Package ‘move’

November 20, 2024

Type Package
Title Visualizing and Analyzing Animal Track Data
Version 4.2.6

Description Contains functions to access movement data stored in 'movebank.org'
as well as tools to visualize and statistically analyze animal movement data,
among others functions to calculate dynamic Brownian Bridge Movement Models.
Move helps addressing movement ecology questions.

License GPL (>=3)
URL https://bartk.gitlab.io/move/

BugReports https://gitlab.com/bartk/move/-/issues
LazyLoad yes

LazyData yes

LazyDataCompression xz

Depends geosphere (>= 1.4-3), methods, sp, raster (>= 3.6-14), R (>=
3.5.0)

Suggests adehabitatHR, adehabitatLT, markdown, rmarkdown, circular,
ggmap, mapproj, testthat, knitr, ggplot2, leaflet, lubridate,
ctmm, amt, bcpa, EMbC, solartime

Imports httr, memoise, terra, xml2, Rcpp
LinkingTo Rcpp

RoxygenNote 7.2.3

VignetteBuilder knitr
NeedsCompilation yes

Author Bart Kranstauber [aut, cre],
Marco Smolla [aut],
Anne K Scharf [aut]

Maintainer Bart Kranstauber <b.kranstauber@uva.nl>
Repository CRAN
Date/Publication 2024-11-20 16:40:02 UTC

https://bartk.gitlab.io/move/
https://gitlab.com/bartk/move/-/issues

2 Contents

Contents
move-package L 3
UD-class e e 5
anUsedRecords-class oL 6
angleo e 7
asdataframe 8
brownian.bridge.dyn 10
brownian.motion.variance.dyn Lo Lo 13
burst e e 14
burstld 15
CItALIONS o v i e 16
COMEOUL .« v v v vt e i e e e e e e e e e e e e e e e e e e 17
coordinates e e e 18
corridor e e 18
DBBMM-class e e 20
DBBMMBurstStack-classo 22
DBBMMStack-class 23
dBGBvariance-class 24
dBMvariance e 25
distance e 26
duplicatedDataExample 27
dynBGB e e 28
dynBGB-class 30
dynBGBvariance L 31
emd 33
equalProj 35
fishers L 36
getDataRepositoryData 36
getDuplicatedTimestamps e e 37
getMotionVariance e 39
getMovebank 40
getMovebankAnimals 43
getMovebankData 44
getMovebankIDo 47
getMovebankLocationData L L 48
getMovebankNonLocationData 51
getMovebankReferenceTable 53
getMovebankSensors L. Lo 54
getMovebankSensorsAttributes oL Lo 55
getMovebankStudies L 56
getMovebankStudy 57
getVolumeUD e 58
hrBootstrap e e e e 60
idData e 61
interpolateTime 62
leroy . . . o L e e 64

leroydbgb L 65

move-package 3

licenseTerms e e e e 65
Lnes e e e 66
MOVE . . o v v v e 67
Move-class e e e e 71
move2ade e e e e 73
movebankLogin L 74
MovebankLogin-class L. 75
MoveBurst e e e e e e e e 76
moveStack L e 78
MoveStack-class e e e 79
nAndiv L e e e 82
NIOCS . . e e e e 82
namesIndiv L e e 83
outerProbability 84
PlOt . o e e e 85
plotBursts 86
POINES . . o o e e e e e e e e e e e 87
7211 P 88
TAStEr2CONIOUT v v e e e e e e e e e e e 89
searchMovebankStudies 91
seglength L 92
SEMSOT & v v vt vt e e e e e e e e e e e e e e e e e e e 93
Show e e e e 94
speed . . . e e e 95
SPLIt . o e 96
spTransform e 97
subset-method e 98
SUMMATY .« « v v e v v e v e e e et e e e e e e e e e e e e 99
thinTrackTime e 100
timeLag 102
MEStAMPS . . & . v v o v e e e e e e e e e e e e e e e e e e 103
trackld e 104
turnAngleGe e e e 105
UDStack e e 106
unUsedRecords<- 107
utilization density datao oL 108
Index 109
move-package An overview of the functions in this package
Description

move is a package that contains functions to access movement data stored on Movebank as well
as tools to visualize and statistically analyse animal movement data. Move addresses ecological
questions regarding movement.

https://www.movebank.org

4 move-package

Details
The package implements classes for movement data and supports
* Creation of Move objects (see Move-class) representing animals and their track
* Calculation of utilization distributions using the dynamic Brownian bridge Movement Model
* Plotting tracks, utilization distributions and contours

* Access to raster, n.col, projection and coordinates

* Different CRS projection methods such as longlat or aeqd

I. Creating Move objects

Move objects can be created from files with the function:
move To create an object containing one animal track

moveStack To create an object containing multiple move objects
getMovebankData To create a Move or a MoveStack object with data from Movebank

II. Calculation of the utilization distribution

The dynamic Brownian Bridge Movement Model calculates the occurrences distribution of a given
track

brownian.bridge.dyn To calculate the occurrences distribution
getVolumeUD To calculate the Utilization distribution (UD)

III. Accessing values

bbox Bounding box of a Move* object

coordinates Track-coordinates of a Move* object

extent Extent of a Move* object

namesIndiv ~ Names of a Move* object

n.locs The number of locations a Move* object

projection The projection method of a Move* object or raster
timelag The time lags between the locations of a Move* object

timestamps Track-timestamps of a Move* object

IV. Plotting data

The track or the utilization distribution can be plotted with the following functions:

plot plots the utilization distribution with fixed width and height ratio (see DBBMM-class), or the track (see Move-clas
image plots the utilization distribution fitted to the window
contour adds the contours of utilization distribution to a plot

.UD-class 5

Author(s)

Bart Kranstauber, Marco Smolla, Anne Scharf

Maintainer: Bart Kranstauber, Marco Smolla, Anne Scharf

References

move on CRAN

.UD-class The UD class

Description

The .UD, .UDStack and .UDBurstStack class represent a raster of a simple abstraction of the
utilization distribution (UD) where all probabilities necessarily sum to one. A .UDStack object can
be obtained with the function UDStack.

Slots

crs part of the Raster-class
data part of the Raster-class
extent part of the Raster-class
file part of the Raster-class
history part of the Raster-class
names part of the Raster-class
legend part of the Raster-class

method stores the method that was used to calculate the utilization distribution (UD), e.g. dynamic
Brownian Bridge

ncols part of the Raster-class
nrows part of the Raster-class
rotated part of the Raster-class
rotation part of the Raster-class
title part of the Raster-class

z part of the Raster-class

https://CRAN.R-project.org/package=move

6 .unUsedRecords-class

Methods
contour signature(object =".UD"): adds a contour line to a plot, also for .UDStack
emd signature(object =".UD"): quantifies similarity between utilization distributions, also for

.UDStack
getVolumeUD signature(object =".UD"): modifies the .UD/.UDStack raster

outerProbability signature(object =".UD"): calculates the animal occurrence probabilities
at the border of the raster (only for .UD class)

plot signature(object =".UD"): plots the raster from a .UD/.UDStack object with re-size in-
sensitive proportions

raster2contour signature(object =".UD"): converts a raster to contour lines, also for .UD-
Stack

show signature(object =".UD"): displays summary the .UD/.UDStack object

summary signature(object =".UD"): summarizes the information of the raster from a .UD/.UDStack
object

subset signature(object =".UD"): subsets the .UD/.UDStack object
split signature(object = ".UDStack"): splits a .UDStack into a list of .UD objects

Note

A DBBMM and dynBGB object contains a . UD.

A DBBMMStack contains a . UDStack.

A DBBMMBurstStack contains a .UDBurstStack.
These objects can be used to program against.

Author(s)
Bart Kranstauber & Anne Scharf

.unUsedRecords-class The .unUsedRecords and .unUsedRecordsStack class

Description

The . unUsedRecords and . unUsedRecordsStack object stores unused records in Move, MoveBurst
and MoveStack objects and can be obtained with the function unUsedRecords.

Slots

trackldUnUsedRecords Object of class "factor"”: vector that indicates, which data, coordinates
and timestamps of the unused records belong to each individual in a .unUsedRecordsStack
object

timestampsUnUsedRecords Object of class "POSIXct": timestamps associated to the unused
records.

sensorUnUsedRecords Object of class "factor”: sensors used to record the unused records
dataUnUsedRecords Object of class "data. frame"”: data associated to the unused records

angle 7

Methods

Methods defined with class "MoveStack" in the signature:

as.data.frame signature(object =".unUsedRecords”): extracts the spatial data frame
sensor signature(object =".unUsedRecords"): extracts the sensor(s) used to record the data
timestamps signature(object = ".unUsedRecords"): extracts returns or sets the timestamps
trackId signature(object = ".unUsedRecordsStack"”): returning the Id of the individual per
data point
Author(s)

Marco Smolla & Anne Scharf

angle Headings of the segments of a movement track

Description

This function calculates the heading/azimuth/direction of movement of each segment between con-
secutive locations of a track.

Usage
S4 method for signature '.MoveTrackSingle'
angle(x)
S4 method for signature '.MoveTrackStack'
angle(x)
Arguments
X amove, moveStack or moveBurst object
Details

Other terms for this measurment are azimuth or direction of travel/movement. The angles are
relative to the North pole. The headings are calculated using the functions bearing of the geosphere
package.

Value

Angles in degrees (between -180 and 180). North is represented by 0.

If a move object is provided, a numeric vector one element shorter than the number of locations is
obtained.

If amoveStack object is provided, a list with one element per individual containing a numeric vector
one element shorter than the number of locations is obtained.

Author(s)

Marco Smolla & Anne Scharf

See Also

turnAngleGce

Examples

angles from a Move object
data(leroy)
head(angle(leroy))
to add this information to the move object, a "NA" has to be assigened

e.g. to the last location (it also could be assigend to the first location).
leroy$angles <- c(angle(leroy), NA)

as.data.frame

angles from a MoveStack object
data(fishers)
str(angle(fishers))
to add this information to the moveStack object, a "NA" has to be assigened
e.g. to the last location of each individual

fishers$angles <- unlist(lapply(angle(fishers), c, NA))

as.data.frame

Returns a Data Frame

Description

Function to create a data. frame of a Move, dBMvariance, dBGBvariance, .unUsedRecords object.

Usage

S4
as.data.
S4
as.data
##t S4
as.data.

S4
as.data

S4
as.data.
S4
as.data.

method for
frame(x)
method for

.frame(x)

method for
frame(x)

method for

.frame(x)

method for
frame(x)
method for
frame(x)

signature
signature

signature

signature

signature

signature

'"Move'

'"MoveStack'

'"MoveBurst'

'dBMvariance'

".unUsedRecords'

' .unUsedRecordsStack'

as.data.frame 9

Arguments
X amove, moveStack, moveBurst, dBMvariance, dBMvarianceStack, dBMvarianceBurst,
dBGBvariance,.unUsedRecords or .unUsedRecordsStack object
Details

Depending on the class of the object provided, the obtained data. frame contains the information
contained in the slots:

non

* if class move: "timestamps", "idData", "sensor", "data", "coords".

non

* if class moveStack: "timestamps", "idData", "sensor", "data", "coords", "trackld".
* if class moveBurst: "timestamps", "idData", "sensor", "data", "coords", "burstld".

* if class dBMvariance: "timestamps", "sensor", "data", "coords", "window.size", "margin",

"means", "in.windows", "interest".
* if class dBMvarianceStack: "timestamps", "sensor", "data", "coords", "window.size", "mar-
gin", "means", "in.windows", "interest","trackld".
" " " " n n n n

* if class dBMvarianceBurst: "timestamps", "sensor", "data", "coords", "window.size", "mar-
gin", "means", "in.windows", "interest", "burstld".
* if class dBGBvariance: "timestamps", "sensor", "data", "coords", "paraSd", "orthSd", "mar-
. n n

gin", "windowSize".

non

* if class .unUsedRecords: "dataUnUsedRecords", "timestampsUnUsedRecords", "sensorUnUse-
dRecords".

e if class .unUsedRecordsStack: "trackldUnUsedRecords", "dataUnUsedRecords", "times-

tampsUnUsedRecords", "sensorUnUsedRecords".

Value

’data.frame’

Author(s)
Marco Smolla & Anne Scharf

Examples

obtain data.frame from move object
data(leroy)
head(as.data.frame(leroy))

obtain data.frame from moveStack object
data(fishers)
head(as.data.frame(fishers))

obtain data.frame from .unUsedRecordsStack object
unUsedFishers <- unUsedRecords(fishers)
head(as.data.frame(unUsedFishers))

10

brownian.bridge.dyn

brownian.bridge.dyn Calculates a dynamic Brownian Bridge

Description

This function uses a Move or MoveStack object to calculate the utilization distribution (UD) of the
given track. It uses the dynamic Brownian Bridge Movement Model ((BBMM) to do so, having the
advantage over the other Brownian Bridge Movement Model that changes in behavior are accounted
for. It does so by using the behavioral change point analysis in a sliding window. For details see

’References’.

Usage

brownian.bridge.dyn(object, raster=1, dimSize=1@, location.error,

Arguments

object

raster

dimSize

location.error

margin

window.size

ext

bbox

margin=11, window.size=31, ext=.3, bbox=NA,...)

amove, moveStack, moveBurst, dBMvariance, dBMvarianceStack object. This
object must be in a projection different to longitude/latitude, use spTransform
to transform your coordinates.

a RasterLayer object or a numeric value. If a RasterlLayer is provided the
brownian.bridge.dyn starts to calculate the UD based on that raster. If a nu-
meric value is provided it is interpreted as the resolution of the square raster
cells (in map units); the according raster will be calculated internally.

numeric. dimSize is only used if raster is not set. dimSize is interpreted as the
number of cells along the largest dimension of the track. The according raster
will be calculated internally.

single numeric value or vector of the length of coordinates that describes the
error of the location (sender/receiver) system in map units. Or a character string
with the name of the column containing the location error can be provided.

The margin used for the behavioral change point analysis. This number has to
be odd.

The size of the moving window along the track. Larger windows provide more
stable/accurate estimates of the brownian motion variance but are less well able
to capture more frequent changes in behavior. This number has to be odd.

Describes the amount of extension of the bounding box around the animal track.
It can be numeric (same extension into all four directions), vector of two (first
X, then y directional extension) or vector of four (xmin, xmax, ymin, ymax
extension). Default is .3 (extends the bounding box by 30%). Only considered
in combination with a numeric raster argument or the dimSize argument.

vector with 4 numbers defining a bounding box for the raster. Only considered
in combination with a numeric raster argument or the dimSize argument.

Additional arguments:

brownian.bridge.dyn 11

time.step It correspond to the size of the time intervals taken for every inte-
gration step (in minutes) and thus specifies the temporal resolution of the
numerical integration. If left NULL 15 steps are taken in the shortest time
interval. See "Details’. Optional.

verbose logical. default is TRUE; if FALSE printing messages about the com-
putational size is suppressed. Optional.

burstType character vector with the name(s) of burstld(s) for which the UD
should be calculated. This attribute can only be used if a moveBurst is
provided in the object argument. Optional.

