
Package ‘mvmesh’
October 13, 2022

Type Package

Title Multivariate Meshes and Histograms in Arbitrary Dimensions

Version 1.6

Date 2020-02-09

Author John P. Nolan

Maintainer John P. Nolan <jpnolan@american.edu>

Depends R (>= 3.0), rcdd, rgl, geometry, abind, SimplicialCubature

Description Define, manipulate and plot meshes on simplices, spheres, balls, rectangles and tubes.
Directional and other multivariate histograms are provided.

License GPL (>= 3)

NeedsCompilation no

Repository CRAN

Date/Publication 2020-02-11 21:40:06 UTC

R topics documented:

mvmesh-package . 2
HollowRectangle . 5
HollowTube . 6
mvhist . 8
mvmesh-geom . 10
mvmesh-methods . 14
mvmeshmisc . 15
PolarSphere . 16
rmvmesh . 18
UnitSimplex . 19
UnitSphere . 20

Index 23

1

2 mvmesh-package

mvmesh-package Multivariate meshes and histograms in arbitrary dimensions

Description

Define, manipulate and plot multivariate meshes/grids in n-dimensional Euclidean space. Multi-
variate histograms based on these meshes are provided.

Details

A range of multivariate problems require working with simplices, spheres, balls, rectangular and
tubular meshes in dimension n > 1. The multivariate histogram functions in this package provide
routines to tabulate and display multivariate data. For example, directional histograms tablulate the
number of points in a sequence of directions, see function histDirectional. Multivariate stable
distributions and multivariate extreme value distributions are defined by a measure on a sphere or
simplex. Also, simulation of generalized spherical laws involves a triangulation of some surface.
Numerical quadrature problems on a region or surface in n space require the ability to specify and
work with meshes, e.g. packages SphericalCubature and SimplicialCubature. Finally, these
meshes can be used on their own to create and plot multivariate shapes not in the rgl package.

A key goal for this package is that the dimension n is not limited to 2 or 3, but in principle can
be arbitrary. Of course, as n increases compute times and required memory will increase quickly.
This package uses existing methods from computational geometry that work in arbitrary dimen-
sion. Several of these functions were written as prototypes, so getting something to work was the
immediate goal, speed was not.

In this documentation we will use the term grid to mean a collection of points, usually approximately
evenly spread on a solid or surface. We will use the term mesh to mean both the grid, and the
grouping information that tells which points make up the simplices that triangulate/tesselate the
region.

Please let me know if you find any mistakes. I will try to fix bugs promptly. Constructive comments
for improvements are welcome; actually implementing any suggestions will be dependent on time
constraints.

This research was supported by an agreement with Cornell University, Operations Research & In-
formation Engineering, under contract W911NF-12-1-0385 from the Army Research Development
and Engineering Command.

Version history:

• 1.0 original package

• 1.1 added functions histDirectionalQuantileThreshold,
histDirectionalAbsoluteeThreshold, HollowTube, SolidTube, Lift2UnitSimplex,
IntersectMultipleSimplicesV, IntersectMultipleSimplicesH, Intersect2SimplicesH

• 1.2 added new functions mvmeshFromSVI, mvmeshfromSimplices, mvmeshFromVertices,
rtesselation, new argument normalize.by.area in histDirectional, new argument la-
bel.orthants in histDirectional. Speed up 3d plots.

mvmesh-package 3

• 1.3 replace rtessellation with more general rmvmesh; add argument ’m’ to mvmeshFromSVI;
rename RectangularMesh to SolidRectangle; add HollowRectangle; fix Icosahedron to
correctly set ’m’.

• 1.4 fix a bug in IntersectMultipleSimplicesH.

• 1.5 add new return value ’which.simplex’ to TallyHrep; for each data point x[,i], it identifies
which simplex contains that point; minor change in Intersect2SimplicesH; change ’octant’
to ’orthant’ to correctly describe what happens in all dimensions; improve IntersectMultipleSimplicesH
and Intersect2SimplicesH

• 1.6 correct an unused argument in documentation.

Programming details and notes

The remainder of this section describes some of the internal details of the package. It is not needed
for the average user.

Points in n-dimensional space are stored in row vectors as is customary in R. All simplices consid-
ered in this package are convex. A single convex simplex can be described/stored in two ways:

• A vps x n matrix of (doubles) S; the rows S[1,], S[2,], etc. are the vertices in R^n. The
simplex is the convex hull of the vertices. Note: vps stands for ’vertices per simplex’.

• An nV x n matrix of (doubles) vertices V with rows giving the points in R^n, and an integer
vector of length vps called SVI (Simplex Vertex Indices) that specifies which vertices make
up a simplex.

Both of these descriptions have their uses, so the core functions in this package calculate both. To
store all the relevant information needed, the basic functions in this package return an object of
class mvmesh. An object of class mvmesh has the following fields, extending the definitions above
from a single simplex to a list of simplices:

• type - a string describing the mesh, e.g. "UnitSimplex" (see table below)

• mvmesh.type - an integer specifying the type of mesh (see table below)

• n - dimension of the space

• m - dimension of the mesh, e.g. the unit sphere in n=3 dimensions is an m=2 dimensional
surface (see table below)

• vps - vertices per simplex, the number of vertices that define a simplex, which must be the
same for all simplices in this mesh (see table below)

• S - an (vps x n x nS) array, with S[, ,k] specifying the vertices of k-th simplex

• V - an (nV x n) matrix giving the distinct vertices in the list of simplices (repeated vertices in
S that are on common edges are removed)

