Package 'nftbart'

November 28, 2023

Type Package Title Nonparametric Failure Time Bayesian Additive Regression Trees Version 2.1 Date 2023-11-27 Author Rodney Sparapani [aut, cre], Robert McCulloch [aut], Matthew Pratola [ctb], Hugh Chipman [ctb] Maintainer Rodney Sparapani <rsparapa@mcw.edu> Description Nonparametric Failure Time (NFT) Bayesian Additive Regression Trees (BART): Timeto-event Machine Learning with Heteroskedastic Bayesian Additive Regression Trees (HBART) and Low Information Omnibus (LIO) Dirichlet Process Mixtures (DPM). An NFT BART model is of the form Y = mu + f(x) + sd(x) E where functions f and sd have BART and HBART priors, respectively, while E is a nonparametric error distribution due to a DPM LIO prior hierarchy. See the following for a complete description of the model at <doi:10.1111/biom.13857>. **License** GPL (≥ 2)

Depends R (>= 4.2.0), survival, nnet Imports Rcpp LinkingTo Rcpp NeedsCompilation yes Repository CRAN Date/Publication 2023-11-28 01:10:02 UTC

R topics documented:

bartModelMatrix	•	•		•	•	 						•	•			•					. 2
bMM						 															. 3
bmx						 															. 5
CDCheight						 															. 5
CDimpute						 •			•				•	•	•						6

bartModelMatrix

Cindex	7
ung	8
ft2	9
redict.aftree	
redict.nft2	
svs2	
icuts	24
	26

Index

bartModelMatrix Deprecated: use bMM instead

Description

Create a matrix out of a vector or data.frame. The compiled functions of this package operate on matrices in memory. Therefore, if the user submits a vector or data.frame, then this function converts it to a matrix. Also, it determines the number of cutpoints necessary for each column when asked to do so.

Usage

Arguments

Х	A vector or data.frame to create the matrix from.
numcut	The maximum number of cutpoints to consider. If numcut=0, then just return a matrix; otherwise, return a list.
usequants	If usequants is FALSE, then the cutpoints in xinfo are generated uniformly; otherwise, if TRUE, quantiles are used for the cutpoints.
type	Determines which quantile algorithm is employed.
rm.const	Whether or not to remove constant variables.
cont	Whether or not to assume all variables are continuous.
xicuts	To specify your own cut-points, use the xicuts argument.
rm.vars	The variables that you want removed.

Value

If numcut==0 (the default), then a matrix of the covariates is returned; otherwise, a list is returned with the following values.

Х	A matrix of the covariates with n rows and p columns.
numcut	A vector of length p of the number of cut-points for each covariate.

bMM

See Also

bMM

Examples

```
## set.seed(99)
## a <- rbinom(10, 4, 0.4)
## table(a)
## x <- runif(10)
## df <- data.frame(a=factor(a), x=x)
## (b <- bartModelMatrix(df))
## (b <- bartModelMatrix(df, numcut=9))
## (b <- bartModelMatrix(df, numcut=9, usequants=TRUE))
## Not run:
    ## this is an error
    ## f <- bartModelMatrix(as.character(a))
## End(Not run)</pre>
```

bMM

Create a matrix out of a vector or data.frame

Description

Adapted from bartModelMatrix(). The compiled functions of this package operate on matrices in memory. Therefore, if the user submits a vector or data.frame, then this function converts it to a matrix. Also, it determines the number of cutpoints necessary for each column when asked to do so.

Usage

```
bMM(X, numcut=0L, usequants=FALSE, type=7, xicuts=NULL, rm.const=FALSE,
    rm.dupe=FALSE, method="spearman", use="pairwise.complete.obs")
```

Arguments

Х	A vector or data.frame to create the matrix from.
numcut	The maximum number of cutpoints to consider. If numcut=0, then just return a matrix; otherwise, return a list.
usequants	If usequants is FALSE, then the cutpoints in xinfo are generated uniformly; otherwise, if TRUE, quantiles are used for the cutpoints.
type	Determines which quantile algorithm is employed.
xicuts	To specify your own cut-points, use the xicuts argument.
rm.const	To remove constant variables or not.
rm.dupe	To remove duplicate variables or not.
method,use	Correlation options.

Value

If numcut==0 (the default), then a matrix of the covariates is returned; otherwise, a list is returned with the following values.

Х	A matrix of the covariates with n rows and p columns.
numcut	A vector of length p of the number of cut-points for each covariate.
grp	A vector that corresponds to variables in the input data. frame that were trans- lated into dummy columns in the output matrix, i.e., for each input variable in order, there is a number in the vector corresponding to the number of output columns created for it.
dummy	Corresponds to grp with a two row matrix including the start column of each dummy group in row 1 and the end column in row 2.