Details

There are four ways to launch the brownian.bridge.dyn function:

1. Use a raster:

A RasterLayer object is set for the raster argument which is then used to calculate the UD.

(needed arguments: object, raster(=RasterLayer), location.error, margin, window.size; optional
arguments: time.step, verbose, burstType)

2. Set the cell size

To set the cell size, set a numeric value for the raster argument without providing dimSize. The
numeric raster argument is used as the cell sizes of the raster.

(needed arguments: object, raster(=numeric), location.error, margin, window.size; optional argu-
ments: ext, bbox, time.step, verbose, burstType)

3. Set the number of cells (col/row)

To set the number of cells along the largest dimension a numeric dimSize argument can be set.
(needed arguments: object, dimSize, location.error, margin, window.size; optional arguments: ext,
bbox, time.step, verbose, burstType)

4. Using default raster

When there are no values set, the default raster value is used to calculate and create a RasterLayer
object, which is returned to the same function. Note: depending on the size of the area of interest,
the default cell size value can result in a large number of cells which may take a very long time to
calculate!

The function prints an estimate of the size of the computational task ahead. This can give an
indication of how long the computation is going to take. It should scale roughly linearly with the
duration of the computations although changes in the setup mean the computational complexity still
is calculated base on the extent but this is not informative any more on the computation time. It is
only useful as a rough indication of calculation duration.

time.step. The default value is the shortest time interval divided by 15. This means, if there
is a location recorded e.g. every 30 mins, the function divides each segment into 2 mins chunks
upon which it does the calculation. If for some reason there is one time interval of 15 secs in
the track, each segment of the track will be divided into 1secs chunks, increasing the calcula-
tion time immensely. Before calculating the DBBMM, use e.g. min(timeLag(x=myMoveObject,
units="mins")) to check which is the duration of the shortest time interval of the track. If the

12 brownian.bridge.dyn

track contains time intervals much shorter than the scheduled on the tag, set the time.step e.g. to
the scheduled time interval at which the tag was set, divided by 15.

Value

’DBBMM’ object, if move or dBMvariance object is provided
’DBBMMStack’ object, if moveStack or dBMvarianceStack object is provided
’DBBMMBurstStack’ object, if moveBurst object is provided

Note

Note that the first few and last few segments of the trajectory are omitted in the calculation of the
UD since a lower number of estimates for the Brownian motion variance are obtained for those
segments.

Thanks to Ryan Nielson for making the BBMM package that served as an example for early versions
of this code.

Author(s)

Bart Kranstauber, Marco Smolla & Anne Scharf

References

Kranstauber, B., Kays, R., LaPoint, S. D., Wikelski, M. and Safi, K. (2012), A dynamic Brownian
bridge movement model to estimate utilization distributions for heterogeneous animal movement.
Journal of Animal Ecology. doi: 10.1111/j.1365-2656.2012.01955.x

See Also

brownian.motion.variance.dyn, getMotion Variance, getVolumeUD, contour, outerProbability, raster,
raster2contour, dynBGB, dynBGBvariance

Examples

create a move object

data(leroy)

change projection method to aeqd and center the coordinate system to the track
data2 <- spTransform(leroy[30:90,], CRSobj="+proj=aeqd +ellps=WGS84", center=TRUE)

create a DBBMM object
dbbmm <- brownian.bridge.dyn(object=data2, location.error=12, dimSize=125, ext=1.2,

time.step=2, margin=15)

plot (dbbmm)

brownian.motion.variance.dyn 13

brownian.motion.variance.dyn
Calculates the dynamic brownian motion variance

Description

A function to calculate the dynamic brownian motion variance for a movement track. It can be also
used by advanced programmers to program against.

Usage

S4 method for signature '.MoveTrackSingle,numeric,numeric,numeric’
brownian.motion.variance.dyn(object, location.error, window.size, margin)

Arguments

object a move, moveStack or moveBurst object can be used for variance calculation.
This object must be in a flat coordinate system (projection different to longi-
tude/latitude), use spTransform to transform your coordinates.

location.error single numeric value or vector of the length of coordinates that describes the
error of the location (sender/receiver) system in map units.

window.size The size of the moving window along the track for the variance calculation.
Larger windows provide more stable/accurate estimates of the brownian motion
variance but are less well able to capture more frequent changes in behavior.
This number has to be odd.

margin The margin size used for variance calculation. This number has to be odd.

Value

’dBMvariance’ object, if move object is provided
’dBMvarianceStack’ object, if moveStack object is provided
’dBMvarianceBurst’ object, if moveBurst object is provided

Author(s)

Bart Kranstauber & Anne Scharf

References

Kranstauber, B., Kays, R., LaPoint, S. D., Wikelski, M. and Safi, K. (2012), A dynamic Brownian
bridge movement model to estimate utilization distributions for heterogeneous animal movement.
Journal of Animal Ecology. doi: 10.1111/j.1365-2656.2012.01955.x

See Also

brownian.bridge.dyn, dynBGBvariance

14 burst

Examples

data(leroy)

data2 <- spTransform(leroy[1:80,], CRSobj="+proj=aeqd +ellps=WGS84", center=TRUE)
err<-rep(23.5,n.locs(data2))

dBMvar <- brownian.motion.variance.dyn(data2, location.error=err, margin=13, window.siz=31)
dBMvar

burst Bursting a track

Description

Bursting a track by a specified variable

Usage

S4 method for signature 'Move,factor’
burst(x, f, ...)

Arguments
X a move object
f a character, factor, or numeric vector that indicates how to burst the coordinates
of a Move object. It must be one shorter than the number of locations, because
there are always one less segments of a track than coordinates
Currently not implemented
Details

The burst function bursts (divides) a track into segments that are specified by the burstIDs (e.g.
behavioral annotations). It allows to investigate different parts of a track according to supplied
variables like day and night, movement and rest, and so on.

Value

a 'moveBurst’ object

Author(s)

Marco Smolla

See Also

burstld, split, plotBursts

burstld 15

Examples

data(leroy)

behav <- c(rep(c(”"B1","B2","B3","B2"),each=200), rep("B1", 118))
testb <- burst(x=leroy, f=behav)

plot(testb, type="1")

burstId Returns or sets the burstld

Description

Obtain or set the ids of the behavioral categorization per segment of a MoveBurst object.

Usage

S4 method for signature 'MoveBurst'
burstId(x)

S4 replacement method for signature '.MoveTrackSingleBurst,factor'
burstId(x) <- value

Arguments

X amoveBurst object

value Replacement values for the burst ids, either a factor or a character vector
Value

Returns a factor indicating the category of each segment.

Author(s)
Bart Kranstauber & Anne Scharf

See Also

burst

Examples

data(leroy)
burstTrack <- burst(x=leroy,f=months(timestamps(leroy))[-11)
burstId(burstTrack)

16 citations

citations Extract the citation of a Move or MoveStack object

Description

The citations method returns or sets the citation of a track from a Move or MoveStack object.

Usage

S4 method for signature '.MoveGeneral'
citations(obj)

S4 replacement method for signature '.MoveGeneral'
citations(obj) <- value

Arguments
obj amove, moveStack or moveBurst object
value citation with class character

Value

character string of the citation

Author(s)

Marco Smolla & Anne Scharf

See Also

licenseTerms

Examples

data(leroy)
citations(leroy) #get the citation from a Move object
citations(leroy) <- "No paper available” #change the citation and set it for a Move object

data(fishers)
citations(fishers) #get the citation from a MoveStack object
citations(fishers) <- "Nothing to cite"” #change the citation and set it for a MoveStack object

contour 17

contour Contour plot

Description

Contour plot of a RasterLayer from a DBBMM or dynBGB object.

Usage
S4 method for signature '.UD'
contour(x, ...)
S4 method for signature '.UDStack'
contour(x, ...)
Arguments
X a DBBMM, DBBMMStack, dynBGB, .UD or .UDStack object

additional arguments, like levels and nlevels, that can be passed to contour
(graphics package). See 'Details’.

Details

The contour function creates a shape of the area in which the animal can be found by a certain
probability (i.e. the 90% contour describes the area in which the animal can be found with the 90%
probability).

One or several probabilities can be set with levels (numeric or vector of values between 0 and 1).
If no value is set all contour lines are returned.

You can also use nlevel to set a number of fixed distance levels.

To change parameters of the contour or line plotting use the usual parameters of the plot function
(like 1wd, Ity, and so on).

You can also add the contour lines to a plot of a DBBMM, dynBGB or . UD object by adding add = TRUE.

Author(s)

Marco Smolla & Anne Scharf

Examples

data(leroydbbmm)

to add a 50% and 95% contour to a plot from DBBMM object dbbmm
plot(leroydbbmm)

contour(leroydbbmm, levels=c(.5,.95), add=TRUE)

contour (leroydbbmm, levels=c(.5,.95))

18 corridor

coordinates Extract the track coordinates from a Move or MoveStack object

Description

The coordinates method extracts the coordinates of a track.

Usage
S4 method for signature 'Move'’
coordinates(obj,...)
Arguments
obj amove, moveStack, moveBurst, dBMvariance, dBMvarianceBurst, dBMvarianceStack

or dBGBvariance object

Currently not implemented

Value

Returns a matrix with the coordinates of the track

Author(s)
Marco Smolla & Anne Scharf

Examples

create a move object
data(leroy)

extract the coordinates
head(coordinates(leroy))

corridor Corridor behavior identification

Description

This function identifies movement track segments whose attributes suggest corridor use behavior

Usage

S4 method for signature '.MoveTrackSingle'

corridor(x,speedProp=.75, circProp=.25, minNBsegments = 2, plot=FALSE, ...)
S4 method for signature '.MoveTrackStack'

corridor(x,speedProp=.75, circProp=.25, minNBsegments = 2, plot=FALSE, ...)

corridor 19

Arguments
X amove, moveStack or moveBurst object.
speedProp numeric between 0 and 1, defines the proportion of speeds which are high

enough to be a valid corridor point (default value selects speeds that are greater
than 75 % of all speeds).

circProp numeric between 0 and 1, defines the proportion of the circular variances that
is low enough to be a valid corridor point. Low values of the circular variance
indicate that the segments are (near) parallel (default value selects variances that
are lower than 25 % of all variances).

minNBsegments numeric equal or larger than 2 representing the minimum number of neiburing
corridor segments that each corridor segments has to have (see Details). Default
is 2.

plot logical, if TRUE the track is plotted together with dots that indicate corridor
points when a move object is provided (color scale indicates how many corridor
points are near by, few: blue, many: pink).

cex argument can be set specifying the size of the points when plot=TRUE.
Optional.

Details

The corridor function uses the attributes of a movement step (segment) to identify movement steps
that exhibit corridor use behavior. For each segment, the speed and the azimuth are calculated and
assigned to the segment midpoint.

A circular buffer is created around the midpoint of each segment whose radius is equal to half the
segment length. The segment azimuth (180 >= azimuth > -180) is converted into a new unit, the
’pseudo-azimuth’ (0 <= 360), removing the directional information.

Subsequent, the circular variance of the pseudo-azimuths of all segment midpoints that fall within
the circular buffer is calculated. Low values of the circular variance indicate that the segments are
(near) parallel.

Next, it is determined whether a segment’s speed is higher than speedProp (by default the upper
25% speeds) and its circular variance is lower than circProp (by default the lower 25% of all
variances).

Segment midpoints that meet both of these requirements are considered as a ’corridor’ point, all
others are considered 'non-corridor’ points. Finally, a corridor point is determined to be within a
true corridor if within its circular buffer there are more ’corridor’ points than *non-corridor’ points.
The argument minNBsegments can be used to establish the minimum number of ’corridor’ points
that each circular buffer needs for the focal segment to be defined as a corridor. It is useful to
exclude wrongly (visual inspection) identified corridors with only a few segments by increasing the
value of minNBsegments. Note that when increasing the value of minNBsegments, only segments
with enough corridor neighbors are classified as corridors and not all segments that visually seem
to fit to be classified as corridors. To remove the wrongly classified corridors, a value of 3 or 4 is
usually sufficient.

Value

The function returns a moveBurst object or a list of moveBurst objects (if a MoveStack is supplied).
The MoveBurst date.frame stores the following information:

20 DBBMM-class

- segment midpoint
- speed

- azimuth

- pseudo-azimuth

- circular variance

The object is bursted by the factor that indicates whether the segment belongs to a corridor seg-
ment or not, and is specified in the "burstld" slot.

Note

The default values for the speedProp and circProp can be changed by the users discretion using
the according argument.

Author(s)
Marco Smolla & Anne Scharf

References

LaPoint, S., Gallery, P., Wikelski, M. and Kays, R. (2013), Animal Behavior, Cost-based Corridor
Models, and Real Corridors. Landscape Ecology. doi:10.1007/s10980-013-9910-0.

Examples

if (requireNamespace("circular”)){
with a move object
data(leroy)
tmp <- corridor(leroy, plot=TRUE)
plot(tmp, type="1", col=c("red"”,"black”)[c(tmp@burstId,NA)])

with a moveStack object
data(fishers)
stacktmp <- corridor(fishers[c(1:400,sum(n.locs(fishers))-(400:1)),1)
plot(stacktmp[[2]], col=c("red"”,"black"”)[stacktmp[[2]]@burstId])
lines(stacktmp[[2]], col=c("red”,"black”)[c(stacktmp[[2]]@burstId,NA)])

DBBMM-class The DBBMM class

Description

The DBBMM object is created within the brownian.bridge.dyn function from a Move or dBMvariance
object. It contains a dBMvariance object and a raster with probabilities.

DBBMM-class 21

Slots

crs part of the Raster-class
data part of the Raster-class

DBMyvar Object of class "dBMvariance": includes the window.size, margin, means, in.windows,
break.list, and points of interest

ext the extension factor set by the user
extent part of the Raster-class

file part of the Raster-class

history part of the Raster-class
legend part of the Raster-class

method stores the method that was used to calculate the utilization distribution (UD), e.g. dynamic
Brownian Bridge

ncols part of the Raster-class
nrows part of the Raster-class
rotated part of the Raster-class
rotation part of the Raster-class
title part of the Raster-class

z part of the Raster-class

Methods

contour signature(object = "DBBMM"): adds a contour line to a plot

emd signature(object = "DBBMM"): quantifies similarity between utilization distributions

equalProj signature(object = "DBBMM"): checks whether all objects of a list are in the same
projection

getMotionVariance signature(object = "DBBMM"): extracts the estimated motion variance

getVolumeUD signature(object = "DBBMM"): modifies the UD raster

outerProbability signature(object = "DBBMM"): calculates the animal occurrence probabili-
ties at the border of the raster

plot signature(object = "DBBMM"): plots the raster from a DBBMM object with re-size insen-
sitive proportions

raster2contour signature(object = "DBBMM"): converts a raster to contour lines

show signature(object = "DBBMM"): displays summary the DBBMM object

summary signature(object = "DBBMM"): summarizes the information of the raster from a DBBMM
object

subset signature(object = "DBBMM"): subsets the DBBMM object

Note

The DBBMM object contains a dBMvariance and a .UD object which can be used to program against.

