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dataStateSwitch Alternate Observations in a Data Frame over States
Description

Split single-state process observations, apply multiple state projections, and combine these obser-
vations into a single data frame, arranged by process time or index.
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Usage
dataStateSwitch(
df,
angles2 = list(yaw = @, pitch = 90, roll = 30),
scales2 = c(1, 0.5, 2),
angles3 = list(yaw = 90, pitch = @, roll = -30),
scales3 = c(0.25, 0.1, 0.75)
)
Arguments
df A data frame returned by processNOCdata() or faultSwitch().
angles2 Change the principal angles for State 2.
scales? Change the principal scales for State 2.
angles3 Change the principal angles for State 3.
scales3 Change the principal scales for State 3.
Details

This function splits a process data frame by state, and rotates and scales the observations from states
2 and 3 by the scales and angles specified in the function arguments. After state-specific rotation
and scaling, this function combines the observations back together and orders them by process time
index. This function takes in data frame returned by processNOCdata() or faultSwitch(). This
function calls rotateScale3D() and is called internally by mspProcessData().

Value

A data frame containing the time index, state, and feature values after state-specific rotation and
scaling; this data frame also contains the other columns of df that aren’t the feature values. This
data frame has

dateTime - a POSIX column of the time stamps for each observation

state - column of state membership (1, 2, or 3)

x - the process values for the first feature, corresponding to t + random error

y - the process values for the second feature, corresponding to t ~ 2 - 3 * t + random error

z - the process values for the third feature, corresponding to -t * 3 + 3 * t A 2 + random error

t - the non-stationary and autocorrelated latent feature

errl - a Gaussian white noise vector

err2 - a Gaussian white noise vector

err3 - a Gaussian white noise vector

See Also

Calls: processNOCdata, faultSwitch, rotateScale3D. Called by: mspProcessData
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Examples

nrml <- processNOCdata()
dataStateSwitch(nrml)

fault1A_xts Process Data under a System Shift Fault

Description

Three-feature, three-state simulated process data including observations under normal operating
conditions and observations after a positive shift for each feature in the system.

Usage

fault1A_xts

Format

An xts data matrix with 10080 rows and four columns, corresponding to one week worth of data
recorded at a 1-minute interval. The columns under normal conditions are defined in the help file
for normal_switch_xts. The fault is a system shock to each of the three features by 2. The fault
starts at row 8500, and the four columns under the fault state are defined here:

state : the state indicator for the multivariate system, with three levels

x: x(t)=t+ 2+ error

y: y(©=t*2-3t+2+ error

z: z(t)=-t"3+3t"2+ 2+ error

where t is a 10080-entry vector of autocorrelated and non-stationary hidden process realizations.
The states alternate each hour and are defined as follows:

Statel — As presented

State2 — Rotated by (yaw = 0, pitch = 90, roll = 30) and scaled by (1 * x, 0.5 ¥y, 2 * z).

State3 — Rotated by (yaw = 90, pitch = 0, roll = -30) and scaled by (0.25 * x, 0.1 *y, 0.75 * z).

See the vignette for more details.

Source

Simulated in R.
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fault2A_xts Process Data under a System Drift Fault

Description

Three-feature, three-state simulated process data including observations under normal operating
conditions and observations after a positive drift in values for each feature in the system.

Usage

fault2A_xts

Format

An xts data matrix with 10080 rows and four columns, corresponding to one week worth of data
recorded at a 1-minute interval. The columns under normal conditions are defined in the help file
for normal_switch_xts. The fault is a drift on each feature by s / 10 * 3, where s is the observation
index. The fault starts at row 8500, and the four columns under the fault state are defined here:
state : the state indicator for the multivariate system, with three levels

X : X(t) =t + drift + error

y: y(t)=t"2-3t+drift + error

z: z(t)=-t"3+3t"2 +drift + error

where t is a 10080-entry vector of autocorrelated and non-stationary hidden process realizations.
The states alternate each hour and are defined as follows:

Statel — As presented

State2 — Rotated by (yaw = 0, pitch = 90, roll = 30) and scaled by (1 *x, 0.5 *y, 2 * z).

State3 — Rotated by (yaw = 90, pitch = 0, roll = -30) and scaled by (0.25 * x, 0.1 *y, 0.75 * z).

See the vignette for more details.

Source

Simulated in R.



6 fault3A_xts

fault3A_xts Process Data under a System Signal Amplification

Description

Three-feature, three-state simulated process data including observations under normal operating
conditions and observations after an amplification of the underlying process for each feature in the
system.

Usage

fault3A_xts

Format

An xts data matrix with 10080 rows and four columns, corresponding to one week worth of data
recorded at a I-minute interval. The columns under normal conditions are defined in the help file
for normal_switch_xts. The fault is a signal amplification in the underlying determining t vector.
The fault starts at row 8500, and the four columns under the fault state are defined here:

state : the state indicator for the multivariate system, with three levels

x: x(t_*)=t_* +error

y: o y(t_*)=({_*)"2-3t+error

z: z(t_*)=-(t_*) N3+ 3(t_*) "2 + error

where t_* =3 * t * (10080 - s) / (2 * 10080), where s is the observation index, and t is a 10080-entry
vector of autocorrelated and non-stationary hidden process realizations. The states alternate each
hour and are defined as follows:

Statel — As presented

State2 — Rotated by (yaw = 0, pitch = 90, roll = 30) and scaled by (1 *x, 0.5 *y, 2 * z).

State3 — Rotated by (yaw = 90, pitch = 0, roll = -30) and scaled by (0.25 * x, 0.1 *y, 0.75 * z).

See the vignette for more details.

Source

Simulated in R.
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faultDetect Process Fault Detection

Description

Detect if a single multivariate observation is beyond normal operating conditions.

Usage

faultDetect(threshold_object, observation, ...)

Arguments

threshold_object
An object of classes "threshold" and "pca" returned by the internal threshold()
function.

observation A single row of an xts data matrix (a 1 X p matrix) to compare against the thresh-
olds

Lazy dots for additional internal arguments

Details

This function takes in a threshold object returned by the threshold() function and a single obser-
vation as a matrix or xts row. Internally, the function multiplies the observation by the projection
matrix returned within the threshold object, calculates the SPE and T2 process monitoring statistics
for that observation, and compares these statistics against their corresponding threshold values to
determine if the observation lies outside the expected boundaries. The function then returns a row
vector of the SPE test statistic, a logical indicator marking if this statistic is beyond the threshold,
the Hotelling’s T2 statistic, and an indicator if this statistic is beyond the threshold. Observations
with monitoring statistics beyond the calculated threshold are marked with a 1, while observations
within normal operating conditions are marked with a 0. These threshold values are passed from
the threshold() function through this function via a returned threshold object. This object will be
used in higher function calls.