See Also

xicuts

Examples

```
set.seed(99)
a <- rbinom(10, 4, 0.4)
table(a)
x <- runif(10)
df <- data.frame(a=factor(a), x=x)
(b <- bMM(df))
(b <- bMM(df, numcut=9))</pre>
```

CDCheight

```
(b <- bMM(df, numcut=9, usequants=TRUE))
## Not run:
    ## this is an error
    f <- bMM(as.character(a))</pre>
```

End(Not run)

bmx

NHANES 1999-2000 Body Measures and Demographics

Description

This data set was created from the National Health and Nutrition Examination Survey (NHANES) 1999-2000 Body Measures Exam and Demographics. To create growth charts, this data is restricted to 3435 children aged 2 to 17.

Usage

data(bmx)

Format

SEQN:	Sequence number
BMXHT:	Height in cm
RIAGENDR:	Gender: 1=male, 2=female
RIDAGEEX:	Age in years with fractions for months
RIDRETH2:	Race/ethnicity: 1=Non-Hispanic White, 2=Non-Hispanic Black, 3=Hispanic
BMXWT:	Weight in kg

References

National Health and Nutrition Examination Survey 1999-2000 Body Measures Exam. https://wwwn.cdc.gov/Nchs/Nhanes/1999-2000/BMX.htm

National Health and Nutrition Examination Survey 1999-2000 Demographics. https://wwwn.cdc.gov/Nchs/Nhanes/1999-2000/DEMO.htm

CDCheight

CDC height for age growth charts

Description

Using the Cole and Green LMS method, here we provide percentiles of height by age and sex based on the US National Center for Health Statistics data for children aged 2 to 17.

Usage

data(CDCheight)

Format

age:	Age in years
sex:	1=male, 2=female
height.XXX:	Height XXXth percentile in cm

References

Cole, Timothy J and Green, Pamela J (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. *Statistics in medicine*, **11**, 1305–1319.

The US Centers for Disease Control and Prevention stature by age LMS parameters https://www.cdc.gov/growthcharts/data/zscore/statage.csv

CDimpute

Cold-deck missing imputation

Description

This function imputes missing data.

Usage

```
CDimpute(x.train, x.test=matrix(0, 0, 0), impute.bin=NULL)
```

Arguments

x.train	The training matrix.
x.test	The testing matrix, if given.
impute.bin	An index of the columns to avoid imputing which will be handled by BART internally.

Cindex

Details

We call this method cold-decking in analogy to hot-decking. Hot-decking was a method commonly employed with US Census data in the early computing era. For a particular respondent, missing data was imputed by randomly selecting from the responses of their neighbors since it is assumed that the values are likely similar. In our case, we make no assumptions about which values may, or may not, be nearby. We simply take a random sample from the matrix rows to impute the missing data. If the training and testing matrices are the same, then they receive the same imputation.

Value

x.train	The imputed training matrix.
x.test	The imputed testing matrix.
miss.train	A summary of the missing variables for training.
miss.test	A summary of the missing variables for testing.
impute.flag	Whether impute.bin columns were, or were not, imputed.
same	Whether x.train and x.test are identical.

Cindex

Calculate the C-index/concordance for survival analysis.

Description

The C-index for survival analysis is the corollary of the c statistic (the area under the Receiver Operating Characteristic curve) for binary outcomes. As a probability, the higher is the C-index, the better is the model discrimination vs. lesser probability values. Similarly, the concordance is calculated like the C-index from z-draws via the posterior predictive distribution restricted to the horizon of the data (a la restricted mean survival time).

Usage

```
Cindex(risk, times, delta=NULL)
```

concordance(draws, times, delta=NULL)

Arguments

risk	A vector or prognostic risk scores.
draws	A vector of draws via the posterior predictive distribution restricted to the horizon of the data (a la restricted mean survival time).
times	A vector of failure times.
delta	The corresponding failure time status code: 0, right-censored; 1, failure; or 2, left-censored. Defaults to all failures if not specified.

Value

The return value is the calculated C-index/concordance.

References

Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. (1982) Evaluating the yield of medical tests. JAMA, May 14;247(18):2543-6.

See Also

predict.nft

Examples

```
data(lung)
N=length(lung$status)
##lung$status: 1=censored, 2=dead
##delta: 0=censored, 1=dead
delta=lung$status-1
## this study reports time in days
times=lung$time
times=times/7 ## weeks
## matrix of covariates
x.train=cbind(lung[ , -(1:3)])
## lung$sex: Male=1 Female=2
## Not run:
    set.seed(99)
   post=nft(x.train, times, delta, K=0)
   pred=predict(post, x.train, XPtr=TRUE, seed=21)
   print(Cindex(pred$logt.test.mean, times, delta))
## End(Not run)
```

lung

NCCTG Lung Cancer Data

Description

Survival for 228 patients with advanced lung cancer was recorded up to a median of roughly one year by the North Central Cancer Treatment Group. Performance scores rate how well the patient can perform usual daily activities.