• SVI - an integer (vps x nS) matrix which specifies the indices of the vertices that make up the
simplices in S. SVI = Simplex Vertex Indices. SVI[,k] gives the subscripts in the vertex array
V that determine the k-th simplex in S

• other fields are specific to the type of mesh. Generally, they describe the parameters that were
used to generate the mesh

4 mvmesh-package

type mvmesh.type m vps
——————— ————- —— ——
UnitSimplex 1 n-1 n
SolidSimplex 2 n n+1
UnitSphere, edgewise 3 n-1 n
UnitSphere, dyadic 4 n-1 n
UnitBall, edgewise 5 n n+1
UnitBall, dyadic 6 n n+1
SolidRectangle 7 n 2^n
Icosahedron 8 2 3
PolarSphere 9 n-1 2^(n-1)
PolarBall 10 n 2^(n-1) + 1
HollowTube 11 n-1 2*(n-1)
SolidTube 12 n 2*n
HollowRectangle 13 n 2^(n-1)

There are two generic S3 methods for objects of class mvmesh: print and plot. They are basic.
The plot command only works for dimensions n=2 and n=3, is slow, and has some limitations. The
main goal of this package is to provide grids/meshes in arbitrary dimensions, where plots are not
possible.

This package represents points in n dimensional space as double precision numbers. This is con-
venient, but has potential problems. For example, determining whether points lie on a line or in a
plane or on a sphere may not be possible with floating point arithmetic because coordinates can’t
be represented exactly. The computational geometry package rcdd on CRAN gives a way around
this by using exact rational arithmetic. Using rational arithemetic works fine when points can be
expressed as rational numbers, but not for points shifted by an irrational number or on more gen-
eral surfaces, e.g. (sqrt(2)/2,sqrt(2)/2) is on the unit circle, but cannot be represented exactly as a
rational number. Since we want to work in more situations, we use floating point numbers every-
where, accepting the fact that points may not be represented exactly. When the required package
rcdd is loaded, it prints out a warning message about double precision numbers and encourages the
use of rational arithmetic. I do not know how to suppress this message. That package warns that
using doubles can lead to crashes in certain circumstances. I don’t know what circumstances cause
crashes; I have not seen any in the kinds of computations done in this package.

Examples

UnitSimplex(n=2, k=3)
UnitBall(n=3, k= 2)

Not run:

plot(SolidSimplex(n=2, k=3), col="red")
title("2d solid simplex")

plot(SolidSimplex(n=3, k=4))
plot(UnitSimplex(n=3,k=4), new.plot=FALSE, col="red", lwd=5)
title3d("solid and unit simplex in 3d")
rgl.viewpoint(-45, 15)

HollowRectangle 5

two plots on one window
plot(UnitSphere(n=3, k=2), col="blue")
mesh2 <- AffineTransform(UnitBall(n=3,k=2), A=diag(c(1,1,1)), shift=c(3,0,0))
plot(mesh2, new.plot=FALSE, col="magenta")
title3d("unit sphere and ball in 3d")

demo(mvmesh) # shows a range of meshes
demo(mvhist) # shows a range of multivariate histograms

End(Not run)

HollowRectangle Subdivide a hyperrectangle with a standard grid

Description

EdgeSubdivision implements the

Usage

HollowRectangle(a, b, breaks=5, silent=FALSE)
SolidRectangle(a, b, breaks=5, silent=FALSE)
mvmeshRectBreaks(a, b, breaks, silent)
NextMultiIndex(i, n)

Arguments

a vector specifying the "lower left" vertex of the rectangle

b vector specifying the "upper right" vertex of the rectangle

breaks a specification of the subdivision scheme. See details below.

silent indicates whether or not to warn the caller if the subdivision determined by
’breaks’ covers the whole hyperrectangle [a,b].

i integer vector

n integer vector

Details

RectangularMesh computes an rectangular mesh on the hyperrectangle [a,b] = [a[1],b[1]] x [a[2],b[2]]
x ... x [a[n],b[n]]. It is similar to the function mesh in CRAN package plot3D, but works for dimen-
sion d=2,3,4,...

’breaks’ determines how each component is divided, it is motivated by the argument breaks in
hist. If ’breaks’ is a vector of length n, then breaks[i] gives the number of evenly sized bins
in coordinate i, spread out over the range [a[i],b[i]]. If ’breaks’ is a single number m, then each

6 HollowTube

component is subdivided into that many bins, i.e. this is equivalent to breaks=rep(m,n). Thus the
default breaks=6 subdivides each coordinate into 6 bins. Finally, if a more complicated subdivision
is desired, ’breaks’ can a list with n fields. breaks[[i]] should be a vector of dividing points for
coordinate i. See the example below. In this last case, where the bin boundaries are explictly
defined, ’a’ and ’b’ are not used (other than a possible warning if the specified bins do not cover the
rectangle given by ’a’ and ’b’).

Value

An object of class "mvmesh" as described in mvmesh.