This internal function is called by faultFilter().

Value

A named 1 x 4 matrix with the following entries for the single row observation passed to this
function:
SPE - the SPE statistic value

SPE_Flag — the SPE fault indicator, where 1 represents a flag and 0 marks that the observation is
within the normal operating conditions

T2 — the T2 statistic value
T2_Flag — the T2 fault indicator, defined the same as SPE_Flag
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See Also

Called by faultFilter and mspMonitor.

Examples

nrml <- mspProcessData(faults = "NOC")
scaledData <- scale(nrml[,-1])

pca_obj <- pca(scaledData)

thresh_obj <- threshold(pca_object = pca_obj)

faultDetect(threshold_object = thresh_obj,
observation = scaledDatal1,])

faultFilter Process Fault Filtering

Description

Flag and filter out observations beyond normal operating conditions, then return the observations
within normal operating conditions.

Usage
faultFilter(trainData, testData, updateFreq, faultsToTriggerAlarm =5, ...)
Arguments
trainData An xts data matrix of initial training observations
testData The data not included in the training data set
updateFreq The number of observations from the test data matrix that must be returned to
update the training data matrix and move it forward.
faultsToTriggerAlarm
Specifies how many sequential faults will cause an alarm to trigger. Defaults to
5.
Lazy dots for additional internal arguments
Details

This function is essentially a wrapper function to call and organize the output from these other
internal functions: faultDetect(), threshold(), and pca(). It is applied over a rolling window, with
observation width equal to updateFreq, of the larger full data matrix via the processMonitor() func-
tion, wherein the testing and training data sets move forward in time across the entire data matrix.

This internal function is called by processMonitor().
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Value

A list of class "fault_Is" with the following:

faultObj — An xts flagging matrix with the same number of rows as "testData". This flag matrix
has the following five columns:

SPE - The SPE statistic value for each observation in "testData". This statistic is defined as

SPE; = (X; — Y; «PT) % (X; — Y; « PT)T

where X; is the i observation vector, Y; is the reduced-feature projection of the obser-
vation X;, and P is the projection matrix such that X;P =Y.

SPE_Flag — A vector of SPE indicators recording O if the test statistic is less than or equal
to the critical value passed through from the threshold object.

T2 — The T2 statistic value for each observation in "testData". This statistic is defined as

T?=Y;«D '« Y7,

K2

where Y; = X;P is the reduced- feature projection of the observation X;, and D is the
diagonal matrix of eigenvalues.

T2_Flag — A vector of T2 fault indicators, defined like SPE_Flag.

Alarm - A column indicating if there have been five flags in a row for either the SPE or T2
monitoring statistics or both. Alarm states are as follows: 0 = no alarm, 1 = Hotelling’s
T2 alarm, 2 = Squared Prediction Error alarm, and 3 = both alarms.

nonAlarmedTestObs — An xts matrix of the first updateFreq number of rows of the training data
which were not alarmed.

trainSpecs — The threshold object returned by the internal threshold() function. See the thresh-
old() function’s help file for more details.

See Also

Calls: pca, threshold, faultDetect. Called by: processMonitor.

Examples

nrml <- mspProcessData(faults = "NOC")
# Select the data under state 1
data <- nrml[nrml[,1] == 1]

faultFilter(trainData = data[1:672, -11,
testData = data[673:3360, -11,
updateFreq = 336)



10 faultSwitch

faultSwitch Induce the Specified Fault on NOC Observations

Description

Infect the input data frame with a specific fault, then return the infected data frame.

Usage

faultSwitch(
df,
fault,
period = 7 x 24 x 60,
faultStartIndex = round(@.8433 * period),

shift = 2,
postStateSplit = FALSE
)
Arguments
df A data frame returned by the processNOCdata() function.
fault A character string. Options are "NOC", "A1", "B1", "C1", "A2", "B2", "C2",
"A3","B3", or "C3". See "details" of mspProcessData() for more information.
period The observation cycle length. Defaults to one week’s worth of minute-level
observations (10,080 observations).
faultStartIndex
An integer specifying the index at which the faults will start. Defaults to roughly
85 percent through the cycle.
shift The fault parameter for faults "A1" and "B1" corresponding to the positive shock

value added to features. Defaults to 2. See "details" of mspProcessData() for
more information.

postStateSplit Should we induce faults before or after state-splitting? Defaults to FALSE.
Make this argument TRUE for faults 1C, 2C, 3C.

Details
The faults return data frames as follows:

Al - A data frame with 10080 rows and five columns, corresponding by default to one week worth
of data recorded at a 1-minute interval (as defined by the "period" argument of this function
and the "increment" argument of the processNOCdata() function). The fault is a system shift
to each of the three features by 2 (the "shift" argument). The fault starts at row 8500 (specified
by the argument "faultStartIndex"), and the five columns under the fault state are defined here:

dateTime : a POSIXct column

state : the state indicator for the multivariate system, with three levels when the argument
"multiState" is TRUE and one level otherwise
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x : X(t) =t + shift + error
y: y(t)=t"2-3t+ shift + error
z: z(t)=-t" 3+ 3t"2 + shift + error
where t is a 10080-entry vector of autocorrelated and non-stationary hidden process realiza-
tions generated within the processNOCdata() function.
B1 - A matrix as defined in A1, but with x, y, and z feature columns defined as follows:

x : X(t) =t + shift + error
y: y(t)=t"2-3t+ error
z: z(t)=-t~3+3t"2 +error
C1- A matrix as defined in A1, but with X, y, and z feature columns defined as follows:

x: x(t) =t + shift/ 4 + error

y: y()=t"2-3t+error

z: z(t)=-t"3+3t" 2+ shift/ 4 + error
This shift is applied only in State 3.

A2 — The fault is a drift on each feature by (s - faultStartIndex / 10 ~ 3, where s is the observation
index. The fault starts at "faultStartIndex", and the X, y, and z feature columns are defined as
follows:

X : x(t) =t + drift + error
y: y(t)=t"2-3t+ drift + error
z: z(t)=-t"3+3t" 2+ drift + error

B2 — The fault is a drift a drift on the "y" and "z" feature by (s - faultStartIndex / 10 ~ 3, where s is
the observation index. The fault starts at "faultStartIndex", and the x, y, and z feature columns
are defined as follows:

x : X(t) =t+ error
y: y(t)=t"2-3t+drift + error
z: z(t)=-t" 3+ 3t" 2+ drift + error

C2 - The fault is a negative drift on the "y" feature by 1.5 * (s - faultStartIndex) / (period - fault-

StartIndex). Thus,

X : x(t) =t + error

y: y()=t"2-3t-drift + error
z: z(t)=-t"3+3t"2 +error
This drift is applied only in State 2.