Format

inst:	Institution code
time:	Survival time in days
status:	censoring status 1=censored, 2=dead
age:	Age in years
sex:	Male=1 Female=2
ph.ecog:	ECOG performance score (0=good 5=dead)
ph.karno:	Karnofsky performance score (bad=0-good=100) rated by physician
pat.karno:	Karnofsky performance score as rated by patient
meal.cal:	Calories consumed at meals
wt.loss:	Weight loss in last six months

Source

Terry Therneau

References

Loprinzi CL. Laurie JA. Wieand HS. Krook JE. Novotny PJ. Kugler JW. Bartel J. Law M. Bateman M. Klatt NE. et al. Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer Treatment Group. Journal of Clinical Oncology. 12(3):601-7, 1994.

Examples

data(lung)

nft2

Fit NFT BART models.

Description

The nft2()/nft() function is for fitting NFT BART (Nonparametric Failure Time Bayesian Additive Regression Tree) models with different train/test matrices for f and sd functions.

Usage

```
nft2(
    ## data
    xftrain, xstrain, times, delta=NULL,
    xftest=matrix(nrow=0, ncol=0),
    xstest=matrix(nrow=0, ncol=0),
    rm.const=TRUE, rm.dupe=TRUE,
    ## multi-threading
    tc=getOption("mc.cores", 1),
```

10

)

```
##MCMC
    nskip=1000, ndpost=2000, nadapt=1000, adaptevery=100,
    chvf=NULL, chvs=NULL,
    method="spearman", use="pairwise.complete.obs",
    pbd=c(0.7, 0.7), pb=c(0.5, 0.5),
    stepwpert=c(0.1, 0.1), probchv=c(0.1, 0.1),
    minnumbot=c(5, 5),
    ## BART and HBART prior parameters
    ntree=c(50, 10), numcut=100,
    xifcuts=NULL, xiscuts=NULL,
    power=c(2, 2), base=c(0.95, 0.95),
    ## f function
    fmu=NA, k=5, tau=NA, dist='weibull',
    ## s function
    total.lambda=NA, total.nu=10, mask=NULL,
    ## survival analysis
   K=100, events=NULL, TSVS=FALSE,
    ## DPM LIO
    drawDPM=1L,
    alpha=1, alpha.a=1, alpha.b=0.1, alpha.draw=1,
    neal.m=2, constrain=1,
    m0=0, k0.a=1.5, k0.b=7.5, k0=1, k0.draw=1,
    a0=3, b0.a=2, b0.b=1, b0=1, b0.draw=1,
    ## misc
   na.rm=FALSE, probs=c(0.025, 0.975), printevery=100,
    transposed=FALSE, pred=FALSE
nft(
    ## data
    x.train, times, delta=NULL, x.test=matrix(nrow=0, ncol=0),
    rm.const=TRUE, rm.dupe=TRUE,
    ## multi-threading
    tc=getOption("mc.cores", 1),
    ##MCMC
    nskip=1000, ndpost=2000, nadapt=1000, adaptevery=100,
    chv=NULL,
    method="spearman", use="pairwise.complete.obs",
    pbd=c(0.7, 0.7), pb=c(0.5, 0.5),
    stepwpert=c(0.1, 0.1), probchv=c(0.1, 0.1),
    minnumbot=c(5, 5),
    ## BART and HBART prior parameters
    ntree=c(50, 10), numcut=100, xicuts=NULL,
    power=c(2, 2), base=c(0.95, 0.95),
    ## f function
    fmu=NA, k=5, tau=NA, dist='weibull',
    ## s function
    total.lambda=NA, total.nu=10, mask=NULL,
```

```
## survival analysis
K=100, events=NULL, TSVS=FALSE,
## DPM LIO
drawDPM=1L,
alpha=1, alpha.a=1, alpha.b=0.1, alpha.draw=1,
neal.m=2, constrain=1,
m0=0, k0.a=1.5, k0.b=7.5, k0=1, k0.draw=1,
a0=3, b0.a=2, b0.b=1, b0=1, b0.draw=1,
## misc
na.rm=FALSE, probs=c(0.025, 0.975), printevery=100,
transposed=FALSE, pred=FALSE
```

Arguments

)

xftrain	n x pf matrix of predictor variables for the training data.
xstrain	n x ps matrix of predictor variables for the training data.
x.train	n x p matrix of predictor variables for the training data.
times	n x 1 vector of the observed times for the training data.
delta	n x 1 vector of the time type for the training data: 0, for right-censoring; 1, for an event; and, 2, for left-censoring.
xftest	m x pf matrix of predictor variables for the test set.
xstest	m x ps matrix of predictor variables for the test set.
x.test	m x p matrix of predictor variables for the test set.
rm.const	To remove constant variables or not.
rm.dupe	To remove duplicate variables or not.
tc	Number of OpenMP threads to use.
nskip	Number of MCMC iterations to burn-in and discard.
ndpost	Number of MCMC iterations kept after burn-in.
nadapt	Number of MCMC iterations for adaptation prior to burn-in.
adaptevery	Adapt MCMC proposal distributions every adaptevery iteration.
chvf,chvs,chv	Predictor correlation matrix used as a pre-conditioner for MCMC change-of-variable proposals.
method,use	Correlation options for change-of-variable proposal pre-conditioner.
pbd	Probability of performing a birth/death proposal, otherwise perform a rotate proposal.
pb	Probability of performing a birth proposal given that we choose to perform a birth/death proposal.
stepwpert	Initial width of proposal distribution for peturbing cut-points.
probchv	Probability of performing a change-of-variable proposal. Otherwise, only do a perturb proposal.