Examples

SolidRectangle(a=c(1,3), b=c(2,7), breaks=2)
SolidRectangle(a=c(1,3), b=c(2,7), breaks=c(4,10))
SolidRectangle(a=c(1,3), b=c(2,7),

breaks=list(seq(1,3,by=0.25), seq(2,7,by=1)))
HollowRectangle(a=c(1,3), b=c(2,7), breaks=2)
HollowRectangle(a=c(1,3), b=c(2,7), breaks=c(4,10))
HollowRectangle(a=c(1,3), b=c(2,7),

breaks=list(seq(1,3,by=0.25), seq(2,7,by=1)))

Not run:
plot(SolidRectangle(a=c(1,3), b=c(2,7), breaks=3), show.labels=TRUE)
plot(SolidRectangle(a=c(1,3), b=c(2,7), breaks=c(4,10)), show.labels=TRUE)
plot(SolidRectangle(a=c(1,3), b=c(2,7),

breaks=list(seq(1,3,by=0.25), seq(2,7,by=1))), show.labels=TRUE)
plot(SolidRectangle(a=c(1,3), b=c(2,7), breaks=3), show.labels=TRUE,

label.values=letters[1:9], col='green')

plot(HollowRectangle(a=c(1,3,0), b=c(6,7,6), breaks=3), show.labels=TRUE, col='blue')
plot(HollowRectangle(a=c(1,3), b=c(2,7), breaks=3), show.labels=TRUE)
plot(HollowRectangle(a=c(1,3), b=c(2,7), breaks=c(4,10)), show.labels=TRUE)
plot(HollowRectangle(a=c(1,3), b=c(2,7),

breaks=list(seq(1,3,by=0.25), seq(2,7,by=1))), show.labels=TRUE)
plot(HollowRectangle(a=c(1,3), b=c(2,7), breaks=3), show.labels=TRUE,

label.values=letters[1:9], col='green')

End(Not run)

HollowTube Define tubes in n-dimensions

Description

Define a ’horizontal’ tube, either hollow or solid, in n dimensions

HollowTube 7

Usage

HollowTube(n, k.x=1, k.circumference=2, method="dyadic", p=2)
SolidTube(n, k.x=1, k.circumference=2, method="dyadic", p=2)

Arguments

n Dimension of the space

k.x Number of subdivisions along the x[1] direction (first component)

k.circumference

Number of subdivisions around the circumference; note the meaning of this
depends on the value of method.

method "dyadic" or "edgewise": the former recursively subdivides the sphere to get a
more uniform grid; the latter uses a faster method using one edgewise subdivi-
sion.

p Power used in the l^p norm; p=2 is the Euclidean norm

Details

HollowTube computes an approximation to a tube, an (n-1) dimensional surface in n space. The
tube is ’horizontal’, e.g. the center line of the tube is the x-axis with 0 <= x[1] <= 1 and radius 1;
use AffineTransform to rotate, stretch or translate. The mesh is basically constructed by taking
the cross product of an x[1] subdivision with an (n-1) dimensional sphere; the optional arguments
k.circumference, method, p are used in a call to UnitSphere to specify the sphere. The default
value of p=2 gives a tube with round/Euclidean cross section; using a different p will make the cross
sections of the tube a ball in the Lp norm.

SolidTube computes an approximation to a solid tube, an n dimensional solid in n space.

Value

an object of class "mvmesh" as described in mvmesh.

Examples

HollowTube(n=3)
SolidTube(n=3)

Not run:
plot(HollowTube(n=3, k.x=3, k.circumference=2), show.faces=TRUE, col='red', alpha=0.5)
plot(SolidTube(n=3, k.x=5, k.circumference=2), col='blue')

use non-Euclidean sphere to define wall of tube
plot(HollowTube(n=3, k.x=10, k.circumference=2, p=0.6), col='green')

End(Not run)

8 mvhist

mvhist Multivariate histograms

Description

Tabulate and plot histograms for multivariate data, including directional histograms

Usage

histDirectional(x, k, p=2, plot.type="default", freq=TRUE, positive.only=FALSE,
report="summary", label.orthants=TRUE, normalize.by.area=FALSE, ...)

histDirectionalQuantileThreshold(x, probs=1, p=2, k=3, positive.only=FALSE, ...)
histDirectionalAbsoluteThreshold(x, thresholds=0, p=2, k=3, positive.only=FALSE,...)
histRectangular(x, breaks=10, plot.type="default", freq=TRUE, report="summary", ...)
histSimplex(x, S, plot.type="default", freq=TRUE, report="summary", ...)

TallyHrep(x, H, report="summary")
DrawPillars(S, height, shift=rep(0.0,3), ...)

Arguments

x data in an (n x d) matrix; rows are d-dimensional data vectors
k number of subdivisions
p power of p-norm
freq TRUE for a frequency histogram, FALSE for a relative frequency histogram.

See note about normalize.by.area
normalize.by.area

if TRUE, then the counts are normalized by the surface area of the corresponding
simplex on the sphere. This is useful since in general the surface area varies
and counts will vary accordingly. In particular, isotropic data will not appear
isotropic without setting this to TRUE. If TRUE, the value of freq is ignored:
the histogram always shows count/surface area

breaks specifes the subdivision of the region; see ’breaks’ in SolidRectangle

plot.type type of plot, see details below
positive.only If TRUE, look only in the first orthant
report level of warning messages; one of "summary", "all", "none".
label.orthants If plot.type="index", this controls whether or not the orthants are labeled on the

plot.
probs vector of probabilites specifying what fraction of the extremes to keep
thresholds vector of thresholds specifying cutoff for extremes to keep
... Optional arguments to plot
S (vps x d x nS) array of simplices in V representation, see V2Hrep

H array of simplices in H representation, see V2Hrep

height vector of length nS giving the heights of the pillars
shift shift of the pillars, typically (0,0,0) for 2d data or (0,0,z0) for 3d data

mvhist 9

Details

Calculate and plot multivariate histograms. histDirectional plots a directional histogram for all
the data, histDirectionalQuantileThreshold plots m=length(probs) directional histograms,
with plot i using the top probs[i] fraction of the data, histDirectionalAbsoluteThreshold plots
m=length(cut.off) directional histograms, with plot i using the top probs[i] fraction of the data,
histSimplex plots histogram based on simplices specified in S, histRectangular plots histogram
based on a rectangular grid,

In all cases, the bins are simplices described in the H-representation and tallied by TallyHrep.
TallyCones does a similar function for cones from the origin and generated by a list of base sim-
plices.