A3 - The fault is a signal amplification in the determining latent t vector. The fault starts at "fault-

StartIndex", and the x, y, and z features under the fault state are defined here:
x: x(t_*)=t_*+ error
y: o y(t_*)=(t_*)"2-3t_* + error
z: z(t_*)=-(t_*) "3+ 3(t_*) 2 + error
where t_* =5 x t x (period - s) / (period - faultStartIndex) and s is the observation index.
B3 - The fault is a signal amplification in the determining latent t vector for the "z" feature only.

The fault starts at "faultStartIndex", and the X, y, and z features under the fault state are defined
here:
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x: x(t) =t + error
y: y(®)=(t)"2-3t+error
z: z(t_*)=-(t_*)"N3+3(t_*) "2+ error

where t_* =3 x t X (period - s) / (2 x period) and s is the observation index.

nen

C3 - This fault is a change in the error structure of feature "y". We let errorNew = 2 * error - 0.25,
so that

x: X(t) =t+ error
y: y()=t*2-3t+ errorNew
z: z(t)=-t"3+3t"2+error

This new error structure is applied only in State 2.

Value

A data frame with the same structure as df, but with faults induced across all observations. The msp-
ProcessData() function then subsets the observations necessary to corrupt the normal data frame,
and binds them together by row. This function is called by mspProcessData(). See ?mspProcessData
for more details.

See Also

Called by: mspProcessData.

Examples

nrml <- processNOCdata()
faultSwitch(nrml, fault = "NOC")

mspContributionPlot Contribution Plots

Description

This function plots the contribution value for each variable of a newly monitored observation and
compares them to the contribution values of the training data.

Usage

mspContributionPlot(
trainData,
trainLabel,
newData,
newLabel,
var.amnt,
trainObs



mspContributionPlot

Arguments

trainData

trainLabel

newData
newLabel

var.amnt

trainObs

Value

13

an xts data matrix containing the training observations

Class labels for the training data as a logical (two states only) or finite numeric
(two or more states) vector or matrix column (not from a data frame) with length
equal to the number of rows in “data." For data with only one state, this will be
a vector of Is.

an xts data matrix containing the new observation
the class label for the new observation

the energy proportion to preserve in the projection, which dictates the number
of principal components to keep

the number of observations upon which to train the algorithm. This will be split
based on class information by a priori class membership proportions.

A contribution plot and a list with the following items:

TrainCV - A list vectors containing the contribution values corresponding to each observation in
the set of training observations.

NewCV — The vector of contribution values associated with the new observation

Examples

## Not run:

# Create some data
dataAl <- mspProcessData(faults = "B1")
traindataAl <- dataAl1[1:8567,]

# Train on the data that should be in control
trainResults <- mspTrain(traindataAl[,-1], traindataAl1[,1], trainObs = 4320)

# Lag an out of control observation

testdataAl <- dataA1[8567:8568,-1]

testdataAl <- lag.xts(testdataAl,0:1)
testdataAl <- testdataAl[-1,]

testdataAl <- cbind(dataA1[8568,1],testdataAl)

tD <~ traindataAil[,-1]
tL <- traindataAl[,1]
nD <- testdataAl[,-1]
nL <- testdataAl[,1]

t0 <- 4320
VA <- 0.95

mspContributionPlot(tD, tL, nD, nL, VA, tO)

## End(Not run)
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mspMonitor Real-Time Process Monitoring Function

Description

Monitor and flag (if necessary) incoming multivariate process observations.

Usage

mspMonitor (observations, labelVector, trainingSummary, ...)

Arguments

observations  ann x p xts matrix. For real-time monitoring via a script within a batch file, n =
1, so this must be a 1 x p matrix. If lags were included at the training step, then
these observations will also have lagged features.

labelVector an n x 1 integer vector of class memberships
trainingSummary

the TrainingSpecs list returned by the mspTrain() function. This list contains—
for each class—the SPE and T2 thresholds, as well the projection matrix.

Lazy dots for additional internal arguments

Details

This function is designed to be run at specific time intervals (e.g.every 10 seconds, 30 seconds, 1
minute, 5 minutes, 10 minutes) through a scheduled operating script which calls this function and
mspWarning(). We expect this script to be set up in Windows "Task Scheduler" or Macintosh OX
"launchd" application suites. This function takes in the specific observations to monitor and their
class memberships (if any) and returns an xts matrix of these observation columns concatenated
with their monitoring statistic values, flag statuses, and an empty alarm column. Users should then
append these rows onto a previously existing matrix of daily observations. The mspWarning() func-
tion will then take in the daily observation xts matrix with updated rows returned by this function
and check the monitoring statistic flag indicators to see if an alarm status has been reached. For
further details, see the mspWarning() function.

This function calls the faultDetect() function, and requires the training information returned by
the mspTrain function. This function will return the xts matrix necessary for the mspWarning()
function.

Value

Ann x (p + 5) xts matrix, where the last five columns are:

SPE - the SPE statistic value for each observation in "observations"

SPE_Flag — a vector of SPE indicators recording O if the test statistic is less than or equal to the
critical value passed through from the threshold object

T2 — the T2 statistic value for each observation in "observations"
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T2_Flag — a vector of T2 fault indicators, defined like SPE_Flag

Alarm - a column indicating if there have been five flags in a row for either the SPE or T2 moni-
toring statistics or both. Alarm states are as follows: 0 = no alarm, 1 = Hotelling’s T2 alarm,
2 = Squared Prediction Error alarm, and 3 = both alarms.

See Also

Calls: faultDetect. Pipe flow: mspTrain into mspMonitor into mspWarning.

Examples

## Not run: # cut down on R CMD check time

nrml <- mspProcessData(faults = "NOC")
n <- nrow(nrml)

# Calculate the training summary, but save five observations for monitoring.
trainResults_ls <- mspTrain(data = nrml[1:(n - 5), -11,

labelVector = nrml[1:(n - 5), 1],

trainObs = 4320)

# While training, we included 1 lag (the default), so we will also lag the
# observations we will test.

testObs <- nrml[(n - 6):n, -1]

testObs <- xts:::lag.xts(testObs, 0:1)

testObs <- testObs[-1,]

testObs <- cbind(nrml[(n - 5):n, 1], testObs)

mspMonitor(observations = testObs[, -11],

labelVector = testObs[, 1],
trainingSummary = trainResults_ls$TrainingSpecs)

## End(Not run)

mspProcessData Simulate Normal or Fault Observations from a Single-State or Multi-
State Process

Description

Generate single- or multi-state observations under normal operating conditions or under fault con-
ditions.
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Usage

mspProcessData(
faults,

mspProcessData

period = 7 x 24 x 60,
faultStartIndex = round(@.8433 * period),
startTime = "2015-05-16 10:00:00 CST",

multiState = TRUE,

angles2 = list(yaw = @, pitch = 90, roll = 30),
scales2 = c(1, 0.5, 2),

angles3 = list(yaw = 90, pitch = @, roll = -30),

scales3 = c(@

.25, 0.1, 0.75),

adpcaTest = FALSE,

msadpcaTest =

Arguments

faults

period

faultStartIndex
startTime
multiState
angles?2

scales?2
angles3

scales3
adpcaTest

msadpcaTest

Details

FALSE,

A character vector of faults chosen. Options are "NOC", "A1", "B1", "C1",
"A2", "B2", "C2", "A3", "B3", "C3", or "All". See details for more information.