minnumbot	Minimum number of observations required in leaf (terminal) nodes.	
ntree	Vector of length two for the number of trees used for the mean model and the number of trees used for the variance model.	
numcut	Number of cutpoints to use for each predictor variable.	
xifcuts,xiscut		
	More detailed construction of cut-points can be specified by the xicuts function and provided here.	
power	Power parameter in the tree depth penalizing prior.	
base	Base parameter in the tree depth penalizing prior.	
fmu	Prior parameter for the center of the mean model.	
k	Prior parameter for the mean model.	
tau	Desired SD/ntree for f function leaf prior if known.	
dist	Distribution to be passed to intercept-only AFT model to center y.train.	
total.lambda	A rudimentary estimate of the process standard deviation. Used in calibrating the variance prior.	
total.nu	Shape parameter for the variance prior.	
mask	If a proportion is provided, then said quantile of $max.i sd(x.i)$ is used to mask non-stationary departures (with respect to convergence) above this threshold.	
К	Number of grid points for which to estimate survival probability.	
events	Grid points for which to estimate survival probability.	
TSVS	Setting to TRUE will avoid unnecessary processing for Thompson sampling vari- able selection, i.e., all that is needed is the variable counts from the tree branch decision rules.	
drawDPM	Whether to utilize DPM or not.	
alpha	Initial value of DPM concentration parameter.	
alpha.a	Gamma prior parameter setting for DPM concentration parameter where E[alpha]=alpha.a/alpha.b.	
alpha.b	See alpha.a above.	
alpha.draw	Whether to draw alpha or it is fixed at the initial value.	
neal.m	The number of additional atoms for Neal 2000 DPM algorithm 8.	
constrain	Whether to perform constained DPM or unconstrained.	
mØ	Center of the error distribution: defaults to zero.	
k0.a	First Gamma prior argument for k0.	
k0.b	Second Gamma prior argument for k0.	
k0	Initial value of k0.	
k0.draw	Whether to fix k0 or draw it if from the DPM LIO prior hierarchy: k0~Gamma(k0.a, k0.b), i.e., E[k0]=k0.a/k0.b.	
a0	First Gamma prior argument for tau.	
b0.a	First Gamma prior argument for b0.	
b0.b	Second Gamma prior argument for b0.	

b0	Initial value of b0.
b0.draw	Whether to fix b0 or draw it from the DPM LIO prior hierarchy: b0~Gamma(b0.a, b0.b), i.e., E[b0]=b0.a/b0.b.
na.rm	Value to be passed to the predict function.
probs	Value to be passed to the predict function.
printevery	Outputs MCMC algorithm status every printevery iterations.
transposed	Specify TRUE if all of the pre-processing for xftrain/xstrain/xftest/xstest has been conducted prior to the call (including tranposing).
pred	Specify TRUE if you want to return the pred item that is used to calculate soffset.

Details

nft2()/nft() is the function to fit time-to-event data. The most general form of the model allowed is $Y(\mathbf{x}) = mu + f(\mathbf{x}) + sd(\mathbf{x})Z$ where E follows a nonparametric error distribution by default.

The nft2()/nft() function returns a fit object of S3 class type nft2/nft that is essentially a list containing the following items.

Value

ots,oid,ovar,o	c,otheta
	These are XPtrs to the BART $f(x)$ objects in RAM that are only available for fits generated in the current R session.
sts,sid,svar,s	c,stheta
	Similarly, these are XPtrs to the HBART $sd(x)$ objects.
fmu	The constant mu.
f.train,s.trai	n
	The trained $f(x)$ and $sd(x)$ respectively: matrices with ndpost rows and n columns.
f.train.mean,s	.train.mean
	The posterior mean of the trained $f(x)$ and $sd(x)$ respectively: vectors of length
	n.
f.trees,s.tree	S
	Character strings representing the trained fits of $f(x)$ and $sd(x)$ respectively to facilitate usage of the predict function when XPtrs are unavailable.
dpalpha	The draws of the DPM concentration parameter <i>alpha</i> .
dpn,dpn.	The number of atom clusters per DPM, J , for all draws including burn-in and excluding burn-in respectively.
dpmu	The draws of the DPM parameter $mu[i]$ where $i = 1,, n$ indexes subjects: a matrix with ndpost rows and n columns.
dpmu.	The draws of the DPM parameter $mu[j]$ where $j = 1,, J$ indexes atom clusters: a matrix with ndpost rows and J columns.
dpwt.	The weights for efficient DPM calculations by atom clusters (as opposed to subjects) for use with $dpmu$. (and $dpsd$.; see below): a matrix with ndpost rows and J columns.