’plot.type’ values depend on the type of plot being used. Possible values are:

• "none" - does not show a plot, just return the counts

• "index" - shows a histogram of simplex index number versus count, does not show the geom-
etry, but works in any dimension

• "pillars" - shows a 3D plot with pillars/columns having base the shape of the simplices and
height proportional to frequency counts. When the points are 2D, this works for histRectangular
and histSimplex; when the points are 3D, this only works for histRectangular. DrawPillars
is used to plot the pillars.

• "counts" - shows frequency counts as a number in the center of each simplex

• "radial" - histDirectional only, shows radial spikes proportional to the counts

• "grayscale" - histDirectional only, color codes simplices proportional to the counts

• "orthogonal" - histDirectional only, shows radial spikes proportional to the counts

• "default" - type depends on the dimension of the data and type of histogram

Value

A plot is drawn (unless plot.type="none"). A list is returned invisibly, with fields:

• counts - frequency count in each bin

• nrejects - number of x values not in any bin

• nties - number of points in more than one bin (if bins are set up to be non-overlapping, this
should only occur on a shared edge between two simplices)

• nx - total number of data points in x

• rel.freq - counts/nx

• rel.rejects - nrejects/nx

• mesh - object of type mvmesh, see mvmesh

• plot.type - input value

• report - input value

Warning

This is experimental code, and not throughly tested. If you have problems, please let me know.

10 mvmesh-geom

Examples

two dimensional, isotropic
x <- matrix(rnorm(8000), ncol=2)
histDirectional(x, k=1)

Not run:

histRectangular(x, breaks=5)

some directional 2-dim data
n <- 1000
A <- matrix(c(1,2, 4,1), nrow=2,ncol=2)
x2 <- matrix(0.0, nrow=n, ncol=2)
for (i in 1:n) { x2[i,] <- A
dev.new(); par(mfrow=c(2,2))
plot(x2,main="Raw data",col='red')
histDirectionalQuantileThreshold(x2, probs=c(1,0.25,0.1), p=1,

positive.only=TRUE, col='green',lwd=3)
dev.new(); par(mfrow=c(2,2))
histDirectionalAbsoluteThreshold(x2, thresholds=c(0,50,100,200), p=1,

positive.only=TRUE, col='blue',lwd=3)

three dimensional positive data
x3 <- matrix(abs(rnorm(9000)), ncol=3)
histDirectional(x3, k=3, positive.only=TRUE, col='blue', lwd=3)
histRectangular(x3, breaks=4)

demo(mvhist) # shows a range of multivariate histograms
}

End(Not run)

mvmesh-geom Miscellaneous computational geometry and utility functions

Description

EdgeSubdivision calculates an equal area/volume subdivision of a simplex. AffineTransform
defines a new mesh by translating all points x to x’ = A Rotate2D and Rotate3D calculate rotation
matrices for use by AffineTransform.

Icosahedron returns the vertices of an icosahedron with vertices on the unit sphere

Other functions are internal functions, use at your own risk.

mvmesh-geom 11

Usage

EdgeSubdivision(n, k)
EdgeSubdivisionMulti(V, SVI, k, normalize = FALSE, p = 2)
ConvertBase(m, b, n)
NumVertices(n, k, single = TRUE)
PointCoord(S, color)
SimplexCoord(S, color)
SVIFromColor(S, T)

MatchRow(v, table, first = 1, last = nrow(table))
AffineTransform(mesh, A, shift)
Rotate2D(theta)
Rotate3D(theta)
Icosahedron()

V2Hrep(S)
H2Vrep(H)
SatisfyHrep(x, Hsingle)
HrepCones(S)
IntersectMultipleSimplicesV(S1, S2)
IntersectMultipleSimplicesH(H1, H2, skip.redundant=FALSE)
Intersect2SimplicesH(H1, H2, tessellate=FALSE, skip.redundant=FALSE)
Lift2UnitSimplex(S)

Arguments

v a vector of length n

table matrix of size m3 x n

first row to start search

last row to end search

mesh object of class "mvmesh"

A n x n matrix

shift shift vector of length n

theta rotation angle; in 2D, this is a single angle; in 3D is it a vector of length 3, with
theta[i] giving rotation around i-th axis

k number of subdivisions

n dimension of simplex

V matrix of vertices; each row is a point in R^n

normalize TRUE to normalize vertices to lie on the unit sphere in the l^p norm

p power in the l^p norm

S,S1,S2 matrix of size (vps x n) specifying the vertices of a single simplex; S[j,] is the
j-th vertex of S

SVI Simplex Vertex Indices, see mvmesh

12 mvmesh-geom

m positive integer to be converted to base ’b’

b positive integer, the base used to expess ’x’

single If TRUE, return only one value; if FALSE, return table of values

color color matrix, internal matrix used by EdgeSubdivision to subdivide a simplex

T array giving a list of color matrices

H,H1,H2 array of simplices in the H-representation, H[„k] is the H-representation for the
k-th simplex

x matrix with columns giving the points

Hsingle matrix giving the H-representation of a single simplex

tessellate TRUE to tessellate the resulting intersection

skip.redundant TRUE to skip the call to rcdd::redundant

Details

AffineTransform computes a new mesh from a previous one, with each vertex v being replaced
by A Rotate3D computes a 3D rotation matrix.

