments

rate	(scalar, double) constant instantaneous rate
t_min	(scalar, double) the lower bound of the time interval
t_max	(scalar, double) the upper bound of the time interval
atmost1	boolean, draw at most 1 event time
tol	the probability that we will have more than the drawn events in (t_min, t_max]

Value

a vector of event times t if no events realize, it will have 0 length

Examples

x <- ppp(rate = 1, t_min = 0, t_max = 10, tol = 10^-6)</pre>

<pre>ppp_exactly_n</pre>	Simulate exactly n points from a homogeneous Poisson Point Process
	over (t_min, t_max]

Description

Simulate exactly n points from a homogeneous Poisson Point Process over (t_min, t_max]

Usage

ppp_exactly_n(n, t_min, t_max)

Arguments

n	(int) the number of points to be simulated
t_min	(double) the lower bound of the time interval
t_max	(double) the upper bound of the time interval

ppp

10

a vector of event times of size n

Examples

 $x \leftarrow ppp_exactly_n(n = 10, t_min = 0, t_max = 10)$

ppp_next_n

Simulate n events from a homogeneous Poisson Point Process.

Description

Simulate n events from a homogeneous Poisson Point Process.

Usage

```
ppp_next_n(n = 1, rate = 1, t_min = 0, rng_stream = deprecated())
```

Arguments

rng_stream	[Deprecated] an rstream object
t_min	scalar for the starting time value
rate	scalar instantaneous rate
n	scalar number of samples

Value

a vector with event times t (starting from t_min)

Examples

 $x \leftarrow ppp_next_n(n = 10, rate = 1, t_min = 0)$

vdraw

Description

This is a wrapper to the package's specific functions, and thus slightly slower. For time-intensive simulations prefer one of the specific functions.

Usage

```
vdraw(
  lambda = NULL,
  lambda_args = NULL,
 Lambda_maj_matrix = NULL,
  lambda_maj_matrix = NULL,
 Lambda = NULL,
 Lambda_inv = NULL,
 Lambda_args = NULL,
 Lambda_inv_args = NULL,
  t_min = NULL,
  t_max = NULL,
  rate_matrix_t_min = NULL,
 rate_matrix_t_max = NULL,
  tol = 10^{-6},
 atmost1 = FALSE,
 atleast1 = FALSE,
  atmostB = NULL
)
```

lambda	(function) intensity function, vectorized
lambda_args	(list) optional arguments to pass to lambda
Lambda_maj_matr	ix
	(matrix) integrated intensity rates at the end of each interval
lambda_maj_matr	ix
	(matrix) intensity rates, one per interval
Lambda	(function, double vector) an increasing function which is the integrated rate of the NHPPP. It should take a vectorized argument t for times and an optional arguments list.
Lambda_inv	(function, double vector) the inverse of Lambda(), also in vectorized form It should take a vectorized argument z and an optional arguments list.
Lambda_args	(list) optional arguments to pass to Lambda.

Lambda_inv_args		
	(list) optional arguments to pass to Lambda_inv().	
t_min	(scalar vector column matrix) is the lower bound of a subinterval of (rate_matrix_t_min, rate_matrix_t_max]. If set, times are sampled from the subinterval. If omitted, it is equivalent to rate, matrix_t_min	
	it is equivalent to rate_matrix_t_min.	
t_max	(scalar vector column matrix) is the upper bound of a subinterval of (rate_matrix_t_min, rate_matrix_t_max]. If set, times are sampled from the subinterval. If omitted,	
	it is equivalent to rate_matrix_t_max.	
<pre>rate_matrix_t_r</pre>	nin	
	(scalar vector column matrix) is the lower bound of the time interval for each	
	row of (Lambdallambda)_maj_matrix. The length of this argument is the num-	
	ber of point processes that should be drawn.	
rate_matrix_t_max		
	(scalar vector column matrix) the upper bound of the time interval for each row of (Lambdallambda)_maj_matrix. The length of this argument is the number of point processes that should be drawn.	
tol	(scalar, double) tolerance for the number of events	
atmost1	boolean, draw at most 1 event time	
atleast1	boolean, draw at least 1 event time	
atmostB	If not NULL, draw at most B (B>0) event times. NULL means ignore.	

