Package ‘ngboostForecast’

October 13, 2022
Title Probabilistic Time Series Forecasting
Version 0.1.1

Description
Probabilistic time series forecasting via Natural Gradient Boosting for Probabilistic Prediction.

License Apache License (>=2)
URL https://github.com/Akai@1/ngboostForecast

BugReports https://github.com/Akai@1/ngboostForecast/issues
Encoding UTF-8

LazyData true

SystemRequirements Python (>=3.6)

RoxygenNote 7.2.0

Imports dplyr (>= 1.0.7), forecast (>= 8.15), magrittr (>=2.0.1), R6
>=2.5.1)

Suggests ggplot2 (>= 3.3.5), testthat (>= 3.0.0)
Config/testthat/edition 3

Config/reticulate list(packages = list(list(package =
'importlib-metadata’, pip = TRUE), list(package = 'ngboost’,
pip=TRUE)))

Depends R (>= 3.6), reticulate (>= 1.20)
NeedsCompilation no

Author Resul Akay [aut, cre]

Maintainer Resul Akay <resulakayl@gmail.com>
Repository CRAN

Date/Publication 2022-08-06 11:30:08 UTC

https://github.com/Akai01/ngboostForecast
https://github.com/Akai01/ngboostForecast/issues

2

R topics documented:

Dist

Dist . . e e e 2
IS_eXISts_conda e e e 3
NGBforecast e e 3
NGBforecastCV e e 7
ngboostForecast 10
SCOres e e e e e 10
seatbelts e e e 11
sklearner L e e e 12
Index 13
Dist NGBoost distributions
Description
NGBoost distributions
Usage
Dist(

dist = c("Normal”, "Bernoulli”, "k_categorical”, "StudentT"”, "Laplace”,

"Exponential”,
k

Arguments

"LogNormal”, "MultivariateNormal”, "Poisson"),

dist NGBoost distributions. One of the following:

Bernoulli
k_categorical
StudentT

Poisson

Laplace

Cauchy
Exponential
LogNormal
MultivariateNormal
Normal

k Used only with k_categorical and MultivariateNormal

Value

An NGBoost Distribution object

"Cauchy"”,

is_exists_conda

is_exists_conda Is conda installed?

Description

Only for internal usage.

Usage

is_exists_conda()

Value

Logical, TRUE if conda is installed.

Author(s)
Resul Akay

NGBforecast NGBoost forecasting class

Description

The main forecasting class.

Value

An NGBforecast class

Methods

Public methods:

e NGBforecast$new()

¢ NGBforecast$fit()

¢ NGBforecast$forecast()

e NGBforecast$feature_importances()

* NGBforecast$plot_feature_importance()
* NGBforecast$get_params()

* NGBforecast$clone()

Method new(): Initialize an NGBforecast model.
Usage:

NGBforecast

NGBforecast$new(
Dist = NULL,
Score = NULL,
Base = NULL,

natural_gradient = TRUE,
n_estimators = as.integer(500),
learning_rate = 0.01,
minibatch_frac = 1,
col_sample = 1,
verbose = TRUE,
verbose_eval = as.integer(100),
tol = 1e-04,
random_state = NULL

)

Arguments:

Dist Assumed distributional form of Y | X=x. An output of Dist function, e.g. Dist('Normal"')

Score Rule to compare probabilistic predictions to the observed data. A score from Scores
function, e.g. Scores(score = "LogScore”).

Base Base learner. An output of sklearner function, e.g. sklearner(module = "tree",
class = "DecisionTreeRegressor”, ...)

natural_gradient Logical flag indicating whether the natural gradient should be used

n_estimators The number of boosting iterations to fit

learning_rate The learning rate

minibatch_frac The percent subsample of rows to use in each boosting iteration

col_sample The percent subsample of columns to use in each boosting iteration

verbose Flag indicating whether output should be printed during fitting. If TRUE it will print
logs.

verbose_eval Increment (in boosting iterations) at which output should be printed

tol Numerical tolerance to be used in optimization

random_state Seed for reproducibility.

Returns: An NGBforecast object that can be fit.

Method fit(): Fit the initialized model.

Usage:

NGBforecast$fit(
Y,
max_lag = 5,
xreg = NULL,
test_size = NULL,
seasonal = TRUE,
K = frequency(y)/2 - 1,
train_loss_monitor = NULL,
val_loss_monitor = NULL,
early_stopping_rounds = NULL

NGBforecast 5

Arguments:
y A time series (ts) object
max_lag Maximum number of lags

xreg Optional. A numerical matrix of external regressors, which must have the same number
of rows as y.

test_size The length of validation set. If it is NULL, then, it is automatically specified.
seasonal Boolean. If seasonal = TRUE the fourier terms will be used for modeling seasonality.
K Maximum order(s) of Fourier terms, used only if seasonal = TRUE.

train_loss_monitor A custom score or set of scores to track on the training set during train-
ing. Defaults to the score defined in the NGBoost constructor. Please do not modify unless
you know what you are doing.

val_loss_monitor A custom score or set of scores to track on the validation set during train-
ing. Defaults to the score defined in the NGBoost constructor. Please do not modify unless
you know what you are doing.

early_stopping_rounds The number of consecutive boosting iterations during which the loss
has to increase before the algorithm stops early.