Icosahedron returns the vertices of the icosahedron with vertices on the unit sphere

H2Vrep converts from the half-space (H) representation to the vertex (V) representation of a sim-
plex. V2Hrep converts from the V-representation to the H-representation. It is assumed that all the
resulting value are of the same dimension. If this is not the case, an error will occur. To work with
such cases, call the function separately for each simplex and save the result in different size objects.
The one place where this can occur with mvmesh objects is with a PolarSphere or PolarBall: at
the places where polar coordinates are nonunique, vertices will repeat and the H-representation will
have fewer constraints than other simplices.

IntersectMultipleSimplicesV computes the pairwise intersection of two lists of simplices given
in the V-representation. IntersectMultipleSimplicesH computes the pairwise intersection of
two lists of simplices given in the H-representation. Intersect2SimplicesH computes the inter-
section of two simplices, both specified in the H-representation.

Lift2UnitSimplex reverses the projection from the unit simplex in n-space to the first (n-1) coor-
dinates. That is, it ’lifts’ each (n-1) dimensional simplex in R^(n-1) to the unit simplex in R^n by
appending an n-th coordinate, with x[n] <- 1-sum(x[1:(n-1)]).

Value

MatchRow returns an integer vector, showing which rows of table match v. If there are no matches,
it returns integer(0).

AffineTransform returns an object of class "mvmesh". Rotate2D returns a 2 x 2 rotation matrix,
Rotate3D returns a 3 x 3 rotation matrix.

EdgeSubdivision computes an edgewise subdivision of a simplex using the method of Edelsbrun-
ner and Grayson. The algorithm of Concalves, et. al. was implemented in R. It is a coordinate free
method. ConvertBase is an internal routine used by the subdivision algorithm. NumVertices is a
utility routine to recursively calculate the number of vertices in an edgewise subdivision.

EdgeSubdivMulti is roughly a vectorized version of EdgeSubdivison. It takes a list of simplices,
and performs a k-subdivision of each simplex for function UnitSphere and related functions. Since

mvmesh-geom 13

some simplices may share edges, the same vertex can be occur multiple times, so this function goes
through the resulting vertices and eliminates repeats. This function is not meant to be called by an
end user; it is not guaranteed to be general.

ConvertBase is an internal function that converts a positve integer ’x’ to an ’n’ digit base ’b’
representation. NumVertices is an internal function that computes the number of simplices in an
edgewise subdivision (without doing the subdivision). PointCoord is an internal function that
computes a single vertex of a simplex. SimplexCoord is an internal function that computes the
coordinates of a simplex ’S’ given color matrix ’color’. SVIFromColor is an internal function that
computes the SVI from a starting simplex ’S’ and color array ’T’.

Note that rays and lines are not allowed in V2Hrep; use rcdd funtion makeH directly to use them.

EdgeSubdivision returns a color matrix, a coordinate free representaion of the subdivision. One
generally uses UnitSimplex or UnitBall to get a vertex representation of the subdivision.

EdgeSubdivMulti returns a list of class ’mvmesh’

References

Edelsbrunner and Grayson, Discrete Comput. Geom., Vol 24, 707-719 (2000).

Goncalves, Palhares, Takahashi, and Mesquita, Algorithm 860: SimpleS – an extension of Freuden-
thal’s simplex subdivision, ACM Trans. Math. Softw., 32, 609-621 (2006).

Examples

Icosahedron()

T <- EdgeSubdivision(n=2, k=2)
T

ConvertBase(10, 2, 6) # note order of digits

NumVertices(n=4, k=8, single=FALSE)

S <- rbind(diag(rep(1,2)), c(0,0)) # solid simplex in 2D
PointCoord(S, T[,,1])

SimplexCoord(S, T[,,1])

SVIFromColor(S, T)

S1 <- rbind(c(0,0,0), diag(rep(1,3)))
S2 <- rbind(c(1,1,1), diag(rep(1,3)))
S3 <- rbind(c(1,1,1), c(0,1,0), c(1,0,0), c(1,1,0))
S <- array(c(S1,S2,S3), dim=c(4,3,3))

(H1 <- V2Hrep(S))
(S4 <- H2Vrep(H1))

(H2 <- HrepCones(UnitSphere(n=2,k=1)$S)[,,2]) # cone between 0 <= y <= x, x >= 0
x <- matrix(rnorm(100), ncol=2)
(i <- SatisfyHrep(x, H2))
x[i,]

14 mvmesh-methods

(table <- matrix(c(1:12,1:3), ncol=3, byrow=TRUE))
MatchRow(1:3, table)

Not run:
plot(Icosahedron(), col="green")

mesh <- SolidSimplex(n=3, k=2)
plot(mesh, col="blue")
mesh2 <- AffineTransform(mesh, A=Rotate3D(rep(pi/2,3)), shift=c(1,1,1))
plot(mesh2, new.plot=FALSE, col="red")

End(Not run)

mvmesh-methods Methods to print and draw mvmesh objects

Description

Print summary of a mesh and plot 2D and 3D simplices. The 2D plot routines use the standard R
plots; 3D plot routines use the rgl package.