dpsd,dpsd.	Similarly, the draws of the DPM parameter $tau[i]$ transformed into the standard deviation $sigma[i]$ for convenience.	
dpC	The indices j for each subject i corresponding to their shared atom cluster.	
z.train	The data values/augmentation draws of <i>logt</i> .	
f.tmind/f.tavgd	/f.tmaxd	
	The min/average/max tier degree of trees in the f ensemble.	
s.tmind/s.tavgd	/s.tmaxd	
	The min/average/max tier degree of trees in the s ensemble.	
f.varcount,s.varcount		
	Variable importance counts of branch decision rules for each x of f and s respectively: matrices with ndpost rows and p columns.	
f.varcount.mean,s.varcount.mean		
	Similarly, the posterior mean of the variable importance counts for each x of f and s respectively: vectors of length p .	
f.varprob,s.varprob		
	Similarly, re-weighting the posterior mean of the variable importance counts as sum-to-one probabilities for each x of f and s respectively: vectors of length p .	
LPML	The log Pseudo-Marginal Likelihood as typically calculated for right-/left-censoring.	
pred	The object returned from the predict function where x.test=x.train in order to calculate the soffset item that is needed to use predict when XPtrs are not available.	
soffset	See pred above.	
aft	The AFT model fit used to initialize NFT BART.	
elapsed	The elapsed time of the run in seconds.	

Author(s)

Rodney Sparapani: <rsparapa@mcw.edu>

References

Sparapani R., Logan B., Maiers M., Laud P., McCulloch R. (2023) Nonparametric Failure Time: Time-to-event Machine Learning with Heteroskedastic Bayesian Additive Regression Trees and Low Information Omnibus Dirichlet Process Mixtures *Biometrics (ahead of print)* <doi:10.1111/biom.13857>.

See Also

predict.nft2, predict.nft

Examples

```
##library(nftbart)
data(lung)
N=length(lung$status)
```

##lung\$status: 1=censored, 2=dead

predict.aftree

```
##delta: 0=censored, 1=dead
delta=lung$status-1
## this study reports time in days rather than weeks or months
times=lung$time
times=times/7 ## weeks
## matrix of covariates
x.train=cbind(lung[ , -(1:3)])
## lung$sex:
                  Male=1 Female=2
## token run just to test installation
post=nft2(x.train, x.train, times, delta, K=0,
         nskip=0, ndpost=10, nadapt=4, adaptevery=1)
set.seed(99)
post=nft2(x.train, x.train, times, delta, K=0)
XPtr=TRUE
x.test = rbind(x.train, x.train)
x.test[ , 2]=rep(1:2, each=N)
K=75
events=seq(0, 150, length.out=K+1)
pred = predict(post, x.test, x.test, K=K, events=events[-1],
              XPtr=XPtr, FPD=TRUE)
plot(events, c(1, pred$surv.fpd.mean[1:K]), type='l', col=4,
     ylim=0:1,
     xlab=expression(italic(t)), sub='weeks',
     ylab=expression(italic(S)(italic(t), italic(x))))
lines(events, c(1, pred$surv.fpd.upper[1:K]), lty=2, lwd=2, col=4)
lines(events, c(1, pred$surv.fpd.lower[1:K]), lty=2, lwd=2, col=4)
lines(events, c(1, pred$surv.fpd.mean[K+1:K]), lwd=2, col=2)
lines(events, c(1, pred$surv.fpd.upper[K+1:K]), lty=2, lwd=2, col=2)
lines(events, c(1, pred$surv.fpd.lower[K+1:K]), lty=2, lwd=2, col=2)
legend('topright', c('Adv. lung cancer\nmortality example',
                     'M', 'F'), lwd=2, col=c(0, 4, 2), lty=1)
```

predict.aftree

Estimating the survival and the hazard for AFT BART models.

Description

The function predict.aftree() is provided for performing posterior inference via test data set estimates stored in a aftree object returned from AFTree() in a similar fashion as that of predict.nft. N.B. the x.test matrix must be provided on the AFTree() function call. Here we are only calculating the survival function by default, and, if requested, the hazard as well.

Usage

```
## S3 method for class 'aftree'
predict(
    ## data
    object,
    ## predictions
    events=NULL,
    FPD=FALSE,
    probs=c(0.025, 0.975),
    take.logs=TRUE,
    seed=NULL,
    ## default settings
    ndpost=nrow(object$mix.prop),
    nclust=ncol(object$mix.prop),
    ## etc.
    ...)
```

Arguments

object	Object of type nft from a previous call to nft().
events	You must specify a grid of time-points; however, they can be a matrix with rows for each subject.
FPD	Whether to yield the usual predictions or marginal predictions calculated by the partial dependence function.
probs	A vector of length two containing the lower and upper quantiles to be calculated for the predictions.
take.logs	Whether or not to take logarithms.
seed	If provided, then this value is used to generate random natural logarithms of event times from the predictive distribution.
ndpost	The number of MCMC samples generated.
nclust	The number of DPM clusters generated.
	The et cetera objects passed to the predict method. Currently, it has no func- tionality.