Author(s)
Marco Smolla & Anne Scharf

DBBMMBurstStack-class

DBBMMBurstStack-class The DBBMMBurstStack class

Description

The DBBMMBurstStack object is created within the brownian.bridge.dyn function from a MoveBurst
or dBMvarianceBurst object. It contains a dBMvarianceBurst object and a raster with probabili-
ties.

Slots

crs part of the Raster-class

DBMyvar Object of class "dBMvarianceBurst": includes the window.size, margin, means, in.windows,
break.list, and points of interest

ext the extension factor set by the user
extent part of the Raster-class
filename part of the Raster-class
layers part of the Raster-class

method the method that was used to calculate the utilization distribution, e.g. dynamic Brwonian
Bridge

ncols part of the Raster-class
nrows part of the Raster-class
rotated part of the Raster-class
rotation part of the Raster-class
title part of the Raster-class

z part of the Raster-class

Methods

getMotionVariance signature(object = "DBBMMBurstStack"): extracts the estimated motion
variance

plot signature(object = "DBBMMBurstStack”): plots the raster from a DBBMMBurstStack
object with re-size insensitive proportions

show signature(object = "DBBMMBurstStack"): displays summary the DBBMMBurstStack ob-
ject

subset signature(object = "DBBMMBurstStack"): subsets the DBBMMBurstStack object

UDStack signature(object = "DBBMMBurstStack"”): creates UDStack objects

Note

The DBBMMBurstStack object contains a dBMvarianceBurst and a .UDStack object which can be
used to program against.

DBBMMStack-class 23

Author(s)
Anne Scharf

DBBMMStack-class The DBBMMStack class

Description

The DBBMMStack object is created within the brownian.bridge.dyn function from a MoveStack or
dBMvarianceStack object. It contains a dBMvarianceStack object and a raster with probabilities.

Slots

crs part of the Raster-class

DBMyvar Object of class "dBMvarianceStack": includes the window.size, margin, means, in.windows,
break.list, and points of interest

ext the extension factor set by the user

extent part of the Raster-class

filename part of the Raster-class

layers part of the Raster-class

method the method that was used to calculate the utilization distribution, e.g. dynamic Brwonian
Bridge

ncols part of the Raster-class

nrows part of the Raster-class

rotated part of the Raster-class

rotation part of the Raster-class

title part of the Raster-class

z part of the Raster-class

Methods

contour signature(object = "DBBMMStack"): adds a contour line to a plot
emd signature(object = "DBBMMStack"): quantifies similarity between utilization distributions

equalProj signature(object = "DBBMMStack"): checks whether all objects of a list are in the
same projection

getMotionVariance signature(object = "DBBMMStack"”): extracts the estimated motion vari-
ance

getVolumeUD signature(object = "DBBMMStack"): modifies the UD raster

outerProbability signature(object = "DBBMMStack"): calculates the animal occurrence prob-
abilities at the border of the raster

plot signature(object = "DBBMMStack”): plots the raster from a DBBMMStack object with
re-size insensitive proportions

24 dBGByvariance-class

raster2contour signature(object = "DBBMMStack"): converts a raster to contour lines
show signature(object = "DBBMMStack”): displays summary the DBBMMStack object

split signature(object = "DBBMMStack"): splits a DBBMMStack into a list of DBBMM ob-
jects

summary signature(object = "DBBMMStack"”): summarizes the information of the raster from a
DBBMMStack object

subset signature(object = "DBBMMStack"): subsets the DBBMMStack object

Note
The DBBMMStack object contains a dBMvarianceStack and a .UDStack object which can be used
to program against.

Author(s)
Marco Smolla & Anne Scharf

dBGBvariance-class The dynBGBvariance class

Description

The dynBGBvariance object stores the orthogonal and parallel variances calculated by the dynamic
Bivariate Gaussian Bridge model, and is created within the dynBGBvariance function from a Move
object.

Slots

windowSize The window size used for dynBGBvariance calculation
margin The margin used for dynBGB calculation

paraSd The standard deviation values of the parallel variance values
orthSd The standard deviation values of the orthogonal variance values
nEstim The number of windows each location was included in

segInterest Logical string, FALSE: segments have been omitted in the calculation since a lower
number of estimates for variance are obtained for these segments. TRUE: segments included
in the calculation

Methods

as.data.frame signature(object = "dBGBvarianceTmp"): extracts the spatial data frame

coordinates signature(object = "dBGBvarianceTmp"): extracts the coordinates from the Move
object contained in the dBGBvarianceTmp

dynBGB signature(object = "dBGBvarianceTmp"): calculates the utilization distribution (UD)
of the given track using the dynamic Bivariate Gaussian Bridge model

dBMVvariance 25

getMotionVariance signature(object = "dBGBvarianceTmp"): extracts the estimated motion
variance

lines signature(object = "dBGBvarianceTmp"): add lines of the track of the animal to a plot

points signature(object = "dBGBvarianceTmp"): add points of the track of the animal to a
plot

plot signature(object = "dBGBvarianceTmp"): plots the track of the animal

show signature(object = "dBGBvarianceTmp"): displays summary the dBGBvarianceTmp ob-
ject

summary signature(object = "dBGBvarianceTmp"): summarizes the information of the raster
from a dBGBvarianceTmp object

subset signature(object = "dBGBvarianceTmp"): subsets the dBGBvarianceTmp object

Note

The dynBGBvariance object contains a .MoveTrackSingle and a dBGBvarianceTmp object which
can be used to program against.

Author(s)

Bart Kranstauber & Anne Scharf

dBMvariance The dBMvariance class

Description

The dBMvariance object is created within the brownian.motion.variance.dyn function from a Move
object.

The dBMvarianceStack object is created when a MoveStack is the input object.

The dBMvarianceBurst object when the input is a MoveBurst object.

These objects contain the motion variance calculated by the dynamic Brownian Bridge Movement
Model.

Slots

window.size The window size used for dbbmm calculation
margin The margin used for dbbmm calculation

means The variance values

in.windows The number of windows each location was included in

interest Logical string, FALSE: segments have been omitted in the calculation since a lower num-
ber of estimates for variance are obtained for these segments. TRUE: segments included in
the calculation

break.list list of the locations of breaks found

26 distance

Methods

as.data.frame signature(object = "dBMvarianceTmp"): extracts the spatial data frame

brownian.bridge.dyn signature(object = "dBMvarianceTmp"): calculates the utilization dis-
tribution (UD) of the given track using the dynamic Brownian Bridge Movement Model

coordinates signature(object = "dBMvarianceTmp"): extracts the coordinates from the Move
object contained in the dBMvarianceTmp

getMotionVariance signature(object = "dBMvarianceTmp"): extracts the estimated motion
variance

lines signature(object = "dBMvarianceTmp"): add lines of the track of the animal to a plot
points signature(object = "dBMvarianceTmp"): add points of the track of the animal to a plot
plot signature(object = "dBMvarianceTmp"): plots the track of the animal

show signature(object = "dBMvarianceTmp"): displays summary the dBMvarianceTmp object

summary signature(object = "dBMvarianceTmp”): summarizes the information of the raster
from a dBMvarianceTmp object

subset signature(object = "dBMvarianceTmp"): subsets the dBMvarianceTmp object

Note

The dBMvariance object contains a .MoveTrackSingle and a dBMvarianceTmp object.

The dBMvarianceStack object contains a .MoveTrackStack and a dBMvarianceTmp object.

The dBMvarianceBurst object contains a .MoveTrackSingleBurst and a dBMvarianceTmp ob-
ject.

The class dBMvarianceTmp is mostly an internal class that is made public to make inheritance easier.
These objects can be used to program against.

Author(s)
Marco Smolla & Anne Scharf

distance Distance between the locations of a movement track

Description

Calculates the distance between the consecutive locations of a Move or MoveStack object.

Usage

S4 method for signature '.MoveTrackSingle,missing'’
distance(x)

S4 method for signature '.MoveTrackStack,missing'
distance(x)

duplicatedDataExample 27

Arguments

X amove, moveStack or moveBurst object

Details

pointDistance is used to calculate the distances.

Value

Distance in map units.

If the projection of the coordinates is long/lat all values are returned in meters, otherwise in the map
units of the projection of the move object. For long/lat distance is calculated on a sphere using the
ellipsoid, for other projections the calculation is done on a plane using Pythagoras. Check and set
the projection of your Move, MoveStack or MoveBurst object using the proj4string() function.

If a move or moveBurst object is provided, a numeric vector one element shorter than the number
of locations is obtained.

If amoveStack object is provided, a list with one element per individual containing a numeric vector
one element shorter than the number of locations is obtained

Author(s)
Marco Smolla & Anne Scharf

Examples

distance from a Move object

data(leroy)

head(distance(leroy))

to add this information to the move object, a "NA" has to be assigened
e.g. distance is assigned to the first location of a segment
leroy$distance <- c(distance(leroy), NA)

distance from a MoveStack object

data(fishers)

str(distance(fishers))

to add this information to the moveStack object, a "NA" has to be assigened
e.g. distance is assigned to the first location of a segment
fishers$distance <- unlist(lapply(distance(fishers), c, NA))

duplicatedDataExample Tracking data example with duplicated timestamps

Description

This file contains a data frame with fictional tracking data of two individuals, including duplicated
timestamps. These data are used in the example of the function getDuplicatedTimestamps.

28

Examples

dynBGB

data(duplicatedDataExample)

dynBGB

Calculation of the dynamic Bivariate Gausian Bridge

Description

This function creates a utilization distribution according to the Bivariate Gaussian Bridge model.

Usage

S4 method
dynBGB(move,
S4 method
dynBGB(move,
S4 method
dynBGB(move,
S4 method
dynBGB(move,

Arguments

move

raster

locErr

timeStep

margin

windowSize

ext

for signature 'dBGBvariance,RasterlLayer,numeric'’

raster, locErr, timeStep, ...)

for signature '.MoveTrackSingle,RasterLayer,numeric'
raster, locErr, margin, windowSize, ...)

for signature '.MoveTrackSingle,numeric,ANY'

raster, locErr, ext, ...)
for signature '.MoveTrackSingle,missing,ANY'
raster, locErr, dimSize, ext, ...)

a move or dBGBvariance object. This object must be in a projection different
to longitude/latitude (one suitable for euclidean geometry), use spTransform to
transform your coordinates.

a RasterLayer object or a numeric value. If a RasterLayer is provided the
dynBGB starts to calculate the UD based on that raster. If a numeric value is
provided it is interpreted as the resolution of the square raster cells (in map
units); the according raster will be calculated internally.

single numeric value or vector of the length of coordinates that describes the
error of the location (sender/receiver) system in map units. Or a character string
with the name of the column containing the location error can be provided.

It correspond to the size of the timer intervals taken for every integration step
(in minutes). If left NULL 20.1 steps are taken in the shortest time interval. See
"Details’. Optional.

The margin used for the behavioral change point analysis. This number has to
be odd.

The size of the moving window along the track. Larger windows provide more
stable/accurate estimates of the brownian motion variance but are less well able
to capture more frequent changes in behavior. This number has to be odd.

Describes the amount of extension of the bounding box around the animal track.
It can be numeric (same extension into all four directions), vector of two (first
X, then y directional extension) or vector of four (xmin, xmax, ymin, ymax
extension). Only considered in combination with a numeric raster argument or
the dimSize argument.

dynBGB 29

dimSize numeric. dimSize is only used if raster is not set. dimSize is interpreted as the
number of cells along the largest dimension of the track. The according raster
will be calculated internally.

Currently no other arguments implemented.

Details

There are three ways to launch the dynBGB function:

1. Use a raster:

A RasterLayer object is set for the raster argument which is then used to calculate the UD.

(needed arguments: move, raster(=RasterLayer), locErr, margin, windowSize; optional argu-
ments: timeStep)

2. Set the cell size

To set the cell size, set a numeric value for the raster argument which is used as the cell sizes of the
raster.

(needed arguments: move, raster(=numeric), locErr, margin, windowSize, ext; optional arguments:
timeStep)

3. Set the number of cells (col/row)
To set the number of cells along the largest dimension a numeric dimSize argument can be set.
(needed arguments: move, dimSize, locErr, margin, windowSize, ext; optional arguments: timeStep)

timeStep. The default value is the shortest time interval divided by 20.1. This means, if there is
a location recorded e.g. every 40 mins, the function divides each segment into 1.99 mins chunks
upon which it does the calculation. If for some reason there is one time interval of 20 secs in
the track, each segment of the track will be divided into 1secs chunks, increasing the calcula-
tion time immensely. Before calculating the DBBMM, use e.g. min(timeLag(x=myMoveObject,
units="mins")) to check which is the duration of the shortest time interval of the track. If the track
contains time intervals much shorter than the scheduled on the tag, set the timeStep e.g. to the
scheduled time interval at which the tag was set, divided by 20.1.

Value

It returns an object of the class dynBGB-class.

Author(s)

Bart Kranstauber & Anne Scharf

References

Kranstauber, B., Safi, K., Bartumeus, F.. (2014), Bivariate Gaussian bridges: directional factoriza-
tion of diffusion in Brownian bridge models. Movement Ecology 2:5. doi:10.1186/2051-3933-2-5.

30 dynBGB-class

See Also

dynBGByvariance, getMotionVariance, getVolumeUD, contour, outerProbability, raster, raster2contour,
brownian.bridge.dyn, brownian.motion.variance.dyn

Examples

data(leroy)
leroy <- leroy[230:265,]

change projection method to aeqd and center the coordinate system to the track
dataAeqd <- spTransform(leroy, CRSobj="+proj=aeqd +ellps=WGS84", center=TRUE)

dBGB <- dynBGB(dataAeqd, locErr=9, raster=10, ext=0.5, windowSize=31, margin=15, timeStep=15/20.1)
plot(dBGB, col=hsv(sqrt(1:700/1000)))
lines(dataAeqd)

dynBGB-class The dynBGB class

Description

The dynBGB object is created within the dynBGB function from a Move object. It contains a dBGB-
variance object and a raster with probabilities.