Value

a vector of event times

```
vdraw_cumulative_intensity
Vectorized simulation from a non homogeneous Poisson Point Process
(NHPPP) from (t_min, t_max) given the cumulative intensity function
and its inverse
```

Description

Sample NHPPP times using the cumulative intensity function and its inverse.

```
vdraw_cumulative_intensity(
  Lambda,
  Lambda_inv,
  t_min,
  t_max,
  Lambda_args = NULL,
  Lambda_inv_args = NULL,
  tol = 10^-6,
  atmost1 = FALSE,
  atleast1 = FALSE
)
```

Lambda	(function, double vector) an increasing function which is the integrated rate of the NHPPP. It should take a vectorized argument t for times and an optional arguments list.	
Lambda_inv	(function, double vector) the inverse of Lambda(), also in vectorized form It should take a vectorized argument z and an optional arguments list.	
t_min	(scalar vector column matrix) the lower bound of the interval for each sampled point process The length of this argument is the number of point processes that should be drawn.	
t_max	(scalar vector column matrix) the upper bound of the interval for each sampled point process The length of this argument is the number of point processes that should be drawn.	
Lambda_args	(list) optional arguments to pass to Lambda.	
Lambda_inv_args		
	(list) optional arguments to pass to Lambda_inv().	
tol	the tolerange for the calulations.	
atmost1	boolean, draw at most 1 event time per sampled point process.	
atleast1	boolean, draw at least 1 event time	

Value

a matrix of event times with one row per sampled point process.

vdraw_intensity	Vectorized sampling from a non homogeneous Poisson Point Process
	(NHPPP) from an interval (thinning method) with piecewise con-
	stant_majorizers (C++)

Description

Vectorized sampling from a non homogeneous Poisson Point Process (NHPPP) from an interval (thinning method) with piecewise constant_majorizers. The majorizers are step functions over equal-length time intevals.

```
vdraw_intensity(
  lambda = NULL,
  lambda_args = NULL,
  Lambda_maj_matrix = NULL,
  lambda_maj_matrix = NULL,
  rate_matrix_t_min = NULL,
  rate_matrix_t_max = NULL,
  t_min = NULL,
```

```
t_max = NULL,
tol = 10<sup>^-6</sup>,
atmost1 = FALSE,
atleast1 = FALSE,
atmostB = NULL
)
```

lambda	(function) intensity function, vectorized
lambda_args	(list) optional arguments to pass to lambda
Lambda_maj_mat	rix
	(matrix) integrated intensity rates at the end of each interval
lambda_maj_mat	rix
	(matrix) intensity rates, one per interval
rate_matrix_t_r	nin
	(scalar vector column matrix) is the lower bound of the time interval for each row of (Lambdallambda)_maj_matrix. The length of this argument is the num- ber of point processes that should be drawn.
rate_matrix_t_r	nax
	(scalar vector column matrix) the upper bound of the time interval for each row of (Lambdallambda)_maj_matrix. The length of this argument is the number of point processes that should be drawn.
t_min	(scalar vector column matrix) is the lower bound of a subinterval of (rate_matrix_t_min, rate_matrix_t_max]. If set, times are sampled from the subinterval. If omitted, it is equivalent to rate_matrix_t_min.
t_max	(scalar vector column matrix) is the upper bound of a subinterval of (rate_matrix_t_min, rate_matrix_t_max]. If set, times are sampled from the subinterval. If omitted, it is equivalent to rate_matrix_t_max.
tol	(scalar, double) tolerance for the number of events
atmost1	boolean, draw at most 1 event time
atleast1	boolean, draw at least 1 event time
atmostB	If not NULL, draw at most B (B>0) event times. NULL means ignore.

Value

a matrix of event times (columns) per draw (rows) NAs are structural empty spots

Examples

```
x <- vdraw_intensity(
  lambda = function(x, ...) 0.1 * x,
  lambda_maj_matrix = matrix(rep(1, 5), nrow = 1),
  rate_matrix_t_min = 1,
  rate_matrix_t_max = 5
)</pre>
```

14

vdraw_sc_step_regular Vectorized sampling from NHPPPs with piecewise constant intensities with same interval lengths

Description

Simulate a piecewise constant-rate Poisson Point Process over (t_min, t_max] (inversion method) where the intervals have the same length (are "regular").

Usage

```
vdraw_sc_step_regular(
  lambda_matrix = NULL,
  Lambda_matrix = NULL,
  rate_matrix_t_min = NULL,
  rate_matrix_t_max = NULL,
  t_min = NULL,
  t_max = NULL,
  tol = 10^-6,
  atmost1 = FALSE,
  atmostB = NULL,
  atleast1 = FALSE
)
```