Usage

S3 method for class 'mvmesh'
print(x, ...)
S3 method for class 'mvmesh'
plot(x, new.plot=TRUE, show.points=FALSE, show.edges=TRUE, show.faces=FALSE,

show.labels = FALSE, label.values=NULL, ...)
DrawSimplex2d(S,label,show.labels,mvmesh.type,show.edges=TRUE,show.faces=FALSE,...)
DrawSimplex3d(S,label,show.labels,mvmesh.type,show.edges=TRUE,show.faces=FALSE,...)

Arguments

x an object of class "mvmesh", usually from one of the functions UnitSimplex,
SolidSimplex, UnitSphere, UnitBall, RectangularMesh, etc.

new.plot If TRUE, start a new plot; otherwise add to an existing plot

show.points If TRUE, show vertices (use cex= to change size)

show.edges If TRUE, show edges

show.faces If TRUE, fill in solid faces (only works in certain cases); otherwise show edges

show.labels If TRUE, an identifying label will be drawn inside each simplex

label.values values to display if show.label=TRUE; defaults to 1,2,3,...

... Optional argument to plot functions to set color, alpha, etc.

label Integer to label current simplex

mvmeshmisc 15

S a simplex, an n x m matrix with columns S[,1],...,S[,m] giving the vertices

mvmesh.type integer code identifying what type of mesh this is, see the definition of class
"mvmesh" in mvmesh.

Details

print will print out summary information about a mesh object

plot will plot a mesh, calling DrawSimplex2d or DrawSimplex3d to plot a each simplex as appro-
priate for the dimension. These routines are meant to give a basic display; not all rgl capabilities
are used.

Value

A plot is drawn, usually nothing is returned

Examples

print(SolidSimplex(n=3, k=2))

Not run:

plot(SolidSimplex(n=3, k=2), col='red')

End(Not run)

mvmeshmisc Miscellaneous functions used by/with mvmesh

Description

Utilities for working with mvmesh objects

Usage

mvmeshFromSimplices(S)
mvmeshFromSVI(V, SVI, m)
mvmeshFromVertices(V)
mvmeshCombine(mesh1, mesh2)
uniqueRowsFromDoubleArray(A)

Arguments

S simplices, an (vps x n x nS) array, with S[, ,k] specifying the vertices of k-th
simplex

V (nV x n) matrix giving the distinct vertices in the list of simplices

SVI integer (vps x nS) matrix which specifies the indices of the vertices that make
up the simplices in S

16 PolarSphere

m integer dimension of the mesh, less than or equal n=dimension of the space

mesh1, mesh2 objects of class "mvmesh"

A a matrix of doubles

Details

Experimental functions. They allow one to build mvmesh objects manually by specifying just sim-
plices (mvmeshFromSimplices), or just vertices (mvmeshFromVertices), or vertices and grouping
information (mvmeshFromSVI). mvmeshCombines combines two meshes with the same values of n,
m and vps. The resulting objects can usually be plotted by the plot method, but other operations
may fail. In particular, vertices common to both meshes will be repeated.

Value

undocumented

Warning

This is experimental code, and not throughly tested. Function names, arguments, and what they do
may change in the future.

Examples

Not run:
demo(mvmeshmisc)

End(Not run)

PolarSphere Define a mesh on the unit sphere/ball in n-dimensions determined by
a polar coordinates grid.

Description

Subdivide the unit ball or sphere into simplices in arbitrary dimensions using a rectangular grid on
the polar parameterization of the sphere.

The general n-dimensional polar coordinates to and from rectangular coordinates transformations
are provided.

Usage

PolarSphere(n, breaks=c(rep(4,n-2),8), p = 2, positive.only = FALSE)
PolarBall(n, breaks=c(rep(4,n-2),8), p=2, positive.only=FALSE)
Rectangular2Polar(x)
Polar2Rectangular(r, theta)

PolarSphere 17

Arguments

n Dimension of the space; the Polar sphere is an (n-1) dimensional manifold

breaks specification of the partition of in the angle space theta. See the definition of
’breaks’ in SolidRectangle.

p Power used in the l^p norm; p=2 is the Euclidean norm

positive.only TRUE means restrict to the positive orthant; FALSE gives the full ball

r a vector of radii of length m.

theta a (n-1) x m matrix of angles.

x (n x m) matrix, with column j being the point in n-dimensional space.

Details

PolarSphere computes an approximation to the unit sphere using a rectangular grid in the polar
angle space. PolarBall uses a partition of the polar sphere and joins those simplices to the origin
to approximately partition the unit ball. LpNorm computes the l^p norm of each columns of x.

Polar2Rectangular and Rectangular2Polar convert between the polar coordinate representation
(r,theta[1],...,theta[n-1]) and the rectangular coordinates (x[1],...,x[n]).

n dimensional polar coordinates are given by the following:
rectangular x=(x[1],...,x[n]) corresponds to polar (r,theta[1],...,theta[n-1]) by
x[1] = r*cos(theta[1])
x[2] = r*sin(theta[1])*cos(theta[2])
x[3] = r*sin(theta[1])*sin(theta[2])*cos(theta[3])
...
x[n-1]= r*sin(theta[1])*sin(theta[2])*...*sin(theta[n-2])*cos(theta[n-1])
x[n] = r*sin(theta[1])*sin(theta[2])*...*sin(theta[n-2])*sin(theta[n-1])

Here theta[1],...,theta[n-2] in [0,pi), and theta[n-1] in [0,2*pi). This is the parameterization de-
scribed in the Wikipedia webpage for "n-sphere". Note that this is NOT a 1-1 transformation:
when theta[1]=0, it follows that x[2]=x[3]=...=x[n]=0. This is analagous to all longitude lines going
through the north pole in standard 3d spherical coordinates.