The observation cycle length. Defaults to one week’s worth of minute-level
observations (10,080 observations).

An integer specifying the index at which the faults will start. Defaults to roughly
85 percent through the cycle.

a POSIXct object specifying the day and time for the starting observation.

Should the observations be generated from a multi-state process? Defaults to
TRUE.

Change the principal angles for State 2. Defaults to yaw = 0, pitch = 90, and roll
=30.

Change the principal scales for State 2. Defaults to 1, 0.5, and 2.

Change the principal angles for State 3. Defaults to yaw = 90, pitch = 0, and roll
=-30.

Change the principal scales for State 3. Defaults to 0.25, 0.1, and 0.75.

If "multiState" is TRUE, incorrectly label all the states the same. This should
only be used to test AD-PCA performance under a true multi-state model. De-
faults to FALSE.

If "multiState" is FALSE, incorrectly label all the states at random. This should
only be used to test MSAD-PCA performance under a true single-state model.
Defaults to FALSE.

Lazy dots for internal arguments

For details on how the faults are induced, see the "details" of the faultSwitch() function. This func-
tion also includes AD-PCA versus MSAD-PCA treatment arm testing. There are four possibilities

to test:
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1. The true process has one state, and we correctly assume the true process has one state. In
this case, AD-PCA and MSAD-PCA are exactly the same. Draw observations from this state
by setting the "multiState" argument to FALSE. The "state" label will correctly mark each
observation as from the same state.

2. The true process has one state, but we incorrectly assume the true process has multiple states.
In this case, AD-PCA should outperform MSAD-PCA in false alarm rates and waiting time
to the first alarm. Draw observations from this state by setting the "multiState" argument to
FALSE and the "msadpcaTest" argument to TRUE. The "state" label will be contain randomly
generated state values (1, 2, and 3 are all equally likely) for each observation.

3. The true process has multiple states, but we incorrectly assume the true process has one single
states. In this case, MSAD-PCA should outperform AD-PCA in false alarm rates and waiting
time to the first alarm. Draw observations from this state by setting the "multiState" argument
to TRUE and the "adpcaTest" argument to TRUE. The "state" label will be identical for each
observation.

4. The true process has multiple states, and we correctly assume the true process has multiple
states. In this case, MSAD-PCA should outperform AD-PCA in false alarm rates and waiting
time to the first alarm. Draw observations from this state by setting the "multiState" argument
to TRUE. The "state" label will correctly mark each observation as from the same state.

Value

A list of data frames named with the names of the given faults with the following information:

dateTime — A POSIXct column of times starting at the user- defined ‘startTime* argument, length
given by the ‘period‘ argument, and spacing given by the ‘increment‘ argument. For example,
if the starting value is "2016-01-10", period is 10080, and the incrementation is in minutes,
then this sequence will be one week’s worth of observations recorded every minute from
midnight on the tenth of January.

state — An integer column of all 1’s (when the ‘multiState® argument is FALSE), or a column of
the state values (1, 2 or 3).

altState — If either adpcaTest or msadpcaTest are TRUE, this column will contain incorrect state
information used for testing the different treatment arms against their respective controls.

X — A double column of generated values for the first feature.

y — A double column of generated values for the second feature.

zZ— A double column of generated values for the third feature.

If the user only specifies one fault, then this function will return the single xts matrix, instead

of a list of one matrix. For details on how these features are defined, see the "details" of the
processNOCdata() function.

See Also

Calls: processNOCdata, faultSwitch, dataStateSwitch. Simulation pipe flow: mspProcessData
into mspTrain into mspMonitor into mspWarning.
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Examples

mspSPEPIot

## Not run: # cut down on R CMD check time

mspProcessData(faults = "All")

## End(Not run)

mspSPEPlot

Squared Prediction Error Contribution Plots

Description

Plots a variation of the squared prediction error (SPE) statistic to visualize the contribution of each

variable to a fault.

Usage

mspSPEPlot (
trainData,
trainLabel,
trainSPE,
newData,
newLabel,
newSPE,
trainObs,
var.amnt

Arguments

trainData
trainLabel

trainSPE

newData
newLabel
newSPE

trainObs

var.amnt

an xts data matrix containing the training observations

Class labels for the training data as a logical (two states only) or finite numeric
(two or more states) vector or matrix column (not from a data frame) with length
equal to the number of rows in “data." For data with only one state, this will be
a vector of Is.

the SPE values corresponding to the newLabel state calculated by mspTrain
using the full training data with all variables included

an xts data matrix containing the new observation

the class label for the new observation

the SPE value returned by mspMonitor using the full new observation with all
variables included

the number of observations upon which to train the algorithm. This will be split
based on class information by a priori class membership proportions.

the energy proportion to preserve in the projection, which dictates the number
of principal components to keep
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Examples

## Not run:

# Create some data

dataAl <- mspProcessData(faults = "B1")
traindataAl <- dataAl1[1:8567,]

# Train on the data that should be in control
trainResults <- mspTrain(traindataAl[,-1], traindataAl[,1], trainObs = 4320)

# Lag an out of control observation

testdataAl <- dataA1[8567:8568,-1]

testdataAl <- lag.xts(testdataAl1,0:1)
testdataAl <- testdataAl[-1,]

testdataAl <- chind(dataA1[8568,1], testdataAl)

# Monitor this observation
monitorResults <- mspMonitor(observations = testdataAl[,-11],
labelVector = testdataAl[,1],
trainingSummary = trainResults$TrainingSpecs)

tD <- traindataAl[,-1]

tL <- traindataAl[,1]

nD <- testdataAl[,-1]

nL <- testdataAl[,1]

t0 <- trainObs

VA <- 0.95

nSPE <- monitorResults$SPE

tSPE <- trainResults$TrainingSpecs[[nL]]1$SPE

mspSPEPlot (tD, tL, tSPE,nD,nL,nSPE, t0, VvA)

## End(Not run)

mspSubset Multi-State Subsetting

Description

This function separates the data into k subsets, one for each of the k states, containing the subset of
the original variables that are of interest for a given state.