Slots

crs part of the Raster-class
data part of the Raster-class

var Object of class "dBGBvariance": includes the windowSize, margin, paraSd,orthSd, nEstim,
seglnterest

extent part of the Raster-class

file part of the Raster-class

history part of the Raster-class

legend part of the Raster-class

method stores the method that was used to calculate the utilization distribution (UD), e.g. dynBGB
ncols part of the Raster-class

nrows part of the Raster-class

rotated part of the Raster-class

rotation part of the Raster-class

title part of the Raster-class

z part of the Raster-class

dynBGBvariance 31

Methods

contour signature(object = "dynBGB"): adds a contour line to a plot

equalProj signature(object = "dynBGB"): checks whether all objects of a list are in the same
projection

getMotionVariance signature(object = "dynBGB"): extracts the estimated motion variance
getVolumeUD signature(object = "dynBGB"): modifies the UD raster

outerProbability signature(object = "dynBGB"): calculates the animal occurrence probabil-
ities at the border of the raster

plot signature(object = "dynBGB"): plots the raster from a dynBGB object with re-size insen-
sitive proportions

raster2contour signature(object ="dynBGB"): converts a raster to contour lines
show signature(object = "dynBGB"): displays summary the dynBGB object

summary signature(object = "dynBGB"): summarizes the information of the raster from a dyn-
BGB object

subset signature(object = "dynBGB"): subsets the dynBGB object

Note

The dynBGB object contains a dBGBvariance and a . UD object which can be used to program against.

Author(s)

Bart Kranstauber & Anne Scharf

See Also

.UD

dynBGBvariance Calculates the Bivariate Gaussian Bridge motion variance

Description
A function to calculate the dynamic Bivariate Gaussian Bridge orthogonal and parallel variance for
a movement track

Usage

dynBGBvariance(move, locErr, margin, windowSize,...)

32

Arguments

move

locErr

margin

windowSize

Details

dynBGByvariance

amove object. This object must be in a projection different to longitude/latitude,
use spTransform to transform your coordinates.

single numeric value or vector of the length of coordinates that describes the
error of the location (sender/receiver) system in map units. Or a character string
with the name of the column containing the location error can be provided.

The margin used for the behavioral change point analysis. This number has to
be odd.

The size of the moving window along the track. Larger windows provide more
stable/accurate estimates of the brownian motion variance but are less well able
to capture more frequent changes in behavior. This number has to be odd.

Additional arguments

The function uses windowApply with the BGBvarbreak function in order to implement a dynamic
calculation of the variance

Value

a dBGBvariance-class object

Author(s)

Bart Kranstauber & Anne Scharf

References

Kranstauber, B., Safi, K., Bartumeus, F.. (2014), Bivariate Gaussian bridges: directional factoriza-
tion of diffusion in Brownian bridge models. Movement Ecology 2:5. doi:10.1186/2051-3933-2-5.

See Also

dynBGB, brownian.motion.variance.dyn

Examples

data(leroy)

leroy <- leroy[230:265,]

change projection method to aeqd and center the coordinate system to the track
dataAeqd <- spTransform(leroy, CRSobj="+proj=aeqd +ellps=WGS84", center=TRUE)

dBGBvar <- dynBGBvariance(dataAeqd, locErr=9, windowSize=31, margin=15)

dBGBvar

emd 33

emd Earth movers distance

Description

The earth mover’s distance (EMD) quantifies similarity between utilization distributions by calcu-
lating the effort it takes to shape one utilization distribution landscape into another

Usage

S4 method for signature 'SpatialPoints,SpatialPoints'’
emd(x,y, gc = FALSE, threshold = NULL,...)
S4 method for signature 'RasterlLayer,RasterLayer'’

emd(x,y, ...)
Arguments

X A Raster,RasterStack, RasterBrick, SpatialPoints, SpatialPointsDataFrame,
DBBMM or DBBMMStack object. These objects can represent a probability surface,
i.e. comparability is easiest when the sum of values is equal to 1. In the case of
a SpatialPointsDataFrame the first column of the data is used as weights. In the
case of SpatialPoints all points are weighted equally.

y same class as provided in ’x’, with the exception of RasterStack, RasterBrick
and DBBMMStack, where in order to compare the utilization distributions stored
within the layers of one object this argument can be left empty. Alternatively an-
other set of rasters can be provided to compare with.

gc logical, if FALSE (default) euclidean distances are calculated, if TRUE great
circle distances will be used. See ’Details’.

threshold numeric, the maximal distance (in map units) over which locations are com-
pared.

Currently not used
Details

For easy interpretation of the results the utilization distributions objects compared should represent
a probability surface, i.e. the sum of their values is equal to 1. Nevertheless there is also the
possibility to provide utilization distributions objects with the same volume, i.e. the sum of their
values is equal to the same number. In the later case interpretation of the results is probably less
intuitive.

Euclidean distances are suitable for most planar spatial projections, while great circle distances, cal-
culated using the Haversine function, could be used to compare probability distributions stretching
over larger geographical distances taking into account the spherical surface of the Earth.

The function can be optimized by omitting locations that have negligible contribution to the utiliza-
tion density; for example, EMD can be calculated only for the cells within the 99.99% contour of
the UD. This will maximally introduce a very small error in the EMD because only small amounts

34 emd

of probability were omitted, but often, given the long tail of most UDs, many cells are omitted,
which greatly reduces the complexity. See ’Examples’.

For more details of the method see 'References’.

Value

An matrix of distances of the class *dist’

Author(s)
Bart Kranstauber & Anne Scharf

References

Kranstauber, B., Smolla, M. and Safi, K. (2017), Similarity in spatial utilization distributions
measured by the earth mover’s distance. Methods Ecol Evol, 8: 155-160. doi:10.1111/2041-
210X.12649

Examples

with a DBBMMStack object
data(dbbmmstack)
to optimize the calculation, the cells outside of the 99.99% UD contour
are removed by setting them to zero.
values (dbbmmstack) [values(getVolumeUD (dbbmmstack))>.999999]<-0
transform each layer to a probability surface (i.e. sum of their values is 1)
stk<-(dbbmmstack/cellStats(dbbmmstack, sum))
emd(stk[[11]1,stk[[2]11)
emd(stk)
emd(stk, threshold=10000)

with a SpatiaPointsDataFrame
x<-SpatialPointsDataFrame(cbind(c(1:3,5),2), data=data.frame(rep(.25,4)))
y<-SpatialPointsDataFrame(coordinates(x), data.frame(c(9,.5,.5,0)))
emd(x,y)
emd(x,y, threshold=.1)

with a DBBMMBurstStack object, to compare the utilization
distributions of e.g. different behaviors
data(leroy)
leroyB <- burst(x=leroy, f=c(rep(c("Behav.1","Behav.2"),each=400),rep("Behav.1", 118)))
leroyBp <- spTransform(leroyB, CRSobj="+proj=aeqd +ellps=WGS84", center=TRUE)
leroyBdbb <- brownian.bridge.dyn(object=1leroyBp[750:850], location.error=12, raster=600,
ext=.45, time.step=15/15, margin=15)

transform the DBBMMBurstStack into a UDStack

leoryBud <- UDStack(leroyBdbb)

to optimize the calculation, the cells outside of the 99.99% UD contour

are removed by setting them to zero.
values(leoryBud)[values(getVolumeUD(leoryBud))>.9999991<-0

transform each layer to a probability surface (i.e. sum of their values is 1)
stk2<-(leoryBud/cellStats(leoryBud, sum))

equalProj 35

emd(stk2)

equalProj Checks projections for being equal

Description

Checks whether all objects of a list are in the same projection.

Usage
S4 method for signature 'list'
equalProj(x)
Arguments
X a list of projected objects of class raster, move, moveStack, moveBurst, DBBMM,
DBBMMStack, DBBMMBurstStack, dynBGB
Details

equalProj checks for equal projections using the function of identicalCRS from the package sp.
It returns TRUE if none of the objects have a proj4string.

Value

TRUE or FALSE
It returns TRUE if none of the objects have a proj4string.

Author(s)

Bart Kranstauber & Anne Scharf

Examples

data(fishers)
ricky<-fishers[['Ricky.T']]
data(leroy)
data(leroydbbmm)

equalProj(list(leroydbbmm,leroydbbmm))
equalProj(list(leroy, leroydbbmm))
equalProj(list(leroy,ricky))

36 getDataRepositoryData

fishers A MoveStack

Description

An MoveStack consisting of two animals, Leroy and Ricky.T

Usage

data(fishers)

Format

An object of the class MoveStack

Source

https://www.datarepository.movebank.org/handle/10255/move.330

References

LaPoint, Scott, Paul Gallery, Martin Wikelski, and Roland Kays (2013) Animal Behavior, Cost-
Based Corridor Models, and Real Corridors. Landscape Ecology 28, 8: 1615-1630. doi:10.1007/s10980-
013-9910-0.

Examples

data(fishers)

getDataRepositoryData Download data from the Movebank Data Repository

Description

Download data from the Movebank Data Repository via DOI

Usage
getDataRepositoryData(x, ...)
Arguments
X character string of the DOI of data stored on the Movebank Data Repository

Currently not used

https://www.movebank.org/node/15294
https://www.movebank.org/node/15294

getDuplicatedTimestamps 37

Details

This function downloads data stored in the Movebank Data Repository via the DOI. The output is
MoveStack object containing the location data from all available sensors in the study. The non-
location senor data are stored in the UnUsedRecords slots. Datasets without location data are ex-
cluded.

If duplicated timestamps are present in the data, the first one is chosen by default. To use a more
informed approach you can download the data of interest from the Movebank Data Repository, read
it in with read. csv and use the function getDuplicatedTimestamps to located the duplicated times-
tamps and then decide which one to keep. And then use the function move to create a Move or
MoveStack object from the cleaned .csv file.

Value

move or moveStack object

Note

Visit the dataset’s repository page at http://dx.doi.org/<doi> for citations and a readme that might
contain additional details needed to understand the data. If analyzing these published datasets, al-
ways consult the related papers and cite the paper and dataset. If preparing analysis for publication,
also contact the data owner if possible for their contribution.

Author(s)
Anne Scharf

See Also

getMovebankData, getMovebankNonLocationData, getMovebank, move

Examples

Not run:
getDataRepositoryData("doi:10.5441/001/1.2k5363j54")

End(Not run)

getDuplicatedTimestamps
Identifies duplicated timestamps

Description

Identifies all pairs of duplicated timestamps within an individual and sensor type from data down-
loaded from Movebank or own data.

https://www.movebank.org/node/15294

38 getDuplicatedTimestamps

Usage

S4 method for signature 'character'
getDuplicatedTimestamps(x, ..., onlyVisible = TRUE)

S4 method for signature 'factor'

getDuplicatedTimestamps(x, timestamps, sensorType, visible=NULL, ...)
Arguments
X full path to the csv (or compressed) file location downloaded from a Movebank
study, or to the zip file location downloaded from the EnvData tool in Move-
bank.

data. frame read into R from a csv file downloaded from Movebank, or down-
loaded with getMovebankLocationData.
factor containing the name(s) of the individual(s) if non-Movebank data are

provided.

timestamps vector containing timestamps with POSIXct conversion if non-Movebank data
are provided,i.e. as.POSIXct(data$timestamp, format="%Y-%m-%d %H:%M: %S",
tz="UTC")

sensorType optional, character or vector of characters containing sensor type(s) if non-

Movebank data are provided.

onlyVisible logical, indicating if the visible column in the movebank data should be con-
sidered when the column visible is present, the default is to ignore all non-
visible/outlier locations

visible optional, a logical vector indicating the locations that should be considered.

currently not implemented

Details

If own data (non-Movebank) are used, the vectors specified in "x", "timestamps" and optionally
"visible" have to have the same length.

Value

This function returns a list. The name of the list elements contains the individual’s name, the
timestamp that is duplicated and the sensor type (if provided). Each list element contains a vector
with the corresponding row numbers where the duplicated timestamps are located in the table. If
no duplicated timestamps are found NULL is returned.

Author(s)
Anne Scharf

Examples

data(duplicatedDataExample)
getDuplicatedTimestamps(x=as.factor(duplicatedDataExample$individual.id),
timestamps=as.POSIXct(duplicatedDataExample$timestamps,

getMotion Variance 39

format="%Y-%m-%d %H:%M:%S", tz="UTC"),
sensorType=duplicatedDataExample$sensor. type)

filePath<-system.file("extdata"”,"leroy.csv.gz",package="move")
getDuplicatedTimestamps(filePath)

getMotionVariance Extracts the estimated motion variance

Description

This function returns the estimated motion variance calculated by the dynamic Bivariate Gaussian
Bridges or dynamic Brownian Bridges

Usage
getMotionVariance(x,...)
Arguments
X a DBBMM, DBBMMStack, DBBMMBurstStack,dBMvariance, dBMvarianceBurst,
dBMvarianceStack, dynBGB or dBGBvariance object
Currently not implemented
Value

- anumeric vector of variances if a DBBMM, DBBMMBurstStack, dBMvariance or dBMvariance-
Burst object is provided

- a list of variances per individual if a DBBMMStack or dBMvarianceStack object is provided

- amatrix of the orthogonal and parallel variances if dynBGB or dBGBvariance object is provided

Author(s)

Bart Kranstauber & Anne Scharf

See Also

brownian.bridge.dyn, dynBGB, brownian.motion.variance.dyn, dynBGBvariance, dBMvariance-class,
dBGBvariance-class

Examples

data(leroydbbmm)

data(dbbmmstack)

getMotionVariance(leroydbbmm)[1:50] ## with a DBBMM object
str(getMotionVariance(dbbmmstack)) ## with a DBBMMStack object

40 getMovebank

getMovebank Download Data from Movebank

Description

An enhanced function to download information of studies, animals, deployments and tags, and
sensor measurements from Movebank. Many of the options of this function have been included as
separate more user friendly functions listed in the See Also section below.

Usage

S4 method for signature 'character,MovebankLogin'
getMovebank(entity_type , login, ...)

Arguments

entity_type character. The entity type to download from movebank, possible options are:

"tag_type", "study", "tag", "individual", "deployment" or "event". See ’Details’
for more information.

login a MovebankLogin object, if empty you’ll be asked to enter your username and
password.

Arguments passed on to the Movebank API:

i_am_owner logical. If TRUE all studies the user is a data manager for will be
returned. Optional.

study_id numeric. It is the Movebank ID of the study. It can be obtained on
the Study Details page on Movebank or with getMovebankID.

individual_id numeric. It is the internal individual Movebank identifier. A
single individual or a vector of several individuals from the same study can
be specified. It corresponds to the id values of getMovebank ("individual”,
login, study_id). Optional.

deployment_id numeric. It is the deployment Movebank identifier. A single
deployment or a vector of several deployments from the same study can be
specified. It corresponds to the id values of getMovebank ("deployment”,
login, study_id). Optional.

sensor_type_id numeric. It is the numeric id of the sensor type. A single
sensor type or a vector of several sensor types can be specified. The corre-
sponding numeric id for each sensor type can be found through getMovebank ("tag_type",
login). To obtain the sensor types available in the study use getMovebankSensors.
Optional.

attributes character. A single attribute, a vector of attributes or "all" can be
specified. Optional. See ’Details’ for more information.

timestamp_start, timestamp_end character or POSIXct. Starting and/or end-
ing timestamp to download the data for a specific time period. Timestamps
have to be provided in format 'yyyyMMddHHmmssSSS’. If POSIXct then
it is converted to character using UTC as a time zone, note that this can
change the time. Optional.

https://www.movebank.org
https://github.com/movebank/movebank-api-doc/blob/master/movebank-api.md

getMovebank 41

Details
* getMovebank("tag_type”, login): returns all sensor types in Movebank and their corre-
sponding sensor id. See also getMovebankSensors.