For multivariate integration, the Jacobian of the above tranformation is J(theta) = r^(n-1) * prod(
sin(theta[1:(n-2)])^((n-2):1)); note that theta[n-1] does not appear in the Jacobian.

Value

PolarSphere and PolarBall return an object of class "mvmesh" as described in mvmesh. Polar2Rectangular
returns an (n x m) matrix of rectangular coordinates. Rectangular2Polar returns a list with fields:

r a vector of length m containing the radii

theta an (n x m) matrix of angles

Examples

PolarSphere(n=3, breaks=4)
PolarBall(n=3, breaks=4)

18 rmvmesh

(x <- matrix(1:10, ncol=2))
(a <- Rectangular2Polar(x))
Polar2Rectangular(ar, atheta)

(x <- matrix(1:12, ncol=4))
(a <- Rectangular2Polar(x))
Polar2Rectangular(ar, atheta)

Not run:
plot(PolarSphere(n=2, breaks=8))
plot(PolarBall(n=2, breaks=8))

plot(PolarSphere(n=3, breaks=c(4,8)))
plot(PolarBall(n=3, breaks=c(4,8)))

End(Not run)

rmvmesh Simulate from a mesh

Description

Simulate from a mvmesh object

Usage

rmvmesh(n, mesh, weights=rep(1,ncol(mesh$SVI)))

Arguments

mesh object of class "mvmesh"

n number of vectors to simulate

weights weights used for simulation

Details

rmvmesh allows you to sample from an mvmesh object, simplex j is sampled with probability
weights[j]. Note that if the simplices are of different sizes, and the weights are uniform, this will
result in uniform sampling among the simplices, but different densities on different faces. See the
example below with alternating weights. If you want to get a uniform density, set the weights equal
to the m dimensional volume of the simplices that make up the meshes.

rmvmesh works for any mesh where the m dimensional simplices are convex combinations of (m+1)
vertices i.e. vps=m+1. This works whatever the dimension of the embedding space is, and whether or
not things have been rotated, scaled or shifted by AffineTransform. It also works with an unaltered
SolidRectangle or HollowRectangle. mvmesh does not currently work with mvmesh objects of type
PolarSphere, PolarBall, HollowTube, or SolidTube; nor does it work with rectangles that have been
altered by AffineTransform.

UnitSimplex 19

Note that rmvmesh samples from the mesh, not from the idealized object. In particular, in the
example below with a unit sphere, the sampled points are from the tessellation approximation to
the sphere, not from the unit sphere itself. So (with probability one), all points will have length less
than 1.

Value

A matrix of values x: x[1,],x[2,],...,x[n,] are vectors sampled from the mesh.

Examples

Not run:
sphere <- UnitSphere(n=3, k=2)
plot(sphere)
x <- rmvmesh(1000, sphere)
points3d(x, col='red')

box <- HollowRectangle(a=c(0,2,-1), b=c(1,5,3), breaks=3)
plot(box)
x <- rmvmesh(500, box)
points3d(x, col='blue', size=5)

plot(box)
nS <- ncol(box$SVI) # number of simplices in box
weights <- rep(c(0,1), nS/2) # alternating 0,1 weights
x <- rmvmesh(10000, box, weights)
points3d(x, col='green', size=5)

End(Not run)

UnitSimplex Define a mesh on the unit simplex or the canonical simplex

Description

Defines an equal area/volume subdivision of the unit simplex and the canonical simplex in R^n. The
unit simplex is the (n-1) dimensional simplex with vertices (1,0,0,...,0), (0,1,0,...,0), ...,(0,0,0,...,1),
i.e. all x >= 0 with sum(x)==1.

The solid simplex is the n dimensional simplex with vertices (1,0,0,...,0), (0,1,0,...,0), ...,(0,0,0,...,1),
and (0,0,...,0), i.e. all x >= 0 with sum(x) <= 1.

Usage

UnitSimplex(n, k)
SolidSimplex(n, k)

20 UnitSphere

Arguments

n dimension of the space

k number of subdivisions

Details

EdgeSubdivision is called to do a k-subdivision of each edge, and then that output is converted to
a matrix of vertices.

Value

an object of class "mvmesh" as described in mvmesh.

Examples

UnitSimplex(n=2, k=3)
SolidSimplex(n=2, k=3)

UnitSimplex(n=3, k=2)
SolidSimplex(n=3, k=2)

UnitSimplex(n=5, k=4)
SolidSimplex(n=5, k=4)

Not run:
plot(UnitSimplex(n=2, k=3))
plot(SolidSimplex(n=2, k=3))

plot(UnitSimplex(n=3, k=2))
plot(SolidSimplex(n=3, k=2))

End(Not run)

UnitSphere Define a mesh on a unit ball in n-dimensions

Description

Subdivide the unit ball or sphere into approximately equal simplices in arbitrary dimenions.