Usage

mspSubset (

data,

labelVector = rep(1, nrow(data)),

subsetMatrix = matrix(TRUE, nrow = length(unique(labelVector)), ncol = ncol(data))
)
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Arguments
data An xts data matrix
labelVector Class labels as a logical (two states only) or finite numeric (two or more states)

vector or matrix column (not from a data frame) with length equal to the number
of rows in "data." For data with only one state, this will be a vector of 1s.

subsetMatrix A matrix of logicals with number of rows equal to the number of states and
number of columns equal to the number of columns in data. The i,j entry in the
matrix indicates whether or not to monitor the jth variable in the ith state.

Details
This function is designed to be used in conjunction with mspTrain and to allow the user to monitor
a different subset of the variables during each state.

Value

A list with the following components:

ClassiData --  an xts data matrix containing the subset of the state 1 data.

Class2Data --  an xts data matrix containing the subset of the state 2 data.

Class3Data --  an xts data matrix containing the subset of the state 3 data.
Examples

nrml <- mspProcessData(faults = "NOC")

sub1 <- c(TRUE,TRUE,FALSE)
sub2 <- c(TRUE,FALSE, TRUE)
sub3 <- c(TRUE, FALSE,FALSE)
submatrix <- t(matrix(c(subl,sub2,sub3),nrow=3,ncol=3))

subsets <- mspSubset(data = nrml[,-11],
labelVector = nrml[,1],
subsetMatrix = submatrix)

mspT2Plot T-Squared Contribution Plots

Description

Plots a variation of the Hotelling’s T-squared statistic to visualize the contribution of each variable
to a fault.
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Usage

mspT2Plot(
trainData,
trainLabel,
trainT2,
newData,
newLabel,
newT2,
trainObs,
var.amnt

Arguments

trainData

trainLabel

trainT2

newData
newLabel

newT?2

trainObs

var.amnt

Examples

## Not run:

21

an xts data matrix containing the training observations

Class labels for the training data as a logical (two states only) or finite numeric
(two or more states) vector or matrix column (not from a data frame) with length
equal to the number of rows in “data." For data with only one state, this will be
a vector of Is.

the Hotelling’s T-squared values corresponding to the newLabel state calculated
by mspTrain using the full training data with all variables included

an xts data matrix containing the new observation
the class label for the new observation

the Hotelling’s T-squared value returned by mspMonitor using the full new ob-
servation with all variables included

the number of observations upon which to train the algorithm. This will be split
based on class information by a priori class membership proportions.

the energy proportion to preserve in the projection, which dictates the number
of principal components to keep

# Create some data
dataAl <- mspProcessData(faults = "B1")
traindataAl <- dataA1[1:8567,]

# Train on the data that should be in control
trainResults <- mspTrain(traindataAl[,-1], traindataAl[,1], trainObs = 4320)

# Lag an out of control observation

testdataAl <- dataA1[8567:8568,-1]

testdataAl <- lag.xts(testdataAl,0:1)
testdataAl <- testdataAl[-1,]

testdataAl <- cbind(dataA1[8568,1],testdataAl)

# Monitor this observation
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monitorResults <- mspMonitor(observations = testdataAl[,-1],
labelVector = testdataAl[,1],
trainingSummary = trainResults$TrainingSpecs)

tD <- traindataAl[,-1]

tL <- traindataAl[,1]

nD <- testdataAl[,-1]

nL <- testdataAl[,1]

t0 <- 4320

VA <- 0.95

nT2 <- monitorResults$T2

tT2 <- trainResults$TrainingSpecs[[nL]]1$T2

mspT2Plot (tD,tL,tT2,nD,nL,nT2,t0,VA)

## End(Not run)

mspTrain Multi-State Adaptive-Dynamic Process Training

Description

This function performs Multi-State Adaptive-Dynamic PCA on a data set with time-stamped obser-
vations.

Usage

mspTrain(
data,
labelVector,
trainObs,
updateFreq = ceiling(@.5 * trainObs),
Dynamic = TRUE,
lagsIncluded = c(@, 1),
faultsToTriggerAlarm = 5,

)
Arguments
data An xts data matrix
labelVector Class labels as a logical (two states only) or finite numeric (two or more states)
vector or matrix column (not from data frame) with length equal to the number
of rows in "data". For data with only one state, this will be a vector of 1s.
trainObs The number of observations upon which to train the algorithm. This will be split

based on class information by a priori class membership proportion.
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updateFreq The algorithm update frequency. Defaults to half as many observations as the
training frequency.

Dynamic Specify if the PCA algorithm should include lagged variables. Defaults to
TRUE.

lagsIncluded A vector of lags to include. If Dynamic = TRUE, specify which lags to include.
Defaults to c(0, 1), signifying that the Dynamic process observations will in-
clude current observations and observations from one time step previous. See
"Details" for more information.

faultsToTriggerAlarm
The number of sequential faults needed to trigger an alarm. Defaults to 5.

Lazy dots for additional internal arguments

Details

This function is designed to identify and sort out sequences of observations which fall outside
normal operating conditions. We assume that the process data are time-dependent in both seasonal
and non-stationary effects (which necessitate the Adaptive and Dynamic components, respectively).
We further assume that this data is drawn from a multivariate process under multiple mutually
exclusive states, implying that the linear dimension reduction projection matrices may be different
for each state. Therefore, in summary, this function lags the features to account for correlation
between sequential observations, splits the data by classes, and re-estimates projection matrices
on a rolling window to account for seasonality. Further, this function uses non-parametric density
estimation to calculate the 1 - alpha quantiles of the SPE and Hotelling’s T2 statistics from a set
of training observations, then flags any observation in the testing data set with process monitoring
statistics beyond these calculated critical values. Because of natural variability inherent in all real
data, we do not remove observations simply because they are have been flagged as outside normal
operating conditions. This function records an alarm only for observations having five flags in a row,
as set by the default argument value of "faultsToTriggerAlarm". These alarm-positive observations
are then removed from the data set and held in a separate xts matrix for inspection.