* getMovebank("study”, login): returns all studies where the user has permission to see the
data. You may have permission to see only the study details, view some or all tracks but
not download data, or view and download some or all data. Also, there are studies that you
do not have permission to see at all, these studies will not be included in this list. See also
getMovebankStudies.

e getMovebank("study"”, login, i_am_owner=T): returns all studies where the user is a data
manager.

* getMovebank("study”, login, study_id): returns a summary of information about one or
more studies. See also getMovebankStudy.

* getMovebank("tag", login, study_id): returns tag reference information from a study.
See also getMovebankReferenceTable.

e getMovebank("individual”, login, study_id): returns animal reference information from
a study. See also getMovebankAnimals, getMovebankReferenceTable.

* getMovebank("deployment”, login, study_id): returns deployment reference informa-
tion from a study. See also getMovebankReferenceTable.

e getMovebank("event”, login, study_id,...): returns the sensor measurements from a
study. See also getMovebankData, getMovebankLocationData, getMovebankNonLocation-
Data.

The default columns of getMovebank ("event”, login,study_id,...) are timestamp, location_lat,
location_long, individual_id, tag_id. If the downloaded study only contains GPS data, these default
columns are suitable, but for all other sensors, additional columns are required. The columns avail-
able vary among sensor type and tag manufacturer, the complete list of available attributes for a
specific study can be obtained with: getMovebankSensorsAttributes(study, login=login). If
attributes="all" than all attributes that are present in the study will be downloaded.

The definitions of the content of the columns is detailed in the Attribute Dictionary on Movebank

Value

’data.frame’

Note

* ’id’ in getMovebank ("study”, login, ...) are the values required in study_id

* ’id’ in getMovebank ("individual”, login, study_id) are the values required in individual_id
* ’id’ in getMovebank ("deployment”, login, study_id) are the values required in deployment_id
* ’id’ in getMovebank ("tag_type", login) are the values required in sensor_type_id

* ’id’ in getMovebank ("tag", login, study_id) corresponds to ’tag_id’

See the ’browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

If the data include double timestamps you can use the getDuplicatedTimestamps function to
identify them and decide which one to keep.

https://www.movebank.org/node/2381

42 getMovebank

Author(s)
Marco Smolla & Anne Scharf

See Also

movebankLogin, getMovebankData, getMovebankLocationData, getMovebankNonLocationData,
getMovebankReferenceTable, getMovebankAnimals, getMovebankID, getMovebankSensors, get-
MovebankSensorsAttributes, getMovebankStudies, getMovebankStudy, searchMovebankStudies

Examples

Not run:

first create the login object
login <- movebankLogin()

annett# get Movebank ID from study

studyID <- getMovebankID(study="MPIAB white stork lifetime tracking data (2013-2014)",
login=login)

studyID2 <- getMovebankID(study="Ocelots on Barro Colorado Island, Panama”, login=login)

get a summary of information about the two studies
getMovebank ("study”, login=login, study_id=c(studyID,studyID2))

get tag reference information from the study
head(getMovebank("tag", login=login, study_id=studyID))

get animal reference information from the study
head(getMovebank("individual”, login=login, study_id=studyID))

get deployments reference information from the study
head(getMovebank("deployment”, login=login, study_id=studyID))

get the sensor measurements from the study
find out which sensors were used in this study
unique(getMovebankSensors(study=studyID, login=login)$sensor_type_id)
get movebank ID of one individual of this study
indID <- getMovebank("individual”, login=login, study_id=studyID)$id[50]
the correspondence table between the individual ID and the
animal names can be obtained like this
head(getMovebank("individual”, login=login,
study_id=studyID)[, c("id", "local_identifier"”)])

get GPS and accelerometer data within a time period

to download all attributes for all sensors included in the study

attrib <- "all”

get measurments for a given time period, in this case for GPS and

accelerometer, and between "2013-06-25 03:55:00.000" and "2013-06-26 10:25:00.000"

getMovebank ("event”, login=login, study_id=studyID, sensor_type_id=c(653,2365683),
individual_id=indID, attributes=attrib, timestamp_start="20130625035500000",
timestamp_end="20130626102500000 ")

getMovebankAnimals 43

get all GPS data for 2 individuals

get movebank ID of another individual of this study

indID2 <- getMovebank("individual”, login=login, study_id=studyID)$id[35]

get GPS measurements for these two individuals with all available attributes

head(storks <- getMovebank("event”, login=login, study_id=studyID,
sensor_type_id=653, individual_id=c(indID,indID2),
attributes="all"))

create moveStack
get the names of the individuals as they appear on Movebank
(individualNames <- getMovebank("individual”, login=login,
study_id=studyID)[c(35,50), c("id", "local_identifier”)])
head(storks2 <- merge(storks,individualNames,by.x="individual_id", by.y="id"))

myMoveStack <- move(x=storks2$%$location_long, y=storks2$location_lat,
time=as.POSIXct(storks2$timestamp, format="
data=storks2,
proj=CRS("+proj=longlat +ellps=WGS84"),
animal=storks2$local_identifier)

plot(myMoveStack, type="1")

End(Not run)

getMovebankAnimals Animals, tags and IDs in a Movebank study

Description

This function returns information of the animals, their tags and IDs from a Movebank study.

Usage
getMovebankAnimals(study, login)

Arguments
study character or numeric. Character: full name of the study, as stored on Movebank.
Numeric: Movebank ID of the study which can be obtained on the Study Details
page on Movebank or with getMovebankID.
login a MovebankLogin object, if empty you’ll be asked to enter your username and
password
Details

getMovebankAnimals belongs to the Movebank browsing functions and returns a data. frame from

the requested study that includes among others the individual_id, tag_id, deployment_id,
sensor_type_id which are the internal ids of Movebank, the tag_local_identifier, local_identifier
which are the ids uploaded to Movebank by the user and other information if available as e.g.
death_comments, sex, individual_taxon_canonical_name, etc.

44 getMovebankData

Value

’data.frame’

Note
See the ’browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

Author(s)

Marco Smolla & Anne Scharf

See Also

movebankLogin, getMovebankReferenceTable

Examples

Not run:
obtain a login
login<-movebankLogin()

getMovebankAnimals(study=2950149, login=login)

End(Not run)

getMovebankData Download data from Movebank as a Move object

Description

This function downloads the location data and timestamp of a study stored in Movebank as a
move/moveStack object

Usage

S4 method for signature 'numeric,character,MovebankLogin'
getMovebankData(study, animalName, login, ...)

S4 method for signature 'numeric,numeric,MovebankLogin'

getMovebankData(study, animalName, login,
removeDuplicatedTimestamps=FALSE,
includeExtraSensors=FALSE, deploymentAsIndividuals=FALSE,
includeOutliers=FALSE,...)

getMovebankData 45

Arguments

study character or numeric. Character: full name of the study, as stored on Movebank.
Numeric: Movebank ID of the study which can be obtained on the Study Details
page on Movebank or with getMovebankID.

login a MovebankLogin object, if empty you’ll be asked to enter your username and
password

animalName character. Name of the individuals as stored on Movebank. A single individual
or a vector of several individuals from the same study can be specified. Optional.

includeExtraSensors

logical; if TRUE data from non location sensors included in the study will be
also downloaded, the data will automatically be stored in the unUsedRecords
slot as they cannot produce locations. See ’Details’.

removeDuplicatedTimestamps
logical; if TRUE duplicated timestamps values will be removed. See *Note’.

deploymentAsIndividuals
logical; if TRUE the deployments will be downloaded separately. See *Details’.

includeOutliers
logical; if TRUE locations marked as outliers in Movebank will be included in
the regular trajectory otherwise as unUsedRecords. See ’Details’

Additional arguments passed on to the movebank API through getMovebank
function:

timestamp_start, timestamp_end character or POSIXct. Starting and/or end-
ing timestamp to download the data for a specific time period. Timestamps
have to be provided in format "yyyyMMddHHmmssSSS’. If POSIXct then
it is converted to character using UTC as a time zone, note that this can
change the time. Optional.

Details

getMovebankData belongs to the Movebank browsing functions and returns a Move object from
studies with only one animal or a MoveStack object for studies with multiple animals.
Remember that you need an account on Movebank, see movebankLogin.

Attribute names:
The definitions of the content of the columns within the @idData, @sensor, @data slots of the move
or moveStack object is detailed in the Attribute Dictionary on Movebank

includeExtraSensors:

If this includeExtraSensors=TRUE the data of all non location sensors (e.g. acceleration, magne-
tometer, etc) available in the study will be downloaded and stored in the unUsedRecords slot. Data
from a single or a set of non location sensors can be also downloaded as a data.frame with the
function getMovebankNonLocationData

deploymentAsIndividuals:

If single individuals have several deployments, and these are wished to be downloaded separately,
this can be done by setting deploymentAsIndividuals=TRUE. In this case the "@trackld" will
contain the names of the deployments.

https://www.movebank.org
https://www.movebank.org/node/2381

46

getMovebankData

idData:

The idData slot contains only the information of the animals. To obtain information on tags, de-
ployments and sensors of the study use the function getMovebankReferenceTable.

When deploymentAsIndividuals=TRUE than the idData slot contains the information of the de-
ployments.

Value

Object of class "Move’ or "MoveStack’

Note

See the ’browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

removeDuplicatedTimestamps:

It is possible to set removeDuplicatedTimestamps=TRUE which allows you delete the duplicated
timestamps in case your data set contains them. Using this argument will retain the first of multiple
records with the same animal ID and timestamp, and remove any subsequent duplicates. In case you
want to control which of the duplicate timestamps are kept and which are deleted, we recommend to
download the data as a .csv file from Movebank or to use the function getMovebankLocationData,
find the duplicates using e.g. getDuplicatedTimestamps, decide which of the duplicated timestamp
to retain, and than create a move/moveStack object with the function move. Another option is to
edit the records in movebank and mark the appropriate records as outliers.

includeOutliers:

In Movebank outliers can be marked manually or using filters, including a duplicate filter that
flags duplicate records based on user-selected attributes, retaining the first record of each duplicate
set that was imported to the study. When includeOutliers=FALSE (default) these records are
automatically placed in the UnusedRecords slots. If includeOutliers=TRUE these records are
included along all other locations. This option can be useful if the user wants to e.g. implement
their own filter/algorithm to identify outliers. Entries that contain NAs in the coordinate columns
will always be included in the UnusedRecords slots.

Multiple sensors:

The getMovebankData function downloads the data of all location sensors available in the study. If
the study contains several location sensors, the resulting move/moveStack object can be separated
into a move/moveStack object per sensor type:

x[x@sensor=="z"] where "x" is a Move or a MoveStack object, and "z" is the name of the sensor
e.g. "GPS", "Radio Transmitter", etc.

Downloading a study with many locations:

If the study to be downloaded has many locations (probably in the order of 10s of millions), the
download may take so long that the connection breaks, and the study cannot be downloaded. We
recommend to download each individual separately to ensure a successfully download. See more
details and examples in the ’browseMovebank’ vignette.

Author(s)

Marco Smolla & Anne Scharf

https://www.movebank.org/node/42#mark_outliers
https://www.movebank.org/node/33529

getMovebankID 47

See Also

movebankLogin,getMovebankLocationData, getMovebankNonLocationData

Examples

Not run:
obtain a login
login<-movebanklLogin()

returns a MoveStack object from the specified study
getMovebankData(study="0celots on Barro Colorado Island, Panama”, login=login)

returns a Move object (there is only one individual in this study)
getMovebankData(study="Coatis on BCI Panama (data from Powell et al. 2017)", login=login)

returns a MoveStack with two individuals
getMovebankData(study=123413, animalName=c("Mancha"”,"Yara"), login=login)

Get a specific timerange, eg: all positions untill "2003-05-06 19:45:10.000"
(ocelots <- getMovebankData(study=123413, animalName=c("Mancha”,"Yara"),
login=login, timestamp_end="20030506194510000"))

timestamps(ocelots)
End(Not run)

getMovebankID Movebank Study ID

Description
This function returns the numeric Movebank ID of the study which corresponds to the character
study name stored on Movebank
Usage
getMovebankID(study, login)

Arguments
study character; full name of the study, as stored on Movebank
login a MovebankLogin object, if empty you’ll be asked to enter your username and
password
Details

getMovebankID belongs to the Movebank browsing functions and returns the Movebank ID of a
study as it is stored on Movebank. This number can also be found on the Study Details page of the
study on Movebank.

https://www.movebank.org

48 getMovebankLocationData

Value

The function returns one numeric’ value.

Note

The character study name on Movebank can be potentially edited and changed at any time by the
Data Manager(s), whereas the Movebank ID is uniquely assigned to each study when it is uploaded
to Movebank, and cannot be modified afterwards.

See the ’browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

Author(s)
Marco Smolla & Anne Scharf

See Also

movebankLogin

Examples

Not run:
#obtain a login
login<-movebankLogin()

getMovebankID(study="0celots on Barro Colorado Island, Panama”, login=login)

End(Not run)

getMovebankLocationData
Download location data from Movebank as a table

Description

This function downloads the location data for one or several sensors of a study stored in Movebank.

Usage

S4 method for signature 'numeric,numeric,character,MovebankLogin'
getMovebankLocationData(study, sensorID, animalName, login, ...)

S4 method for signature 'numeric,numeric,numeric,MovebankLogin'
getMovebankLocationData(study, sensorID, animalName, login,
includeOutliers=FALSE, underscoreToDots=TRUE, ...)

getMovebankLocationData 49

Arguments

study character or numeric. Character: full name of the study, as stored on Movebank.
Numeric: Movebank ID of the study which can be obtained on the Study Details
page on Movebank or with getMovebankID.

login a MovebankLogin object, if empty you’ll be asked to enter your username and
password

sensorlD character or numeric. Name or ID number of sensor(s) recording location data.
A single sensor or a vector of sensors can be specified. If the argument is left
empty data of all location sensors will be downloaded. Optional. See ’Details’.

animalName character. Name of the individuals as stored on Movebank. A single individual
or a vector of several individuals from the same study can be specified. If the
argument is left empty data of all individuals will be downloaded. Optional.

includeOutliers
logical. If TRUE locations marked as outliers in Movebank will be included.
Default is FALSE.

underscoreToDots
logical. Many of the functions in the Move package rely on the column names
containing dots and not underscores. Default is TRUE. See "Details’.