Returns: NULL

Method forecast(): Forecast the fitted model
Usage:
NGBforecast$forecast(h = 6, xreg = NULL, level = c(80, 95), data_frame = FALSE)
Arguments:
h Forecast horizon
xreg A numerical vector or matrix of external regressors
level Confidence level for prediction intervals

data_frame Bool. If TRUE, forecast will be returned as a data.frame object, if FALSE it will
return a forecast class. If TRUE, autoplot will function.

Method feature_importances(): Return the feature importance for all parameters in the dis-
tribution (the higher, the more important the feature).

Usage:
NGBforecast$feature_importances()

Returns: A data frame

Method plot_feature_importance(): Plot feature importance

Usage:
NGBforecast$plot_feature_importance()

Returns: A ggplot object

Method get_params(): Get parameters for this estimator.
Usage:
NGBforecast$get_params(deep = TRUE)

Arguments:

6 NGBforecast

deep bool, default = TRUE If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns: A named list of parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NGBforecast$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Resul Akay

References

Duan, T et. al. (2019), NGBoost: Natural Gradient Boosting for Probabilistic Prediction.

Examples

Not run:
library(ngboostForecast)

model <- NGBforecast$new(Dist = Dist("Normal”),
Base = sklearner(module = "linear_model”,
class = "Ridge"),
Score = Scores("LogScore"),
natural_gradient = TRUE,
n_estimators = 200,
learning_rate = 0.1,
minibatch_frac = 1,
col_sample = 1,
verbose = TRUE,
verbose_eval = 100,
tol = 1e-5)
model$fit(y = AirPassengers, seasonal = TRUE, max_lag = 12, xreg = NULL,
early_stopping_rounds = 10L)
fc <- model$forecast(h = 12, level = c(90, 80), xreg = NULL)

autoplot(fc)

End(Not run)

NGBforecastCV 7

NGBforecastCV NGBoost forecasting model selection class

Description

It is a wrapper for the sklearn GridSearchCV with TimeSeriesSplit.

Methods

Public methods:

¢ NGBforecastCV$new()
* NGBforecastCV$tune()
* NGBforecastCV$clone()

Method new(): Initialize an NGBforecastCV model.

Usage:

NGBforecastCV$new(
Dist = NULL,
Score = NULL,
Base = NULL,

natural_gradient = TRUE,
n_estimators = as.integer(500),
learning_rate = 0.01,
minibatch_frac = 1,
col_sample = 1,
verbose = TRUE,
verbose_eval = as.integer(100),
tol = 1e-04,
random_state = NULL

)

Arguments:

Dist Assumed distributional form of Y | X=x. An output of Dist function, e.g. Dist('Normal')

Score Rule to compare probabilistic predictions to the observed data. A score from Scores
function, e.g. Scores(score = "LogScore").

Base Base learner. An output of sklearner function, e.g. sklearner(module = "tree",
class = "DecisionTreeRegressor”, ...)

natural_gradient Logical flag indicating whether the natural gradient should be used

n_estimators The number of boosting iterations to fit

learning_rate The learning rate

minibatch_frac The percent subsample of rows to use in each boosting iteration

col_sample The percent subsample of columns to use in each boosting iteration

verbose Flag indicating whether output should be printed during fitting. If TRUE it will print
logs.

verbose_eval Increment (in boosting iterations) at which output should be printed

8 NGBforecastCV

tol Numerical tolerance to be used in optimization
random_state Seed for reproducibility.

Returns: An NGBforecastCV object that can be fit.

Method tune(): Tune ngboosForecast.
Usage:
NGBforecastCV$tune(
Y,
max_lag = 5,
xreg = NULL,
seasonal = TRUE,
K = frequency(y)/2 - 1,
n_splits = NULL,
train_loss_monitor = NULL,
val_loss_monitor = NULL,
early_stopping_rounds = NULL
)
Arguments:
y A time series (ts) object
max_lag Maximum number of lags

xreg Optional. A numerical matrix of external regressors, which must have the same number
of rows as y.

seasonal Boolean. If seasonal = TRUE the fourier terms will be used for modeling seasonality.
K Maximum order(s) of Fourier terms, used only if seasonal = TRUE.
n_splits Number of splits. Must be at least 2.

train_loss_monitor A custom score or set of scores to track on the training set during train-
ing. Defaults to the score defined in the NGBoost constructor. Please do not modify unless
you know what you are doing.

val_loss_monitor A custom score or set of scores to track on the validation set during train-
ing. Defaults to the score defined in the NGBoost constructor. Please do not modify unless
you know what you are doing.

early_stopping_rounds The number of consecutive boosting iterations during which the loss
has to increase before the algorithm stops early.

test_size The length of validation set. If it is NULL, then, it is automatically specified.