Concerning the lagsIncluded variable: the argument lagsIncluded = ¢(0,1) will column concatenate
the current data with the same data from one discrete time step back. This will necessarily remove
the first row of the data matrix, as we will have NA values under the lagged features. The argument
lagsIncluded = 0:2 will column concatenate the current observations with the observations from
one step previous and the observations from two steps previous, which will necessarily require the
removal of the first two rows of the data matrix. To include only certain lags with the current data,
specify lagsIncluded = c(0, lag_1, lag_2, ..., lag_K). This induce NA values in the first max(lag_k)
rows, for k = 1, ..., K, and these rows will be removed from consideration. From the lag.xts()
function helpfile: "The primary motivation for having methods specific to xts was to make use of
faster C-level code within xts. Additionally, it was decided that lag’s default behavior should match
the common time-series interpretation of that operator — specifically that a value at time ‘t” should
be the value at time ‘t-1" for a positive lag. This is different than lag.zoo() as well as lag.ts()."

Of note when considering performance: the example has 10080 rows on three features alternating
between three states, and trains on 20 percent of the observations, while updating every 1008 (10
percent) observation. On a 2016 Macbook Pro with 16Gb of RAM, this example function call
takes 15 second to run. Increasing the update frequency will decrease computation time, but may
increase false alarm rates or decrease flagging accuracy. We recommend that you set the update
frequency based on the natural and physical designs of your system. For example, if your system
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has a multi-state process which switches across one of four states every two hours, then test the
update frequency at an eight or 12 hour level — enough observations to measure two to three full
cycles of the switching process. For observations recorded every five minutes, try updateFreq = (60
/5)*8=960r(60/5)* 12 =144.

This user-facing function calls the processMonitor() function, and returns the training arguments
necessary to call the mspMonitor() and mspWarning() functions.

For more details, see Kazor et al (2016):
doi:10.1007/s0047701612462

Value
A list with the following components:
FaultChecks — an xts flagging matrix with the same number of rows as "data". This flag matrix

has the following five columns:

SPE - the SPE statistic value for each observation in "data"

SPE_Flag — a vector of SPE indicators recording O if the test statistic is less than or equal to
the critical value passed through from the threshold object

T2 — the T2 statistic value for each observation in "data"
T2_Flag — a vector of T2 fault indicators, defined like SPE_Flag

Alarm — a column indicating if there have been five flags in a row for either the SPE or T2
monitoring statistics or both. Alarm states are as follows: 0 = no alarm, 1 = Hotelling’s
T2 alarm, 2 = Squared Prediction Error alarm, and 3 = both alarms.

Non_Alarmed_Obs — an xts data matrix of all the non-alarmed observations

Alarms - an xts data matrix of the features and specific alarms for Alarmed observations with the
alarm codes are listed above

TrainingSpecs — a list of k lists, one for each class, with each list containing the specific threshold
object returned by the internal threshold() function for that class. See the threshold() function’s
help file for more details.

See Also

Calls: processMonitor. Pipe flow: mspTrain into mspMonitor into mspWarning.

Examples

## Not run: # cut down on R CMD check time
nrml <- mspProcessData(faults = "NOC")
mspTrain(data = nrml[, -1],

labelVector = nrml[, 11,
trainObs = 4320)

## End(Not run)


https://doi.org/10.1007/s00477-016-1246-2
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mspWarning Process Alarms

Description

Trigger an alarm, if necessary, for incoming multivariate process observations.

Usage

mspWarning(mspMonitor_object, faultsToTriggerAlarm = 5)

Arguments

mspMonitor_object
An xts matrix returned by the mspMonitor() function

faultsToTriggerAlarm
Specifies how many sequential faults will cause an alarm to trigger. Defaults to
5.
Details

This function and the mspMonitor() function are designed to be ran via a scheduled task through
Windows "Task Scheduler" or Macintosh OX "launchd" application suites. The file flow is as fol-
lows: at each time interval, run the mspMonitor() function on the matrix of daily observations to
add a flag status to the most recent incoming observation in the matrix, and return this new xts
matrix. Then, pass this updated daily observation matrix to the mspWarning() function, which will
check if the process has recorded five or more sequential monitoring statistic flags in a row. Of
note, because these functions are expected to be repeatedly called in real time, this function will
only check for an alarm within the last row of the xts matrix. To check multiple rows for an alarm
state, please use the mspTrain() function, which was designed to check multiple past observations.

This function requires an xts matrix returned by the mspMonitor() function.

Value

An xts matrix of the same dimensions as mspMonitor_object, with a recorded negative or positive
and type-specific alarm status. Alarm codes are: 0 = no alarm, 1 = Hotelling’s T2 alarm, 2 =
Squared Prediction Error alarm, and 3 = both alarms.

See Also

Pipe flow: mspTrain into mspMonitor into mspWarning.
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Examples

## Not run: # cut down on R CMD check time

nrml <- mspProcessData(faults = "NOC")
n <- nrow(nrml)

# Calculate the training summary, but save five observations for monitoring.
trainResults_ls <- mspTrain(data = nrml[1:(n - 5), -11,

labelVector = nrml[1:(n - 5), 1],

trainObs = 4320)

# While training, we included 1 lag (the default), so we will also lag the
# observations we will test.

testObs <- nrml[(n - 6):n, -1]

testObs <- xts:::lag.xts(testObs, 0:1)

testObs <- testObs[-1,]

testObs <- cbind(nrml[(n - 5):n, 1], testObs)

# Run the monitoring function.
dataAndFlags <- mspMonitor(observations = testObs[, -11],
labelVector = testObs[, 1],
trainingSummary = trainResults_ls$TrainingSpecs)

# Alarm check the last row of the matrix returned by the mspMonitor

#  function
mspWarning(dataAndFlags)

## End(Not run)

mvMonitoring A Package for Multivariate Statistical Process Monitoring

Description

The mvMonitoring package has four main functions for external use, all of which begin with the
string "msp" (for "multivariate statistical process") followed by the function use. Functions without
this "msp" key are primarily internal functions. They are available to see and use, but will largely
be unnecessary to call in common workflows.

mvMonitoring external functions
mspProcessData - A function for synthetic process data generation. Use this data to test new
process monitoring methods.

mspTrain - A function to take in observations for training under normal conditions, and to return
the training summary from these observations.
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mspMonitor - A function to take in real-time process observations and detect system anomalies
based on the training summary returned by mspTrain.

mspWarning - A function to take in observations returned by mspMonitor and check for alarms by
measuring sequential anomalies. This function will also be equipped to send SMS notifica-
tions to process technicians in future versions.

normal_switch_xts Process Data under Normal Conditions

Description

Three-feature, three-state simulated process data under normal operating conditions as example data
for different included functions.