Additional arguments passed on to the movebank API through getMovebank
function:

timestamp_start, timestamp_end character or POSIXct. Starting and/or end-
ing timestamp to download the data for a specific time period. Timestamps
have to be provided in format 'yyyyMMddHHmmssSSS’. If POSIXct then
it is converted to character using UTC as a time zone, note that this can
change the time. Optional.

Details

getMovebankLocationData belongs to the Movebank browsing functions and returns a data. frame

with data from one or multiple location sensors from studies with one animal or multiple animals.
Remember that you need an account on Movebank, see movebankLogin.

Note that getMovebankData has also the option to download location data directly into a move/moveStack
object.

Attribute names:

The definitions of the content of the columns of the returned data. frame is detailed in the Attribute
Dictionary on Movebank. The attributes deployment_id, individual_id, tag_id, study_id
correspond to the internal ids of Movebank.

sensorlID:

See getMovebankSensors to obtain all available sensors of the study of interest. The valid names for

this argument are those of the the columns "name" or "id" of the table returned by getMovebankSensors(login).
The valid numeric Ids are also in the column "sensor_type_id" in the table returned for a spe-

cific study with getMovebankSensors(study,login). This function only accepts location sen-

sors which are marked as "true"" in the "is_location_sensor" column of the table returned by
getMovebankSensors(login).

underscoreToDots:
.csv files downloaded from the Movebank webpage contain dots in their column names, and .csv

https://www.movebank.org
https://www.movebank.org/node/2381
https://www.movebank.org/node/2381

50 getMovebankLocationData

files downloaded via the API (like in the case of this function) contain instead underscores in their
column names. Many of the functions in the Move package were created based on the webpage csv
downloaded data and rely on the column names with dots. If you would like to use function like
e.g. getDuplicatedTimestamps or read in the csv file with move by stating the path to file, among
others, than the column names have to be with dots.

Downloading a study with many locations:

If the study to be downloaded has many locations (probably in the order of 10s of millions), the
download may take so long that the connection breaks, and the study cannot be downloaded. We
recommend to download each individual separately to ensure a successfully download. See more
details and examples in the ’browseMovebank’ vignette.

Value

’data.frame’

Note

See the ’browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

Author(s)
Anne Scharf

See Also

movebankLogin, getMovebankData, getMovebankNonLocationData

Examples

Not run:
first create the login object
login <- movebankLogin()

get GPS data for one individual
str(getMovebankLocationData(study=74496970, sensorID="GPS",
animalName="DER AR439", login=login))

get GPS data for one individual after the "2013-07-12 06:50:07.000"
str(getMovebankLocationData(study=74496970, sensorID="GPS", animalName="DER AR439",
login=login, timestamp_start="20130712065007000"))

get GPS data for all individuals of the study between
the "2013-08-15 15:00:00.000" and "2013-08-15 15:01:00.000"
str(getMovebankLocationData(study=74496970, sensorID=653,
login=login, timestamp_start="20130815150000000",
timestamp_end="20130815150100000"))

End(Not run)

getMovebankNonLocationData 51

getMovebankNonLocationData
Download non-location data from Movebank

Description

This function downloads the non location data for one or several sensors of a study stored in Move-
bank

Usage

S4 method for signature 'numeric,numeric,character,MovebankLogin'
getMovebankNonLocationData(study, sensorID, animalName, login, ...)

S4 method for signature 'numeric,numeric,numeric,MovebankLogin'

getMovebankNonLocationData(study, sensorID, animalName, login, ...)
Arguments
study character or numeric. Character: full name of the study, as stored on Movebank.

Numeric: Movebank ID of the study which can be obtained on the Study Details
page on Movebank or with getMovebankID.

login a MovebankLogin object, if empty you’ll be asked to enter your username and
password
sensorID character or numeric. Name or ID number of sensor(s) recording non location

data. A single sensor or a vector of sensors can be specified. If the argument is
left empty data of all non location sensors will be downloaded. Optional. See
’Details’.

animalName character. Name of the individuals as stored on Movebank. A single individual
or a vector of several individuals from the same study can be specified. If the
argument is left empty data of all individuals will be downloaded. Optional.

Additional arguments passed on to the movebank API through getMovebank
function:

timestamp_start, timestamp_end character or POSIXct. Starting and/or end-
ing timestamp to download the data for a specific time period. Timestamps
have to be provided in format ’yyyyMMddHHmmssSSS’. If POSIXct then
it is converted to character using UTC as a time zone, note that this can
change the time. Optional.

Details

getMovebankNonLocationData belongs to the Movebank browsing functions and returns a data. frame
with data from one or multiple non-location sensors from studies with one animal or multiple ani-
mals.

Remember that you need an account on Movebank, see movebankLogin.

https://www.movebank.org

52 getMovebankNonLocationData

Note that getMovebankData has also the option to download non location alongside with the loca-
tion data.

Attribute names:
The definitions of the content of the columns of the returned data. frame is detailed in the Attribute
Dictionary on Movebank

sensorID:

See getMovebankSensors to obtain all available sensors of the study of interest. The valid names for

this argument are those of the the columns "name" or "id" of the table returned by getMovebankSensors(login).
The valid numeric Ids are also in the column "sensor_type_id" in the table returned for a spe-

cific study with getMovebankSensors(study,login). This function only accepts non-location

sensors which are marked as "false"" in the "is_location_sensor" column of the table returned by
getMovebankSensors(login).

Value

’data.frame’

Note

See the ’browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

Downloading a study with a lot of data:

If the study to be downloaded has many locations (probably in the order of 10s of millions), the
download may take so long that the connection breaks, and the study cannot be downloaded. We
recommend to download each individual separately to ensure a successfully download. See more
details and examples in the ’browseMovebank’ vignette.

Author(s)
Anne Scharf

See Also

movebankLogin, getMovebankData, getMovebankLocationData

Examples

Not run:
first create the login object
login <- movebankLogin()

get acceleration data for one individual
str(getMovebankNonLocationData(study=74496970 , sensorID="Acceleration”,
animalName="DER AR439", login=login))

get acceleration data for one individual after the "2013-07-12 06:50:07.000"
str(getMovebankNonLocationData(study=74496970 , sensorID="Acceleration”, animalName="DER AR439",
login=login, timestamp_start="20130712065007000"))

get acceleration data for all individuals of the study between

https://www.movebank.org/node/2381
https://www.movebank.org/node/2381

getMovebankReferenceTable 53

the "2013-08-15 15:00:00.000" and "2013-08-15 15:01:00.000"
str(getMovebankNonLocationData(study=74496970 , sensorID=2365683,
login=login, timestamp_start="20130815150000000",
timestamp_end="20130815150100000"))

End(Not run)

getMovebankReferenceTable
Download all reference data of a Movebank study

Description

This function returns the information of the animals, tags, deployments and sensors from a Move-
bank study

Usage
getMovebankReferenceTable(study, login, allAttributes = FALSE)

Arguments
study character or numeric. Character: full name of the study, as stored on Movebank.
Numeric: Movebank ID of the study which can be obtained on the Study Details
page on Movebank or with getMovebankID.
login a MovebankLogin object, if empty you’ll be asked to enter your username and

password

allAttributes logical. If FALSE the output will only include the attributes that currently con-
tain information in the study (default). If TRUE the output will include all at-
tributes available on Movebank.

Details

getMovebankReferenceTable belongs to the Movebank browsing functions and returns a data. frame
from the requested study, including all data provided by the user referring to the animals, tags and
deployments. It also includes animal_id, tag_id, deployment_id, sensor_type_id, study_id
which are the internal ids of Movebank. This table is equivalent to the table obtained on the Move-
bank webpage trough the option "Download Reference Data" of the study.

Value

’data.frame’

Note

See the ’browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

54 getMovebankSensors

Author(s)
Anne Scharf

See Also

movebankLogin

Examples

Not run:

obtain a login

login <- movebankLogin()

getMovebankReferenceTable (study=74496970, login=login)[1:6,]
getMovebankReferenceTable(study=74496970, login=login, allAttributes=T)[1:6,]

End(Not run)

getMovebankSensors Information about Movebank sensors

Description

This function returns the sensor types used in a Movebank study.

Usage

getMovebankSensors(study, login)

Arguments
study character or numeric. Character: full name of the study, as stored on Movebank.
Numeric: Movebank ID of the study which can be obtained on the Study Details
page on Movebank or with getMovebankID.
login a MovebankLogin object, if empty you’ll be asked to enter your username and
password
Details

getMovebankSensors belongs to the Movebank browsing functions and returns the sensor type(s)
used for each tag_id within the specified study.

If the study argument is missing, information about all sensor types available on Movebank and the
correspondence between sensor_type_id and the sensor name is obtained.

Value

’data.frame’

getMovebankSensorsAttributes 55

Note

See the ’browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

Author(s)
Marco Smolla & Anne Scharf

See Also

movebankLogin
Examples
Not run:

obtain a login
login<-movebankLogin()

obtain sensors types of each tag in the specified study
getMovebankSensors(study=2950149, login=login)

obtain all sensors available on Movebank
getMovebankSensors(login=login)

End(Not run)

getMovebankSensorsAttributes
Available attributes of Movebank sensors

Description

This function returns all attributes of the sensors of the requested Movebank study.

Usage
getMovebankSensorsAttributes(study, login, ...)
Arguments
study character or numeric. Character: full name of the study, as stored on Movebank.
Numeric: Movebank ID of the study which can be obtained on the Study Details
page on Movebank or with getMovebankID.
login a MovebankLogin object, if empty you’ll be asked to enter your username and

password

Extra arguments passed on to the getMovebank function

56 getMovebankStudies

Details

getMovebankSensorAttributes belongs to the Movebank browsing functions and returns the at-
tributes of the sensors of a study, i.e. what is the sensor id and which data types are stored for this
sensor (e.g. GPS sensors store longitude and latitude locations, and timestamps and have 653 as
their ID on Movebank).

The definition of each of the attributes is detailed in the Attribute Dictionary on Movebank

The correspondence between the sensor type and the sensor type id can be found with the function
getMovebankSensors, leaving the study argument empty.

Value

’data.frame’

Note

See the "browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

Author(s)

Marco Smolla

See Also

movebankLogin

Examples

Not run:
obtain a login
login<-movebankLogin()

getMovebankSensorsAttributes(study=2950149, login=login)

End(Not run)

getMovebankStudies All studies on Movebank

Description

This function returns all studies available on Movebank.

Usage
getMovebankStudies(login)

https://www.movebank.org/node/2381

getMovebankStudy 57

Arguments
login a MovebankLogin object, if empty you’ll be asked to enter your username and
password
Details

getMovebankStudies belongs to the Movebank browsing functions and returns all studies available
on Movebank.
Value

returns an object of class *factor’ with the names of all studies available on Movebank.

Note

See the *browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

Author(s)

Marco Smolla & Anne Scharf

Examples

Not run:
obtain a login
login <- movebankLogin()

getMovebankStudies(login=login)

End(Not run)

getMovebankStudy Returns information of a Movebank study

Description

This function returns information about the requested study as e.g. the authors of the study, licence
type, citation and more.

Usage

getMovebankStudy(study, login)

58 getVolumeUD

Arguments
study character or numeric. Character: full name of the study, as stored on Movebank.
Numeric: Movebank ID of the study which can be obtained on the Study Details
page on Movebank or with getMovebankID.
login a MovebankLogin object, if empty you’ll be asked to enter your username and
password
Details

getMovebankStudy belongs to the Movebank browsing functions and returns a data. frame with
information about the requested study (e.g.: authors of the study, licence type, citation, etc).

Value

’data.frame’

Note

See the ’browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

Author(s)
Marco Smolla & Anne Scharf

Examples

Not run:

obtain a login

login<-movebanklLogin()

getMovebankStudy (study="Coatis on BCI Panama (data from Powell et al. 2017)", login=login)

End(Not run)

getVolumeUD Utilization distribution (UD)

Description

The UD represents the minimum area in which an animal has some specified probability of being
located (Cumulative Distribution Function).

Usage

S4 method for signature '.UD'
getVolumeUD(x, ...)

getVolumeUD 59

Arguments
X a DBBMM, DBBMMStack, dynBGB, .UD or .UDStack object
when x is of class DBBMM or dynBGB, several objects of class DBBMM or
dynBGB can be added (see ’Examples’)
Value

’raster’ or 'rasterStack’
If several objects are provided, a list of rasters is returned

Note

To obtain this modified UD raster from a DBBMMBurstStack object, transform the object with the
UDStack function into a *.UDStack’ class, and than use the getVolumeUD function upon the ob-
tained object.

Author(s)

Marco Smolla & Anne Scharf

See Also

raster2contour, contour, UDStack

Examples

data(leroydbbmm)

data(dbbmmstack)

data(leroydbgb)

getVolumeUD(leroydbbmm) # for a DBBMM object
getVolumeUD(dbbmmstack) # for a DBBMMStack object
getVolumeUD (leroydbgbh) # for a dynBGB object

getVolumeUD(leroydbbmm, leroydbgb) # for several objects
plot(getVolumeUD(leroydbbmm))

e.g. select the raster corresponding to the 95% UD
leroyUD <- getVolumeUD(leroydbbmm)

leroyUD[leroyUD>0.95] <- NA
plot(leroyUD)

60

hrBootstrap

hrBootstrap

Calculates and plots the area of the Minimum Convex Polygon of a
track

Description

The hrBootstrap function calculates the 0, 25, 50, 75, 100% percentile of the Minimum Convex
Polygon (MCP) area by a logarithmic step wise increase of the number of samples per calculation.
For every step this calculation is repeated rep times with random coordinates from the track.

Usage

S4 method for signature 'SpatialPoints'
hrBootstrap(x, rep=100, plot=TRUE, level=95,

levelMax=100@, unin='km', unout='m2', ...)

S4 method for signature '.MoveTrackStack'
hrBootstrap(x, rep=100, plot=TRUE, level=95,

Arguments

X
rep
plot

level

levelMax

unin

unout

Details

levelMax=100, unin="km", unout="m2", ...)

amove, moveStack, moveBurst or SpatialPoints object
numeric value for the number of repetitions per sample size, default is 100
logical value that indicates whether the graph is plotted or not, default is TRUE

the percentage of coordinates taken into account for the MCP area size calcu-
lation in each step, default is 95 (95% of all coordinates per step are taken into
account)

the percentage of coordinates taken into account for the maximum MCP area
size calculation (horizontal line in the plot)

units from the input values (can be 'm’ or ’km”)
units for the output values (can be *'m2’, ’km2’, or "ha’)

Currently not implemented

The function calculates the 0, 25, 50, 75, 100% percentile of the Minimum Convex Polygon (MCP)
area with a logarithmic step wise increase of the number of samples per calculation. For every
step this calculation is repeated rep times with random coordinates from the track. For example it
calculates 100 times the MCP area from 3 random locations and stores the area. In the next step it
calculates it from 5 random locations and so on. The returned graph shows the 5 percentiles of the
area sizes (see *Values’). The dot-dashed line indicates the real MCP area size of all locations.