Returns: A named list of best parameters.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NGBforecastCV$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)
Resul Akay

NGBforecastCV

References

https://stanfordmlgroup.github.io/ngboost/2-tuning.html
Examples

Not run:

library(ngboostForecast)

dists <- list(Dist("Normal”))

base_learners <- list(sklearner(module = "tree"”, class = "DecisionTreeRegressor”,
max_depth = 1),
sklearner(module = "tree"”, class = "DecisionTreeRegressor”,
max_depth = 2),
sklearner(module = "tree"”, class = "DecisionTreeRegressor”,
max_depth = 3),
sklearner(module = "tree”, class = "DecisionTreeRegressor”,
max_depth = 4),
sklearner(module = "tree"”, class = "DecisionTreeRegressor”,
max_depth = 5),
sklearner(module = "tree"”, class = "DecisionTreeRegressor”,
max_depth = 6),
sklearner(module = "tree”, class = "DecisionTreeRegressor”,

max_depth = 7))
scores <- list(Scores("LogScore"))

model <- NGBforecastCV$new(Dist = dists,
Base = base_learners,
Score = scores,
natural_gradient = TRUE,
n_estimators = list(10, 100),
learning_rate = list(0.1, 0.2),
minibatch_frac = list(0.1, 1),
col_sample = 1ist(0.3),
verbose = FALSE,
verbose_eval = 100,
tol = 1e-5)

params <- model$tune(y = AirPassengers,
seasonal = TRUE,

max_lag = 12,

xreg = NULL,

early_stopping_rounds = NULL,

n_splits = 4L)

params

End(Not run)

https://stanfordmlgroup.github.io/ngboost/2-tuning.html

10

Scores

ngboostForecast

Probabilistic Time Series Forecasting

Description

Probabilistic time series forecasting via Natural Gradient Boosting for Probabilistic Prediction.

References

Duan, T et. al. (2019), NGBoost: Natural Gradient Boosting for Probabilistic Prediction.

Examples

Not run:

library(ngboostForecast)

model <- NGBforecast$new(Dist =

Dist("Normal"),

Base = sklearner(module = "linear_model”,
class = "Ridge"),
Score = Scores("LogScore"),

natural_gradient = TRUE,
n_estimators = 200,
learning_rate = 0.1,
minibatch_frac = 1,
col_sample = 1,
verbose = TRUE,
verbose_eval = 100,
tol = 1e-5)

model$fit(y = AirPassengers, seasonal = TRUE, max_lag = 12, xreg = NULL,

early_stopping_rounds =

10L)

fc <- model$forecast(h = 12, level = c(90, 80), xreg = NULL)

autoplot(fc)

End(Not run)

Scores

Select a rule to compare probabilistic predictions to the observed data.

Description

Select a rule to compare probabilistic predictions to the observed data. A score from ngboost.scores,

e.g. LogScore.

seatbelts 11

Usage
Scores(score = c("LogScore"”, "CRPS", "CRPScore", "MLE"))

Arguments
score A string. can be one of the following:
* LogScore : Generic class for the log scoring rule.
* CRPS : Generic class for the continuous ranked probability scoring rule.
* CRPScore : Generic class for the continuous ranked probability scoring
rule.

* MLE : Generic class for the log scoring rule.

Value

A score class from ngboost.scores

Author(s)
Resul Akay

seatbelts Road Casualties in Great Britain 1969-84

Description

The Seatbelts dataset from the datasets package.

Usage

seatbelts

Format

An object of class mts (inherits from ts) with 192 rows and 8 columns.

Source

Harvey, A.C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge
University Press, pp. 519-523.

Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods. Oxford
University Press.

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/UKDriverDeaths.html

References

Harvey, A. C. and Durbin, J. (1986). The effects of seat belt legislation on British road casualties:
A case study in structural time series modelling. Journal of the Royal Statistical Society series A,
149, 187-227.

https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/UKDriverDeaths.html

12 sklearner

sklearner Scikit-Learn interface

Description

Scikit-Learn interface

Usage
sklearner(module = "tree"”, class = "DecisionTreeRegressor”, ...)
Arguments
module scikit-learn module name, default is ’tree’.
class scikit-learn’s module class, default is *DecisionTreeRegressor’
Other arguments passed to model class
Author(s)
Resul Akay
Examples
Not run:
sklearner(module = "tree”, class = "DecisionTreeRegressor”,

criterion="friedman_mse", min_samples_split=2)

End(Not run)

Index

x datasets
seatbelts, 11

autoplot, 5
Dist,2,4,7
is_exists_conda, 3

NGBforecast, 3
NGBforecastCV, 7
ngboostForecast, 10

Scores, 4,7, 10
seatbelts, 11
sklearner, 4, 7,12

13

	Dist
	is_exists_conda
	NGBforecast
	NGBforecastCV
	ngboostForecast
	Scores
	seatbelts
	sklearner
	Index