Details

Returns a list with the following entries. If hazard=TRUE is specified, then a similar set of entries for the hazard are produced.

Value

surv.fpd	Survival function posterior draws on a grid of time-points by the partial depen- dence function when requested.
surv.fpd.mean	Survival function estimates on a grid of time-points by the partial dependence function when requested.

16

predict.nft2

Author(s)

Rodney Sparapani: <rsparapa@mcw.edu>

See Also

predict.nft

predict.nft2 Drawing Posterior Predictive Realizations for NFT BART models.

Description

The function predict.nft2()/predict.nft() is the main function for drawing posterior predictive realizations at new inputs using a fitted model stored in a nft2/nft object returned from nft2()/nft().

Usage

```
## S3 method for class 'nft2'
predict(
            ## data
            object,
            xftest=object$xftrain,
            xstest=object$xstrain,
            ## multi-threading
            tc=getOption("mc.cores", 1), ##OpenMP thread count
            ## current process fit vs. previous process fit
            XPtr=TRUE,
            ## predictions
            K=0,
            events=object$events,
            FPD=FALSE,
            probs=c(0.025, 0.975),
            take.logs=TRUE,
            na.rm=FALSE,
            RMST.max=NULL,
            ## default settings for NFT:BART/HBART/DPM
            fmu=object$NFT$fmu,
            soffset=object$soffset,
            drawDPM=object$drawDPM,
            ## etc.
```

```
...)
## S3 method for class 'nft'
predict(
            ## data
            object,
            x.test=object$x.train,
            ## multi-threading
            tc=getOption("mc.cores", 1), ##OpenMP thread count
            ## current process fit vs. previous process fit
            XPtr=TRUE,
            ## predictions
            K=0,
            events=object$events,
            FPD=FALSE,
            probs=c(0.025, 0.975),
            take.logs=TRUE,
            na.rm=FALSE,
            RMST.max=NULL,
            ## default settings for NFT:BART/HBART/DPM
            fmu=object$NFT$fmu,
            soffset=object$soffset,
            drawDPM=object$drawDPM,
            ## etc.
            ...)
```

Arguments

object	Object of type nft2/nft from a previous call to nft2()/nft().
xftest,xstest,x	. test
	New input settings in the form of a matrix at which to construct predictions. Defaults to the training inputs.
tc	Number of OpenMP threads to use for parallel computing.
XPtr	If object was created during the currently running R process, then (via an Rcpp XPtr) the BART/HBART tree ensemble objects can be accessed in RAM; otherwise, those objects will need to be loaded from their string encodings.
К	The length of the grid of time-points to be used for survival predictions. Set to zero to avoid these calculations which can be time-consuming for large data sets.
events	You can specify the grid of time-points; otherwise, they are derived from quan- tiles of the augmented event times.
FPD	Whether to yield the usual predictions or marginal predictions calculated by the partial dependence function.
probs	A vector of length two containing the lower and upper quantiles to be calculated for the predictions.
take.logs	Whether or not to take logarithms.

18

predict.nft2

na.rm	Whether NA values should be removed from the summaries.
RMST.max	To calculate Restricted Mean Survival Time (RMST), we need to set a reason- able time maxima. Typically, a clinically important time that a majority (or a large plurality) of censored subjects have been followed through that point or beyond.
fmu	BART centering parameter for the test data. Defaults to the value used by nft2()/nft() when training the model.
soffset	HBART centering parameter for the test data. Defaults to the value used by nft2()/nft() when training the model.
drawDPM	Whether NFT BART was fit with, or without, DPM.
	The et cetera objects passed to the predict method. Currently, it has no func- tionality.

Details

predict.nft2()/predict.nft() is the main function for calculating posterior predictions and uncertainties once a model has been fit by nft2()/nft().

Returns a list with the following entries.

Value

Posterior realizations of the mean function stored in a matrix. Omitted if partial dependence functions are performed since these will typically be large.
Posterior realizations of the SD function stored in a matrix. Omitted if partial dependence functions are performed since these will typically be large.
Posterior predictive mean of mean function.
Posterior predictive lower quantile of mean function.
Posterior predictive upper quantile of mean function.
Posterior predictive mean of SD function.
Posterior predictive lower quantile of SD function.
Posterior predictive upper quantile of SD function.
Survival function posterior draws on a grid of time-points by the partial depen- dence function when requested.
Survival function estimates on a grid of time-points by the partial dependence function when requested.
Survival function lower quantiles on a grid of time-points by the partial depen- dence function when requested.
Survival function upper quantiles on a grid of time-points by the partial depen- dence function when requested.