The hrBootstrap function passes values (samples of the track) on to the function mcp that is part of
the adehabitatHR package. See the help of mcp for more information about input and output units.

idData

Value

The values are returned in a data.frame with the units indicated by unout.

Plot legend:

- 0% percentile of mcp area: blue bottom line

- 25% percentile of mcp area: red bottom line

- 50% percentile of mcp area: black middle line

- 75% percentile of mcp area: red top line

- 100% percentile of mcp area: blue top line

- Real mcp area size of all locations: horizontal dot-dashed black line

The number of locations used in each step are printed in the console.

Note

Plots for MoveStacks are plotted one after another, and not side by side.

Author(s)

Marco Smolla & Anne Scharf

Examples

if(requireNamespace("”adehabitatHR")){
for a Move object
m <- move(x=rnorm(55), y=rnorm(55), time=as.POSIXct(1:55, origin="1970-1-1"),
proj=CRS("+proj=aeqd +ellps=WGS84"), animal='a')
hrBootstrap(m,rep=5, level=99, unout="m2", plot=TRUE)

for a MoveStack object
m2 <- move(x=rnorm(3@), y=rnorm(30), time=as.POSIXct(1:30, origin="1970-1-1"),
proj=CRS("+proj=aeqd +ellps=WGS84"), animal='b"')
mstack <- moveStack(list(m[30:50,],m2))
hrBootstrap(mstack, rep=5, unout="m2", plot=FALSE)

for a SpatialPoints object
hrBootstrap(as(m, "SpatialPoints"”),rep=5, unout="m2", plot=TRUE)
3

61

idData Obtain or replace the idData slot of a Move object

Description

This function returns or replaces the idData slot of a Move, MoveStack or MoveBurst object.

62 interpolateTime

Usage

S4 method for signature '.MoveTrack'
idData(x,i,j,...)

S4 replacement method for signature '.MoveTrack,missing,missing,data.frame’
idData(x,i,j) <- value

S4 replacement method for signature '.MoveTrack,ANY,ANY,ANY'
idData(x,i,j) <- value

Arguments
X amove, moveStack or moveBurst object
i Selection of the rows
3j Selection for the columns
value Replacement values for the selected idData
Other arguments to the data frame subsetting such as drop=F
Value

Either the idData data. frame or the modified move object

Author(s)

Bart Kranstauber & Anne Scharf

Examples

data(fishers)
idData(fishers)

obtain e.g. only the tag and individual identifier columns
idData(fishers, j=c(6,7))

idData(fishers, j=c("tag.local.identifier"”, "individual.local.identifier"))
interpolateTime Interpolate a trajectory
Description

This function allows to interpolate trajectories. It does this on the basis of a simple interpolation,
depending on the spaceMethod that is specified.

Usage

interpolateTime(x, time, spaceMethod=c('euclidean', 'greatcircle’', 'rhumbline'),...)

interpolateTime 63

Arguments
X amove or moveBurst object.
time either a number of locations (class numeric), a time interval (class difftime)
or a vector of timestamps (class POSIXct) at which the interpolation should be
done. See ’Details’.
spaceMethod a character that indicates the interpolation function (euclidean, great circle or
along the rhumb line) to be used to generate the new locations.
Currently not implemented.
Details

In the argument time:

- number of locations: refer the total number of locations that the resulting track will have distributed
equally over time. E.g. if time=200, the resulting track will have 200 points interpolated at a
constant time interval.

- time interval: refers to the time interval at which a location should be interpolated. E.g. if
time=as.difftime (10, units="mins") a location will be interpolated every 10 mins.

- vector of timestamps: the timestamps of this vector have to be in ascending order, and within the
time range of the track.

Value

Move-class object of the interpolated locations.

Author(s)
Bart Kranstauber & Anne Scharf

Examples

data(leroy)

providing the number of locations

plot(leroy[100:150,], col="red",pch=20)

points(mv <- interpolateTime(leroy[100:150,], time=500, spaceMethod='greatcircle'))

providing a time interval

plot(leroy[100:150,], col="red",pch=20)

points(mv2 <- interpolateTime(leroy[100:150,], time=as.difftime(10, units="mins"),
spaceMethod="greatcircle'))

providing a vector of timestamps

plot(leroy[100:150,], col="red",pch=20)

ts <- as.POSIXct(c("2009-02-13 10:00:00", "2009-02-13 12:00:00", "2009-02-13 14:00:00",
"2009-02-13 16:00:00","2009-02-13 18:00:00","2009-02-13 20:00:00",
"2009-02-13 22:00:00","2009-02-14 00:00:00","2009-02-14 02:00:00",
"2009-02-14 04:00:00","2009-02-14 06:00:00", "2009-02-14 08:00:00",
"2009-02-14 10:00:00"), format="%Y-%m-%d %H:%M:%S", tz="UTC")

points(mv3 <- interpolateTime(leroy[100:150,], time=ts, spaceMethod='greatcircle'))

64 leroy

leroy GPS track data from a fisher

Description

This file includes spatial data from a fisher (Martes pennanti). It can be used to test the different
functions from the move package.

These location data were collected via a 105g GPS tracking collar (manufactured by E-obs GmbH)
and programmed to record the animal’s location every 15 minutes, continuously. The collar was
deployed from 10 February 2009 through 04 March 2009 on an adult, resident, male fisher, in
New York, USA (see References). The data usage is permitted for exploratory purposes. For other
purposes please get in contact.

Usage

data("leroy")

Format

An object of the class move

Author(s)

Scott LaPoint

Source

https://www.datarepository.movebank.org/handle/10255/move.330

References

For more information, contact Scott LaPoint <sdlapoint@gmail.com>

Examples

create a Move object from the data set

data <- move(system.file("extdata"”,"leroy.csv.gz", package="move"))
plot(data)

data(leroy)

leroydbgb 65

leroydbgb dynamic Bivariate Gausian Bridge example object

Description

Utilization densities calculated with dynBGB to exemplify functions.

Usage
data("leroydbgb")

Details

see createRDataFile.R in inst/extdata for the exact calculation

Examples

data(leroydbgb)
leroydbgb

licenseTerms Extract the license terms of a Move or MoveStack object

Description

The licenseTerms method returns or sets the license terms of a track from a Move or MoveStack
object.

Usage

S4 method for signature '.MoveGeneral'
licenseTerms(obj)

S4 replacement method for signature '.MoveGeneral'
licenseTerms(obj) <- value

Arguments
obj amove, moveStack or moveBurst object
value license terms with class character

Value

character string of the license terms

Author(s)
Anne Scharf

66 lines

See Also

citations

Examples

data(leroy)
licenseTerms(leroy) #get the license from a Move object

change the license and set it for a Move object
licenseTerms(leroy) <- "use of data only permitted after obtaining licence from the PI”

data(fishers)
licenseTerms(fishers) #get the license from a MoveStack object

change the license and set it for a MoveStack object
licenseTerms(fishers) <- "use of data only permitted after obtaining licence from the PI"

lines Plotting the lines of a track

Description

Function for plotting a track from a Move object as lines

Usage

S4 method for signature '.MoveTrackSingle'
lines(x,...)

S4 method for signature '.MoveTrackStack'
lines(x,col=NA,...)

S4 method for signature '.MoveTrackSingleBurst'
lines(x,col=NA,...)

Arguments
X amove, moveStack, moveBurst, dBMvariance, dBMvarianceStack, dBMvarianceBurst
or dBGBvariance object.
col a vector of colors of the same length as the number of individual for a moveS-
tack, or number of burst levels or of segments for a moveBurst object. If left
empty the default 8 colors from R are used, which will be recycled if the ob-
ject contains more individuals or burst levels (run palette() to obtain vector of
default colors)
arguments to be passed on, e.g. 1ty or 1wd.
Author(s)

Marco Smolla & Anne Scharf

move

See Also

points, plot

Examples

add a track from a Move object to a plot

data(leroy)
data(leroydbbmm)
plot(leroydbbmm)

lines(spTransform(leroy, center=TRUE), col=3)

plot the points and lines of a moveStack

data(fishers)

plot(fishers, type='p',pch=4)
lines(fishers, col=3:4)

67

move

Create a Move object

Description

This function creates Move or MoveStack object from a .csv file with location data downloaded from
a Movebank study, from a zip file downloaded from the EnvData (environmental annotation tool) of
a Movebank study, from a 1traj, telemetry, track_xyt, track or binClstPath object or from
own data. If you use your own data you need to set the projection method with the ’proj” argument
and specify which columns of your data contain the coordinates and timestamps.

Usage

S4 method for

signature 'connection,missing,missing,missing,missing’

move(x, removeDuplicatedTimestamps=F, ...)

S4 method for
move(x, y, time,
S4 method for
move(x, y, time,
S4 method for
move(x, y, time,
S4 method for
move(x, y, time,
S4 method for
move(x, y, time,
S4 method for
move(x, y, time,
S4 method for
move(x, y, time,
S4 method for

signature 'ltraj,missing,missing,missing,missing’

data, proj,...)

signature 'telemetry,missing,missing,missing,missing’
data, proj,...)

signature 'track_xyt,missing,missing,missing,missing’
data, proj,...)

signature 'list,missing,missing,missing,missing’

data, proj,...)

signature 'track,missing,missing,missing,missing’

data, proj,...)

signature 'binClstPath,missing,missing,missing,missing’
data, proj,...)

signature 'binClstStck,missing,missing,missing,missing’
data, proj,...)

signature 'data.frame,missing,missing,missing,missing’

https://www.movebank.org/node/6607

68

move

move(x, y, time, data, proj,...)

S4 method for signature 'numeric,numeric,POSIXct,data.frame,CRS'
move(x, y, time, data, proj, sensor='unknown',animal='unnamed',...)

Arguments

X

time

data

proj

sensor

animal

full path to the csv (or compressed) file location downloaded from a Movebank
study, OR to the zip file location downloaded from the EnvData tool in Move-
bank.

a ltraj object from the package adehabitatLT.

a telemetry object or list of telemetry objects from the package ctmm.

a track_xyt object from the package amt.

a track object from the package bcpa.

abinClstPath or a binClstStck object from the package EMbC.

adata. frame object downloaded from Movebank webpage or with getMovebankLocationData.
numeric vector with x coordinates if non-Movebank data are provided (e.g.
data$x).

numeric vector with y coordinates if non-Movebank data are provided (e.g.
datasy).

vector of time stamps with POSIXct conversion if non-Movebank data are pro-
vided, i.e. as.POSIXct(data$timestamp, format="%Y-%m-%d %H:%M:%S", tz="UTC")

extra data associated with the relocations, if empty it is filled with the coordi-
nates and timestamps. Optional.

projection method for non-Movebank data; requires a valid CRS (see CRS-class)
object, e.g. CRS("+proj=longlat +ellps=WGS84"); default is NA. Optional.

Sensor name(s), either single character or a vector with length of the number of
coordinates. If multiple sensors are provided this has to be done as a vector with
the same length as the number of coordinates. Optional.

animal ID(s) or name(s), either single character or a vector with length of the
number of coordinates. If multiple individuals are provided this has to be done
as a vector with the same length as the number of coordinates. Optional.

removeDuplicatedTimestamps

Details

logical; if TRUE duplicated timestamps values will be removed. Only available
when reading in data from movebank via path to a .csv file. Using this argument
will retain the first of multiple records with the same animal ID and timestamp,
and remove any subsequent duplicates. See 'Note’.

Additional arguments

The easiest way to import data is to download the study you are interested in from https://www.
movebank.org and set the file path as the x argument of the move function. The function detects
whether there are single or multiple individuals in this file and automatically creates either a Move,
MoveStack object. See the browseMovebank’ vignette for more information on how to directly

https://www.movebank.org/node/6607
https://www.movebank.org
https://www.movebank.org

move 69

download data from Movebank from within R.

nyn

Another way is to read in your data using read.csv. Then specify the arguments "x" and "y"
the columns of your data containing the x and y coordinates, in the argument "time" the column
containing the timestamp, optionally the columns containing the information of the sensor(s) used,
the animal name(s) and the projection, as well as the whole data. frame of the imported data. If the
argument "animal" is left empty or contains only the name of one animal the function will return
a Move object. If the data contains multiple animal names the function will return a MoveStack
object.

Value

returns an object of class 'move’ or 'moveStack’.

If data of Movebank are used, the definitions of the content of the columns within the @idData,
@sensor, @data slots of the move or moveStack object is detailed in the Attribute Dictionary on
Movebank

When the move or moveStack is created providing a path to a .csv or .zip file downloaded from
Movebank the coordinates in the @coords slot are named "location.long" and "location.lat". When
the move or moveStack is created by providing a data. frame, the coordinates in the @coords slot
are named "coords.x1" and "coords.x2".

Note

It is checked whether the imported data set (via file path) is in a Movebank format. If your data
isn’t in a Movebank format, you have to use the alternative import for non-Movebank data reading
in your data using read.csv and specifying which columns contain the needed information (see
’Details’).

Locations with "NA":

Because the SpatialPointsDataFrame function that creates the spatial data frame of the Move
object can not process NA location values, all rows with NA locations are stored as unused records
in the Move object.

Duplicated timestamps:

When you are importing data from movebank (via path to .csv or .zip file) you can also set the argu-
ment "removeDuplicatedTimestamps=TRUE", which allows you delete the duplicated timestamps
in case your data set contains them. Using this argument will retain the first of multiple records
with the same animal ID and timestamp, and remove any subsequent duplicates. In case you want
to control which of the duplicate timestamps are kept and which are deleted, we recommend to
download the data as a .csv file from Movebank or to use the function getMovebankLocationData,
find the duplicates using e.g. getDuplicatedTimestamps, decide which of the duplicated timestamp
to retain, and than create a move/moveStack object with the function move. Another option is to
edit the records in movebank and mark the appropriate records as outliers.

Naming:

Due to convention all names are turned into ’good names’ which means, without spaces ('Ricky T’
becomes "Ricky.T’), if names are numbers a "X" will be prepended (*12345’ becomes *X123457)
and most symbols will be replaced by "." (CRicky-T” becomes "Ricky.T”).

Outliers:
In Movebank outliers can be marked manually or using filters, including a duplicate filter that flags

https://www.movebank.org/node/2381
https://www.movebank.org/node/2381
https://www.movebank.org/node/42#mark_outliers
https://www.movebank.org/node/33529

70 move

duplicate records based on user-selected attributes, retaining the first record of each duplicate set
that was imported to the study. These outliers will be marked with ’false’ in the column ’visible’, if
data were downloaded including outliers.

When the move object is created by providing the path to the file downloaded from Movebank, the
records marked as outliers are automatically placed in the UnusedRecords slots.