Usage

normal_switch_xts

Format

An xts data matrix with 10080 rows and four columns, corresponding to one week worth of data
recorded at a 1-minute interval, and four columns as defined here:

state — the state indicator for the multivariate system, with three levels
x: x(t)=t+ error
y: y®)=t"2-3t+error

z: z(t)=-t"3+3t"2+error

where t is a 10080-entry vector of autocorrelated and non-stationary hidden process realizations.
The states alternate each hour and are defined as follows:

Statel — As presented
State2 — Rotated by (yaw = 0, pitch = 90, roll = 30) and scaled by (1 * x, 0.5 *y, 2 * z).
State3 — Rotated by (yaw = 90, pitch = 0, roll = -30) and scaled by (0.25 * x, 0.1 *y, 0.75 * z).

See the vignette for more details.

Source

Simulated in R.
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oneDay_clean Real Process Data for Testing

Description
Data from the SM-MBR Bioreactor system over 12 hours. This data will be used for testing the
mvMonitoring package.

Usage

oneDay_clean

Format

An xts matrix of 75 rows and 35 features recorded over 2017-01-27 at 00:10 to 2017-01-27 at 12:30.

Source

Kathryn Newhart

pca PCA for Data Scatter Matrix

Description

Calculate the principal component analysis for a data matrix, and also find the squared prediction
error (SPE) and Hotelling’s T2 test statistic values for each observation in this data matrix.

Usage
pca(data, var.amnt = 0.9, ...)
Arguments
data A centred-and-scaled data matrix or xts matrix
var.amnt The energy proportion to preserve in the projection, which dictates the number
of principal components to keep. Defaults to 0.90.
Lazy dots for additional internal arguments
Details

This function takes in a training data matrix, without the label column, and the energy preservation
proportion, which defaults to 95 percent per Kazor et al (2016). This proportion is the sum of the
q largest eigenvalues divided by the sum of all p eigenvalues, where q is the number of columns of
the p x q projection matrix P. This function then returns the projection matrix P, a diagonal matrix
of the reciprocal eigenvalues (Lambdalnv), a vector of the SPE test statistic values corresponding
to the rows of the data matrix, and a T2 test statistic vector similar to the SPE vector.

This internal function is called by faultFilter().
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Value
A list of class "pca" with the following:

projectionMatrix — the q eigenvectors corresponding to the q largest eigenvalues as a p x q pro-
jection matrix

Lambdalnv - the diagonal matrix of inverse eigenvalues

SPE - the vector of SPE test statistic values for each of the n observations contained in "data"

T2 - the vector of Hotelling’s T2 test statistic for each of the same n observations

See Also
Called by: faultFilter.

Examples

nrml <- mspProcessData(faults = "NOC")
scaledData <- scale(nrml[,-1])
pca(scaledData)

processMonitor Adaptive Process Training

Description

Apply Adaptive-Dynamic PCA to state-specific data matrices.

Usage

processMonitor(
data,
trainObs,
updateFreq = ceiling(@.5 x trainObs),
faultsToTriggerAlarm = 5,

)
Arguments
data An xts data matrix
trainObs The number of training observations to be used
updateFreq The number of non-flagged observations to collect before the function updates.
Defaults to half as many observations as the number of training observations.
faultsToTriggerAlarm

The number of sequential faults needed to trigger an alarm. Defaults to 5.

Lazy dots for additional internal arguments



30 processNOCdata

Details
This function is the class-specific implementation of the Adaptive- Dynamic PCA described in the
details of the mspTrain() function. See the mspTrain() function’s help file for further details.

This internal function is called by mspTrain(). This function calls the faultFilter() function.

Value
A list with the following components:
FaultChecks — a class-specific xts flagging matrix with the same number of rows as "data". This
flag matrix has the following five columns:

SPE - the SPE statistic value for each observation in "data"

SPE_Flag — a vector of SPE indicators recording 0 if the test statistic is less than or equal to
the critical value passed through from the threshold object

T2 — the T2 statistic value for each observation in "data"
T2_Flag — a vector of T2 fault indicators, defined like SPE_Flag

Alarm — a column indicating if there have been five flags in a row for either the SPE or T2
monitoring statistics or both. Alarm states are as follows: 0 = no alarm, 1 = Hotelling’s
T2 alarm, 2 = Squared Prediction Error alarm, and 3 = both alarms.

Non_Alarmed_Obs — a class-specific xts data matrix of all the non-alarmed observations (obser-
vations with alarm state equal to 0)

Alarms - a class-specific xts data matrix of the features and specific alarms of Alarmed observa-
tions, where the alarm codes are listed above

trainSpecs — a threshold object returned by the internal threshold() function. See the threshold()
function’s help file for more details.

See Also
Calls: faultFilter. Called by: mspTrain.

Examples

nrml <- mspProcessData(faults = "NOC")
data <= nrml[nrml[,1] == 1]

processMonitor(data = data[,-1], trainObs = 672)

processNOCdata Simulate NOC Observations from a Single-State or Multi-State Pro-
cess

Description

This function generates data under normal operating conditions from a single-state or multi-state
process model.
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Usage

processNOCdata(
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startTime = "2015-05-16 10:00:00 CST",
period = 7 x 24 x 60,

stateDuration = 60,
increment = "min",
multiState = TRUE,
autocorellation = 0.75,
tLower = 0.01,
tUpper = 2,
errVar = 0.01
)
Arguments
startTime a POSIXct object specifying the day and time for the starting observation.
period The observation cycle length. Defaults to one week’s worth of minute-level
observations (10,080 observations).
stateDuration The number of observations generated during a stay in each state. Defaults to
60.
increment The time-sequence base increment. See "Details" of the seq.POSIXt() function
options. Defaults to "min" for minutes.
multiState Should the observations be generated from a multi-state process? Defaults to
TRUE.
autocorellation
The autocorrelation parameter. Must be less than 1 in absolute value, or the
process generated will be nonstationary. Defaults to 0.75 in accordance to Kazor
et al (2016).
tLower Lower bound of the latent $t$ variable. Defaults to 0.01.
tUpper Upper bound of the latent $t$ variable. Defaults to 2.
errVar Error variance of the normal white noise process on the feature variables.
Details

This function randomly generates a non-stationary (sinusoidal) and autocorrelated latent variable
t with lower and upper bounds given by the arguments "tLower" and "tUpper", respectively, with
autocorrelation governed by the "autocorrelation" argument. Necessarily, this coefficient must be
less than 1 in absolute value, otherwise the latent variable will be unbounded. Next, this function
draws a realization of this random variable t and calculates three functions of it, then jitters these
functions with a normal white noise variable (with variance set by "errVar"). These three functions

are:

x: x(t)=t+ error

y: y()=t~2-3t+error

z: z(t)=-t"3+3t"2 +error

This function is called by the mspProcessData() function. See ?mspProcessData for more details.
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Value

An data frame with the following information:

dateTime — A POSIXct column of times starting at the user-defined ‘startTime* argument, length
given by the ‘period‘ argument, and spacing given by the ‘increment‘ argument. For example,
if the starting value is "2016-01-10", period is 10080, and the incrementation is in minutes,
then this sequence will be one week’s worth of observations recorded every minute from
midnight on the tenth of January.

state — An integer column of all 1’s (when the ‘multiState® argument is FALSE), or a column of
the state values (1, 2 or 3).