lambda_matrix	(matrix) intensity rates, one per interval
Lambda_matrix	(matrix) integrated intensity rates at the end of each interval
<pre>rate_matrix_t_</pre>	min
	(scalar vector column matrix) is the lower bound of the time interval for each row of (Lambdallambda)_maj_matrix. The length of this argument is the num-
	ber of point processes that should be drawn.
<pre>rate_matrix_t_</pre>	max
	(scalar vector column matrix) the upper bound of the time interval for each row of (Lambdallambda)_maj_matrix. The length of this argument is the number of point processes that should be drawn.
t_min	(scalar vector column matrix) is the lower bound of a subinterval of (rate_matrix_t_min, rate_matrix_t_max]. If set, times are sampled from the subinterval. If omitted, it is equivalent to rate_matrix_t_min.
t_max	(scalar vector column matrix) is the upper bound of a subinterval of (rate_matrix_t_min, rate_matrix_t_max]. If set, times are sampled from the subinterval. If omitted, it is equivalent to rate_matrix_t_max.
tol	(scalar, double) tolerance for the number of events
atmost1	boolean, draw at most 1 event time
atmostB	If not NULL, draw at most B (B>0) event times. NULL means ignore.
atleast1	boolean, draw at least 1 event time

Value

a vector of event times t if no events realize, it will have 0 length

Examples

```
x <- vdraw_sc_step_regular(
  Lambda_matrix = matrix(1:5, nrow = 1),
  rate_matrix_t_min = 100,
  rate_matrix_t_max = 110,
  atmost1 = FALSE
)
```

```
ztdraw_cumulative_intensity
```

Simulate from a zero-truncated non homogeneous Poisson Point Process (zt-NHPPP) from (t_min, t_max) (order statistics method)

Description

Sample zero-truncated NHPPP times using the order statistics method, optionally using an rstream generator

Usage

ztdraw_cumulative_intensity(Lambda, Lambda_inv, t_min, t_max, atmost1 = FALSE)

Arguments

Lambda	(function, double vector) a continuous increasing R to R map which is the inte- grated rate of the NHPPP
Lambda_inv	(function, double vector) the inverse of Lambda()
t_min	(double) the lower bound of the time interval
t_max	(double) the upper bound of the time interval
atmost1	(boolean) draw at most 1 event time

Value

a vector of at least 1 event times

16

ztdraw_sc_linear

Simulate size samples from a zero-truncated non homogeneous Poisson Point Process (zt-NHPPP) from (t_min, t_max) with linear intensity function

Description

Sample zero-truncated NHPPP times from a linear intensity function using the inversion method, optionally using an rstream generator

Usage

```
ztdraw_sc_linear(intercept, slope, t_min, t_max, atmost1 = FALSE)
```

Arguments

intercept	(double) the intercept
slope	(double) the slope
t_min	(double) the lower bound of the time interval
t_max	(double) the upper bound of the time interval
atmost1	(boolean) draw 1 event time

Value

a vector of at least 1 event times

Examples

```
x <- ztdraw_sc_linear(intercept = 0, slope = 0.2, t_min = 0, t_max = 10)</pre>
```

<pre>ztdraw_sc_loglinear</pre>	Simulate from a zero-truncated non homogeneous Poisson Point Pro-
	cess (zt-NHPPP) from (t_min, t_max) with a log-linear intensity func-
	tion

Description

Sample zt-NHPPP times from an log-linear intensity function

```
ztdraw_sc_loglinear(intercept, slope, t_min, t_max, atmost1 = FALSE)
```

intercept	(double) the intercept in the exponent
slope	(double) the slope in the exponent
t_min	(double) the lower bound of the time interval
t_max	(double) the upper bound of the time interval
atmost1	boolean, 1 event time

Value

a vector of at least 1 event times

Examples

```
x <- ztdraw_sc_loglinear(intercept = 0, slope = 0.2, t_min = 0, t_max = 10)</pre>
```

ztppp	Simulate a zero-truncated homogeneous Poisson Point Process over
	(t_min, t_max]

Description

Simulate a zero-truncated homogeneous Poisson Point Process over (t_min, t_max]

Usage

```
ztppp(rate, t_min, t_max, atmost1 = FALSE)
```

Arguments

rate	(scalar, double) constant instantaneous rate
t_min	(scalar, double) lower bound of the time interval
t_max	(scalar, double) upper bound of the time interval
atmost1	boolean, draw at most 1 event time

Value

a vector of event times of size size

Examples

x <- ztppp(t_min = 0, t_max = 10, rate = 0.001)</pre>

Index

draw, 2
draw_cumulative_intensity, 3
draw_intensity, 4
draw_sc_linear, 5
draw_sc_loglinear, 6
draw_sc_step, 6
draw_sc_step_regular, 7

get_step_majorizer,8

log, *3*, *4*

ppp, 9
ppp_exactly_n, 9
ppp_next_n, 10

vdraw, 11
vdraw_cumulative_intensity, 12
vdraw_intensity, 13
vdraw_sc_step_regular, 15

```
ztdraw_cumulative_intensity, 16
ztdraw_sc_linear, 17
ztdraw_sc_loglinear, 17
ztppp, 18
```