Author(s)

Rodney Sparapani: <rsparapa@mcw.edu>

See Also

nft2, nft

tsvs2

Variable selection with NFT BART models.

Description

tsvs2(

The tsvs2()/tsvs() function is for Thompson sampling variable selection with NFT BART.

Usage

data
xftrain, xstrain, times, delta=NULL,
rm.const=TRUE, rm.dupe=TRUE,
##tsvs args
K=20, a.=1, b.=0.5, C=0.5,
rds.file='tsvs2.rds', pdf.file='tsvs2.pdf',
<pre>## multi-threading</pre>
<pre>tc=getOption("mc.cores", 1), ##OpenMP thread count</pre>
##MCMC
nskip=1000, ndpost=2000,
nadapt=1000, adaptevery=100,
chvf=NULL, chvs=NULL,
<pre>method="spearman", use="pairwise.complete.obs",</pre>
pbd=c(0.7, 0.7), pb=c(0.5, 0.5),
stepwpert=c(0.1, 0.1),
<pre>minnumbot=c(5, 5),</pre>
BART and HBART prior parameters
ntree=c(10, 2), numcut=100,
<pre>xifcuts=NULL, xiscuts=NULL,</pre>
power=c(2, 2), base=c(0.95, 0.95),
f function
fmu=NA, k=5, tau=NA, dist='weibull',
s function
total.lambda=NA, total.nu=10, mask=0.95,
survival analysis
##K=100, events=NULL,
DPM LIO
drawDPM=1L,
alpha=1, alpha.a=1, alpha.b=0.1, alpha.draw=1,
neal.m=2, constrain=1,
m0=0, k0.a=1.5, k0.b=7.5, k0=1, k0.draw=1,
a0=3, b0.a=2, b0.b=1, b0=1, b0.draw=1,
misc
<pre>na.rm=FALSE, probs=c(0.025, 0.975), printevery=100,</pre>

20

tsvs2

transposed=FALSE

)

tsvs(

```
## data
x.train, times, delta=NULL,
rm.const=TRUE, rm.dupe=TRUE,
##tsvs args
K=20, a.=1, b.=0.5, C=0.5,
rds.file='tsvs.rds', pdf.file='tsvs.pdf',
## multi-threading
tc=getOption("mc.cores", 1), ##OpenMP thread count
##MCMC
nskip=1000, ndpost=2000,
nadapt=1000, adaptevery=100,
chv=NULL,
method="spearman", use="pairwise.complete.obs",
pbd=c(0.7, 0.7), pb=c(0.5, 0.5),
stepwpert=c(0.1, 0.1), probchv=c(0.1, 0.1),
minnumbot=c(5, 5),
## BART and HBART prior parameters
ntree=c(10, 2), numcut=100, xicuts=NULL,
power=c(2, 2), base=c(0.95, 0.95),
## f function
fmu=NA, k=5, tau=NA, dist='weibull',
## s function
total.lambda=NA, total.nu=10, mask=0.95,
## survival analysis
##K=100, events=NULL,
## DPM LIO
drawDPM=1L,
alpha=1, alpha.a=1, alpha.b=0.1, alpha.draw=1,
neal.m=2, constrain=1,
m0=0, k0.a=1.5, k0.b=7.5, k0=1, k0.draw=1,
a0=3, b0.a=2, b0.b=1, b0=1, b0.draw=1,
## misc
na.rm=FALSE, probs=c(0.025, 0.975), printevery=100,
transposed=FALSE
```

)

Arguments

xftrain	n x pf matrix of predictor variables for the training data.
xstrain	n x ps matrix of predictor variables for the training data.
x.train	n x ps matrix of predictor variables for the training data.
times	nx1 vector of the observed times for the training data.

delta nx1 vector of the time type for the training data: 0, for right-center event; and, 2, for left-censoring.	soring; 1, for an
rm.const To remove constant variables or not.	
rm.dupe To remove duplicate variables or not.	
K The number of Thompson sampling steps to take. Not to be co size of the time grid for survival distribution estimation.	onfused with the
a. The prior parameter for successes of a Beta distribution.	
b. The prior parameter for failures of a Beta distribution.	
C The probability cut-off for variable selection.	
rds.file File name to store RDS object containing Thompson sampling p	parameters.
pdf.file File name to store PDF graphic of variables selected.	
tc Number of OpenMP threads to use.	
nskip Number of MCMC iterations to burn-in and discard.	
ndpost Number of MCMC iterations kept after burn-in.	
nadapt Number of MCMC iterations for adaptation prior to burn-in.	
adaptevery Adapt MCMC proposal distributions every adaptevery iteratio	n.
chvf,chvs,chv Predictor correlation matrix used as a pre-conditioner for MC variable proposals.	MC change-of-
method, use Correlation options for change-of-variable proposal pre-condition	oner.
pbd Probability of performing a birth/death proposal, otherwise performance posal.	orm a rotate pro-
pb Probability of performing a birth proposal given that we choo birth/death proposal.	se to perform a
stepwpert Initial width of proposal distribution for peturbing cut-points.	
probchv Probability of performing a change-of-variable proposal. Other perturb proposal.	wise, only do a
minnumbot Minimum number of observations required in leaf (terminal) no	des.
ntree Vector of length two for the number of trees used for the mean number of trees used for the variance model.	n model and the
numcut Number of cutpoints to use for each predictor variable.	
xifcuts, xiscuts, xicuts More detailed construction of cut-points can be specified by the y and provided here.	cicuts function
power Power parameter in the tree depth penalizing prior.	
base Base parameter in the tree depth penalizing prior.	
fmu Prior parameter for the center of the mean model.	
k Prior parameter for the mean model.	
tau Desired SD/ntree for f function leaf prior if known.	