Usage

UnitSphere(n, k, method = "dyadic", p = 2, positive.only = FALSE)
UnitSphereEdgewise(n, k, p, positive.only)
UnitSphereDyadic(n, k, start = "diamond", p, positive.only)
UnitBall(n, k, method="dyadic", p=2, positive.only=FALSE)
LpNorm(x, p)

UnitSphere 21

Arguments

n Dimension of the space; the unit sphere is an (n-1) dimensional manifold

k Number of subdivisions

method "dyadic" or "edgewise": the former recursively subdivides the sphere to get a
more uniform grid; the latter uses a faster method using one edgewise subdivi-
sion.

p Power used in the l^p norm; p=2 is the Euclidean norm

positive.only TRUE means restrict to the positive orthant; FALSE gives the full ball

start starting shape: "diamond" or "icosahedron"

x Matrix of points in n-dimensions; each column is a point in R^n

Details

UnitSphere computes a hyperspherical triangle approximation to the unit sphere. It calls either
UnitSphereDyadic or UnitSphereEdgewise based on ’method’. Both work by subdividing the
first orthant, and then rotating that subdivision around to other orthants. This is important for some
uses of these functions; it guarantees that all vertices of a simplex are in a single orthant. Note
that ’k’ has a different meaning for the different methods. When method="dyadic", k specifies the
number of dyadic subdivisions. When method="edgewise", k specifies the number of subdivisions
as in UnitSimplex, which is then projected outward to the unit sphere. So when n=2, a dyadic
subdivision with k=2 will result in 16 edges, whereas an edgewise subdivions with k=2 results in 8
edges.

UnitBall computes an approximate simplicial approximation to the unit ball. Specifically, it gen-
erates cones with one vertex at the origin and the other vertices on the surface of the unit sphere;
these later vertices are from UnitSphere. If k is large, these cones will be very narrow/thin.

Value

an object of class "mvmesh" as described in mvmesh.

Examples

UnitSphere(n=2, k=2, method="edgewise", positive.only=TRUE)
UnitSphere(n=2, k=2, method="edgewise")

UnitSphere(n=3, k=2, method="edgewise", positive.only=TRUE)
UnitSphere(n=3, k=2, method="edgewise")

UnitBall(n=2, k=2, method="edgewise", positive.only=TRUE)
UnitBall(n=2, k=2, method="edgewise")

UnitSphere(n=3, k=2, method="dyadic", positive.only=TRUE)
UnitSphere(n=3, k=2, method="dyadic")

UnitBall(n=3, k=2, method="dyadic", positive.only=TRUE)
UnitBall(n=3, k=2, method="dyadic")

UnitSphere(n=3, k=2)

22 UnitSphere

UnitBall(n=3, k=2)

x <- c(3,-1,2)
LpNorm(x, p=2)

Not run:
plot(UnitSphere(n=3, k=2), show.label=TRUE)
plot(UnitBall(n=3, k=2))

End(Not run)

Index

AffineTransform (mvmesh-geom), 10

ConvertBase (mvmesh-geom), 10

DrawPillars (mvhist), 8
DrawSimplex2d (mvmesh-methods), 14
DrawSimplex3d (mvmesh-methods), 14

EdgeSubdivision (mvmesh-geom), 10
EdgeSubdivisionMulti (mvmesh-geom), 10

H2Vrep (mvmesh-geom), 10
histDirectional, 2
histDirectional (mvhist), 8
histDirectionalAbsoluteThreshold

(mvhist), 8
histDirectionalQuantileThreshold

(mvhist), 8
histRectangular (mvhist), 8
histSimplex (mvhist), 8
HollowRectangle, 5
HollowTube, 6
HrepCones (mvmesh-geom), 10

Icosahedron (mvmesh-geom), 10
Intersect2SimplicesH (mvmesh-geom), 10
IntersectMultipleSimplicesH

(mvmesh-geom), 10
IntersectMultipleSimplicesV

(mvmesh-geom), 10

Lift2UnitSimplex (mvmesh-geom), 10
LpNorm (UnitSphere), 20

MatchRow (mvmesh-geom), 10
mvhist, 8
mvmesh, 6, 7, 9, 11, 15, 17, 20, 21
mvmesh (mvmesh-package), 2
mvmesh-geom, 10
mvmesh-methods, 14
mvmesh-package, 2

mvmeshCombine (mvmeshmisc), 15
mvmeshFromSimplices (mvmeshmisc), 15
mvmeshFromSVI (mvmeshmisc), 15
mvmeshFromVertices (mvmeshmisc), 15
mvmeshmisc, 15
mvmeshRectBreaks (HollowRectangle), 5

NextMultiIndex (HollowRectangle), 5
NumVertices (mvmesh-geom), 10

plot.mvmesh (mvmesh-methods), 14
PointCoord (mvmesh-geom), 10
Polar2Rectangular (PolarSphere), 16
PolarBall (PolarSphere), 16
PolarSphere, 16
print.mvmesh (mvmesh-methods), 14

Rectangular2Polar (PolarSphere), 16
rmvmesh, 18
Rotate2D (mvmesh-geom), 10
Rotate3D (mvmesh-geom), 10

SatisfyHrep (mvmesh-geom), 10
SimplexCoord (mvmesh-geom), 10
SolidRectangle, 8, 17
SolidRectangle (HollowRectangle), 5
SolidSimplex (UnitSimplex), 19
SolidTube (HollowTube), 6
SVIFromColor (mvmesh-geom), 10

TallyCones (mvhist), 8
TallyHrep (mvhist), 8

uniqueRowsFromDoubleArray (mvmeshmisc),
15

UnitBall (UnitSphere), 20
UnitSimplex, 19, 21
UnitSphere, 20
UnitSphereDyadic (UnitSphere), 20
UnitSphereEdgewise (UnitSphere), 20

23

24 INDEX

V2Hrep, 8
V2Hrep (mvmesh-geom), 10

	mvmesh-package
	HollowRectangle
	HollowTube
	mvhist
	mvmesh-geom
	mvmesh-methods
	mvmeshmisc
	PolarSphere
	rmvmesh
	UnitSimplex
	UnitSphere
	Index