X — A double column of generated values for the first feature.
y — A double column of generated values for the second feature.

z— A double column of generated values for the third feature.

See Also

Called by: mspProcessData.

Examples

processNOCdata()

quantile.density Extract Quantiles from 'density’ Objects

Description

Quantiles for objects of class density

Usage

## S3 method for class 'density'

quantile(x, probs = seq(@.25, @0.75, 0.25), names = TRUE, normalize = TRUE, ...)
Arguments

X a object of class density or a list of densities

probs numeric vector of probabilities with values in [0,1]. Note that elements very

close to the boundaries return Inf or -Inf

names logical; if TRUE, the result has a names attribute, resp. a rownames and colnames
attributes. Set to FALSE for speedup with many probabilities

normalize logical; if TRUE then the values in x$y are multiplied with a factor such that their
integral is equal to one.

further arguments passed to or from other methods (currently unused)
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Details

This function is a near-exact copy of the quantile.density function from package BMS (https:
//CRAN.R-project.org/package=BMS). In spring of 2022, CRAN informed us that the BMS has
been orphaned, so we copied the code (and corresponding documentation) we needed from it. See
doi:10.18637/jss.v068.104 for their paper.

The function quantile.density() applies generically to the built-in class density (as least for
versions where there is no such method in the pre-configured packages). Note that this function
relies on trapezoidal integration in order to compute the cumulative densities necessary for the
calculation of quantiles.

Value

If x is of class density (or a list with exactly one element), a vector with quantiles. If x is a list
of densities, then the output is a matrix of quantiles, with each matrix row corresponding to the
respective density.

Author(s)

Stefan Zeugner, <stefan.zeugner@ec.europa.eu>

Martin Feldkircher, <martin.feldkircher@da-vienna.ac.at>

Examples

rNorm_dens <- density(rnorm(100000))
quantile(rNorm_dens)

rotate3D Three-Dimensional Rotation Matrix

Description
Render a 3-Dimensional projection matrix given positive or negative degree changes in yaw, pitch,
and / or roll.

Usage

rotate3D(yaw, pitch, roll)

Arguments
yaw z-axis change in degrees; look left (+) or right (-). Consider this a rotation on
the x-y plane.
pitch y-axis change in degrees; look up (-) or down (+). Consider this a rotation on
the x-z plane.
roll x-axis change in degrees; this change appears as if you touch head to shoulders:

right roll (+) and left roll (-).


https://CRAN.R-project.org/package=BMS
https://CRAN.R-project.org/package=BMS
https://doi.org/10.18637/jss.v068.i04

34 rotateScale3D

Details

When plotting with the package scatterplot3d, the default perspective is such that the pitch action
appears as a roll while the roll action appears as a pitch.

This function is used only in data generation of the package vignette. This function is called by
rotateScale3D().

Value

A 3 x 3 projection matrix corresponding to the degree changes entered.

See Also
Called by: rotateScale3D.

Examples

rotate3D(yaw = -10, pitch = @, roll = 15)

rotateScale3D Three-Dimensional Rotation and Scaling Matrix

Description

Render a 3-Dimensional projection matrix given positive or negative degree changes in yaw, pitch,
and / or roll and increment or decrement feature scales.

Usage

rotateScale3D(rot_angles = c(@, @, @), scale_factors = c(1, 1, 1))

Arguments

rot_angles a list or vector containing the rotation angles in the order following: yaw, pitch,
roll. Defaults to <0,0,0>.

scale_factors alist or vector containing the values by which to multiply each dimension. De-
faults to <1,1,1>.
Details

See the help file of function rotate_3D() for a brief explanation of how these angles behave in
scatterplot3d functionality (from package scatterplot3d).

This function is used only in data generation in the package vignette (version 1) and the dataS-
tateSwitch() function within the mspProcessData() function. This function calls rotate3D().

Value

A 3 x 3 projection matrix corresponding to the degree and scale changes entered.
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See Also

Calls: rotate3D. Called by dataStateSwitch.

Examples

rotateScale3D(rot_angles = list(yaw = -10, pitch = @, roll = 15),
scale_factors = c(0.2, 1, 5))

tenDay_clean Real Process Data for Training

Description

Data from the SM-MBR Bioreactor system over ten days. This data will be used for training the
mvMonitoring package.

Usage

tenDay_clean

Format

An xts matrix of 1,299 rows and 35 features recorded over 2017-01-17 at 00:10 to 2017-01-27 at
00:00.

Source

Kathryn Newhart

threshold Non-parametric Threshold Estimation

Description

Calculate the non-parametric critical value threshold estimates for the SPE and T2 monitoring test
statistics.

Usage

threshold(pca_object, alpha = 0.001, ...)
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Arguments
pca_object A list with class "pca" from the internal pca() function
alpha The upper 1 - alpha quantile of the SPE and T2 densities from the training data
passed to this function. Defaults to 0.001.
Lazy dots for additional internal arguments
Details

This function takes in a pca object returned by the pca() function and a threshold level defaulting
to alpha = 0.1 percent of the observations. This critical quantile is set this low to reduce false
alarms, as described in Kazor et al (2016). The function then returns a calculated SPE threshold
corresponding to the 1 - alpha critical value, a similar T2 threshold, and the projection and Lambda
Inverse (1 / eigenvalues) matrices passed through from the pca() function call.

This internal function is called by faultFilter().

Value
A list with classes "threshold" and "pca" containing:

SPE_threshold — the 1 - alpha quantile of the estimated SPE density
T2_threshold — the 1 - alpha quantile of the estimated Hotelling’s T2 density

projectionMatrix — a projection matrix from the data feature space to the feature subspace which
preserves some pre-specified proportion of the energy of the data scatter matrix. This pre-
specified energy proportion is user supplied as the var.amnt argument in the pca() function.
See the pca() function’s help file for more details.

Lambdalnv — a diagonal matrix of the reciprocal eigenvalues of the data scatter matrix
T2 - the vector of Hotelling’s T2 test statistic values for each of the n observations in "data"

SPE - the vector of SPE test statistic values for each of the n observations in "data"

See Also

Called by: faultFilter. This function uses a port of the quantile.density() function from the
now-orphaned BMS package.

Examples

nrml <- mspProcessData(faults = "NOC")
scaledData <- scale(nrml[,-11)

pca_obj <- pca(scaledData)
threshold(pca_object = pca_obj)
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