total.lambda	A rudimentary estimate of the process standard deviation. Used in calibrating the variance prior.
total.nu	Shape parameter for the variance prior.
mask	If a proportion is provided, then said quantile of $max.i sd(x.i)$ is used to mask non-stationary departures (with respect to convergence) above this threshold.
drawDPM	Whether to utilize DPM or not.
alpha	Initial value of DPM concentration parameter.
alpha.a	Gamma prior parameter setting for DPM concentration parameter where E[alpha]=alpha.a/alpha.b.
alpha.b	See alpha. a above.
alpha.draw	Whether to draw alpha or it is fixed at the initial value.
neal.m	The number of additional atoms for Neal 2000 DPM algorithm 8.
constrain	Whether to perform constained DPM or unconstrained.
mØ	Center of the error distribution: defaults to zero.
k0.a	First Gamma prior argument for k0.
k0.b	Second Gamma prior argument for k0.
k0	Initial value of k0.
k0.draw	Whether to fix k0 or draw it if from the DPM LIO prior hierarchy: k0~Gamma(k0.a, k0.b), i.e., E[k0]=k0.a/k0.b.
a0	First Gamma prior argument for tau.
b0.a	First Gamma prior argument for b0.
b0.b	Second Gamma prior argument for b0.
b0	Initial value of b0.
b0.draw	Whether to fix b0 or draw it from the DPM LIO prior hierarchy: b0~Gamma(b0.a, b0.b), i.e., E[b0]=b0.a/b0.b.
na.rm	Value to be passed to the predict function.
probs	Value to be passed to the predict function.
printevery	Outputs MCMC algorithm status every printevery iterations.
transposed	tsvs handles all of the pre-processing for x.train/x.test (including tranposing) computational efficiency.

Details

tsvs2()/tsvs() is the function to perform variable selection.

The tsvs2()/tsvs() function returns a fit object of S3 class type list as well as storing it in rds.file for sampling in progress.

Author(s)

Rodney Sparapani: <rsparapa@mcw.edu>

References

Sparapani R., Logan B., Maiers M., Laud P., McCulloch R. (2023) Nonparametric Failure Time: Time-to-event Machine Learning with Heteroskedastic Bayesian Additive Regression Trees and Low Information Omnibus Dirichlet Process Mixtures *Biometrics (ahead of print)* <doi:10.1111/biom.13857>.

Liu Y., Rockova V. (2021) Variable selection via Thompson sampling. *Journal of the American Statistical Association. Jun 29:1-8.*

See Also

tsvs

Examples

```
##library(nftbart)
data(lung)
N=length(lung$status)
##lung$status: 1=censored, 2=dead
##delta: 0=censored, 1=dead
delta=lung$status=1
## this study reports time in days rather than weeks or months
times=lung$time
times=times/7 ## weeks
## matrix of covariates
x.train=cbind(lung[, -(1:3)])
## lung$sex: Male=1 Female=2
##vars=tsvs2(x.train, x.train, times, delta)
vars=tsvs2(x.train, x.train, times, delta, K=0) ## K=0 just returns 0
```

xicuts

Specifying cut-points for the covariates

Description

This function allows you to create a list that specifies the cut-points for the covariates.

Usage

xicuts(x.train, transposed=FALSE, numcut=100)

xicuts

Arguments

x.train	The training matrix to derive cut-points from.
transposed	Whether or not the matrix has been tranposed yet.
numcut	The number of cut-points to create.

Details

The cut-points are generated uniformly from min. to max., i.e., the distribution of the data is ignored.

Value

An object is returned of type BARTcutinfo which is essentially a list.

Index

* datasets bmx, 5 CDCheight, 5 lung,<mark>8</mark> bartModelMatrix, 2 bMM, 3, 3 bmx, 5 cancer (lung), 8 CDCheight, 5 CDimpute, 6 Cindex, 7 concordance (Cindex), 7 lung, 8 nft, 20 nft (nft2), 9 nft2, 9, 20 predict.aftree, 15 predict.nft, 8, 14, 17 predict.nft(predict.nft2), 17 predict.nft2, *14*, 17 tsvs, <mark>24</mark> tsvs (tsvs2), 20 tsvs2, 20

xicuts, *4*, 24