If these marked outliers want to be included in the move object, read in the data from the down-
loaded csv file from movebank with read.csv, set the marked outliers to ’true’ in the column
’visible’, or remove the column ’visible’ from the data frame, save the table as a csv file and create
the move object.

Multiple sensors:

If a move/moveStack object contains multiple sensors, this object can be separated into a move/moveStack
object per sensor type:

x[x@sensor=="z"] where "x" is a Move or a MoveStack object, and "z" is the name of the sensor

e.g. "GPS", "Radio Transmitter", etc.

Telemetry object with error calibration:

If the telemetry object (from ctmm) contains calibrated data, i.e. the GPS error has been calculated
using the available tools in the ctmm package, the move object will contain an extra column in
the data slot called error.loc.mts that will contain the error in meters for each location. This
information can be used e.g. in the location.error argumet of the dynamic Brownian Bridge
functions or the locErr argument of the Bivariate Gaussian Bridge functions.

Providing a data.frame object:

To read in a data.frame as a move/movestack object without specifying which arguments correspond
to each argument, the data.frame is assumed to be downloaded from Movebank via the webpage or
the getMovebankLocationData function. The function assumes a movebank format with the coor-
dinates under the columns "location long" and "location lat" and projection lat/long; the timestamp
under the column "timestamps" in the movebank format "% Y-%m-%d %H:%M:%S" and in time-
zone UTC; individual Id under the column "individual local identifier" and the sensor type under
the column "sensor type".

Author(s)

Marco Smolla, Bart Kranstauber & Anne Scharf

Examples

create a move object from a Movebank csv file
filePath<-system.file("extdata”,"leroy.csv.gz",h package="move")
data <- move(filePath)

create a move object from non-Movebank data

file <- read.table(filePath, header=TRUE, sep=",", dec=".")

data <- move(x=file$location.long, y=file$location.lat,
time=as.POSIXct(file$timestamp, format="%Y-%m-%d %H:%M:%S", tz="UTC"),
data=file, proj=CRS("+proj=longlat +ellps=WGS84"),
animal="Leroy", sensor="GPS")

plot(data, type="b", pch=20)

if the data contain multiple individuals a moveStack will be created
fishersPath<-system.file("extdata”,"fishersSubset.csv.gz", package="move")

Move-class 71

fishersSubset <- read.table(fishersPath, header=TRUE, sep=",", dec=".")
data2 <- move(x=fishersSubset$location.long, y=fishersSubset$location.lat,
time=as.POSIXct(fishersSubset$timestamp, format="%Y-%m-%d %H:%M:%S", tz="UTC"),

data=fishersSubset, proj=CRS("+proj=longlat +ellps=WGS84"),
animal=fishersSubset$individual.local.identifier,
sensor=fishersSubset$sensor)

plot(data2, type="b", pch=20, col=c("green”,"blue")[data2@idData$individual.local.identifier])

plot(data2[[2]], type="1")

Move-class The Move class

Description

The Move object contains at least time and coordinate information of an animal. It can contain
further data that are specific to the animal, e.g. the sex or age, which are stored in the idData slot
data.frame. Any data associated to the coordinates are stored in the data slot data. frame. If the
object was created with the Movebank browsing functions it also contains the study name, licence
and citation information.

A Move object can be created with the functions move, getMovebankData or getDataRepository-
Data.

Slots

bbox belongs to the SpatialPointsDataFrame

citation Object of class "character”: how to cite the study, when Movebank data are used
coords coordinates of the track, belongs to the SpatialPointsDataFrame

coords.nrs belongs to the SpatialPointsDataFrame

data Object of class "data.frame”: additional data associated to the coordinates
dataUnUsedRecords Object of class "data.frame”: data associated to the unused records
dateCreation Object of class "POSIXct": timestamp when the Move object was created

idData Object of class "data.frame”: additional (one row) data. These data contain information
associated to the animal

license Object of class "character”: the license under which the data were published, when
Movebank data are used

proj4string Object of class "CRS": projection of the coordinates

sensor Object of class "factor”: sensors used to record the coordinates
sensorUnUsedRecords Object of class "factor”: sensors used to record the unused records
study Object of class "character”: name of the study, when Movebank data are used
timestamps Object of class "POSIXct": timestamps associated to the coordinates

timestampsUnUsedRecords Object of class "POSIXct”: timestamps associated to the unused
records, i.e. lines of the data that were removed because they included NA locations

72 Move-class

Methods

angle signature(object = "Move"): calculates angles between consecutive locations
as.data.frame signature(object = "Move"): extracts the spatial data frame

brownian.bridge.dyn signature(object = "Move"): calculates the utilization distribution (UD)
of the given track using the dynamic Brownian Bridge Movement Model

brownian.motion.variance.dyn signature(object = "Move"): calculates the motion variance
of the dynamic Brownian Bridge Movement Model

burst signature(object = "Move"): bursts a track by a specified variable
citations signature(object = "Move"): extracts or sets the citation
coordinates signature(object = "Move"): extracts the coordinates from the track

corridor signature(object = "Move"): identifies track segments whose attributes suggest cor-
ridor use behavior

distance signature(object = "Move"): calculates distances between consecutive locations

dynBGB signature(object = "Move"): calculates the utilization distribution (UD) of the given
track using the dynamic Bivariate Gaussian Bridge model

dynBGBvariance signature(object = "Move"): calculates the orthogonal and parallel motion
variance of the dynamic Brownian Bridge Movement Model

equalProj signature(object = "Move"): checks whether all objects of a list are in the same
projection

hrBootstrap signature(object = "Move"): calculates and plots the area of the Minimum Con-
vex Polygon of a track

idData signature(object = "Move"): returns or replaces the idData slot

interpolateTime signature(object = "Move"): interpolates trajectories based on time

lines signature(object = "Move"): add lines of the track of the animal to a plot

move2ade signature(object = "Move"): converts to a adehabitat compatible object

moveStack signature(object = "Move"): stacks a list of Move objects

n.locs signature(object = "Move"): calculates number of locations

plot signature(object = "Move"): plots the track of the animal

points signature(object = "Move"): add points of the track of the animal to a plot

seglength signature(object = "Move"): calculates the length of each segment of a track

sensor signature(object = "Move"): extracts the sensor(s) used to record the coordinates

show signature(object = "Move"): displays summary the Move object

speed signature(object = "Move"): calculates speed between consecutive locations

spTransform signature(object = "Move"): transforms coordinates to a different projection method

summary signature(object = "Move"): summarizes the information of Move object

subset signature(object = "Move"): subsets the Move object

timelLag signature(object = "Move"): calculates time lag between consecutive locations

timestamps signature(object = "Move"): gets the timestamps associated to the coordinates

turnAngleGe signature(object = "Move"): calculates angles between consecutive locations

unUsedRecords signature(object = "Move"): returns the unUsedRecords object containing the
data of the unused records

move2ade 73

Note
The Move object contains a .MoveGeneral, .MoveTrack, .MoveTrackSingle and .unUsedRecords
object which can be used to program against.

Author(s)

Marco Smolla & Anne Scharf

move2ade Convert a Move or MoveStack object to a SpatialPointsDataFrame

Description

Convert a Move or MoveStack object to adehabitat compatible object. This is necessary because
Move and MoveStack objects are not inherited by the object class that is typically used by the
adehabitat package. Therefore, the move2ade function allows to use functions of the adehabitatHR
package with objects that were originally created with the Move package.

Usage
S4 method for signature '.MoveTrackSingle'
move2ade (x)
S4 method for signature '.MoveTrackStack'
move2ade (x)
Arguments
X amove, moveStack or moveBurst object
Details

There is also the possibility to convert between a Itraj object and a Move or MoveStack:

nyn

as(x,"ltraj") where "x" is a Move or MoveStack object

ny N

as(x, "Move") or as(x, "MoveStack”) where "x" is a ltraj object

Value

The returned object is from SpatialPointsDataFrame with the animal name (or *unnamed’) stored
in the data slot of the SpatialPointsDataFrame.

Author(s)

Marco Smolla & Anne Scharf

74 movebankLogin

Examples

data(fishers)

data(leroy)

move2ade(leroy) ## for a Move object
move2ade(fishers) ## for a MoveStack object

movebankLogin Login into Movebank

Description

Creates an object that can be used with all Movebank browsing functions.

Usage

S4 method for signature 'character,character'’
movebankLogin(username, password)

Arguments
username Your Movebank username
password Your Movebank password
Details

Use this function to login to Movebank. After you logged in, you can use the Movebank browsing
functions from the move package.

If the function is left empty, you’ll be requested to enter your username and password. This option
is useful to keep Movebank login data confidential when R-code is shared.

Value

’MovebankLogin’

Note
See the ’browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

Author(s)

Marco Smolla & Anne Scharf

https://www.movebank.org

MovebankLogin-class 75

Examples

Not run:

First create the login object

login <- movebankLogin(username="xxx", password
or

login <- movebankLogin()

—_n

zzz"

and than use it with Movebank browsing functions, e.g.
getMovebankStudies(login)

End(Not run)

MovebankLogin-class The MovebankLogin class

Description

The MovebankLogin object is needed for every Movebank browsing function. It is created with the
function movebankLogin. Alternatively, one can also chose to enter the username and password
every time one uses one of the browsing functions. The object is inherited from an httr request
object.

Methods

getMovebank signature(object = "MovebankLogin"): download data from Movebank

getMovebankAnimals signature(object = "MovebankLogin"): get animals, tags and IDs of a
Movebank study

getMovebankData signature(object = "MovebankLogin"): download data from Movebank as
a Move* object

getMovebankLocationData signature(object = "MovebankLogin"): download location data
from Movebank as a table

getMovebankNonLocationData signature(object = "MovebankLogin"): download non-location
data from Movebank as a table

getMovebankID signature(object = "MovebankLogin"): get study ID from Movebank

getMovebankSensors signature(object = "MovebankLogin"): get information about Move-
bank sensors

getMovebankSensorsAttributes signature(object = "MovebankLogin”): get available sen-
sor attributes of a Movebank Study

getMovebankStudies signature(object = "MovebankLogin"): get all studies available on Move-
bank

getMovebankStudy signature(object = "MovebankLogin”): get information of a Movebank
study

searchMovebankStudies signature(object = "MovebankLogin"): search for a Movebank study
by key words

76 MoveBurst

getMovebankReferenceTable signature(object = "MovebankLogin"): get all reference data
of a Movebank study

show signature(object = "MovebankLogin"): shows user name and password contained in the
MovebankLogin object

Author(s)

Bart Kranstauber, Marco Smolla & Anne Scharf

MoveBurst MoveBurst class

Description

The class MoveBurst is used to store the track of one individual with a categorical assignment
to each segment. Every segment between two locations has a class of for example a behavioral
category. A MoveBurst object is created with the functions burst and corridor.

Slots

bbox See Move-class

burstld Id of the behavioral categorization assigned to each segment, one shorter then the number
of locations.

citation See Move-class

coords See Move-class

coords.nrs See Move-class

data See Move-class
dataUnUsedRecords See Move-class
dateCreation See Move-class
idData See Move-class

license See Move-class

projdstring See Move-class

sensor See Move-class
sensorUnUsedRecords See Move-class
study See Move-class

timestamps See Move-class

timestampsUnUsedRecords See Move-class

MoveBurst 77

Methods

angle signature(object = "MoveBurst"): calculates angles between consecutive locations
as.data.frame signature(object = "MoveBurst"): extracts the spatial data frame

brownian.bridge.dyn signature(object = "MoveBurst"): calculates the utilization distribu-
tion (UD) of the given track using the dynamic Brownian Bridge Movement Model

brownian.motion.variance.dyn signature(object = "MoveBurst"): calculates the motion vari-
ance of the dynamic Brownian Bridge Movement Model

burstId signature(object = "MoveBurst"): returns the Id of the behavioral categorization as-
signed to each segment

citations signature(object = "MoveBurst"): extracts or sets the citation
coordinates signature(object = "MoveBurst"): extracts the coordinates from the track

corridor signature(object = "MoveBurst"”): identifies track segments whose attributes sug-
gest corridor use behavior

distance signature(object = "MoveBurst"): calculates distances between consecutive loca-
tions

dynBGB signature(object = "MoveBurst"): calculates the utilization distribution (UD) of the
given track using the dynamic Bivariate Gaussian Bridge model

dynBGBvariance signature(object = "MoveBurst"): calculates the orthogonal and parallel mo-
tion variance of the dynamic Brownian Bridge Movement Model

equalProj signature(object = "MoveBurst”): checks whether all objects of a list are in the
same projection

hrBootstrap signature(object = "MoveBurst"): calculates and plots the area of the Minimum
Convex Polygon of a track

idData signature(object = "MoveBurst"): returns or replaces the idData slot
interpolateTime signature(object = "MoveBurst"): interpolates trajectories based on time
lines signature(object = "MoveBurst"): add lines of the track of the animal to a plot
move2ade signature(object = "MoveBurst"): converts to a adehabitat compatible object
n.locs signature(object = "MoveBurst"): calculates number of locations

plot signature(object = "MoveBurst"): plots the track of the animal

plotBursts signature(object = "MoveBurst"): plots the centroids of a bursted track

points signature(object = "MoveBurst"): add points of the track of the animal to a plot
seglength signature(object = "MoveBurst"): calculates the length of each segment of a track
sensor signature(object = "MoveBurst"): extracts the sensor(s) used to record the coordinates
show signature(object = "MoveBurst"): displays summary the MoveBurst object

speed signature(object = "MoveBurst"): calculates speed between consecutive locations
split signature(object = "MoveBurst"): splits a MoveBurst into a list of Move objects

spTransform signature(object = "MoveBurst"): transforms coordinates to a different projec-
tion method

summary signature(object = "MoveBurst"): summarizes the information of MoveBurst object

78 moveStack

subset signature(object = "MoveBurst"): subsets the MoveBurst object
timelLag signature(object = "MoveBurst"): calculates time lag between consecutive locations

timestamps signature(object = "MoveBurst"): gets the timestamps associated to the coordi-
nates

turnAngleGec signature(object = "MoveBurst"”): calculates angles between consecutive loca-
tions

unUsedRecords signature(object = "MoveBurst"): returns the unUsedRecords object contain-
ing the data of the unused records
Note

The MoveBurst object contains a .MoveGeneral, .MoveTrackSingleBurst and .unUsedRecords
object which can be used to program against.

Author(s)
Marco Smolla & Anne Scharf

moveStack Creating a MoveStack

Description

Stacks a list of Move objects

Usage

S4 method for signature 'list'
moveStack(x, forceTz=NULL, ...)

S4 method for signature 'Move'
moveStack(x, ..., forceTz=NULL)

S4 method for signature 'MoveStack'

moveStack(x, ..., forceTz=NULL)
Arguments
X a list of move or moveStack objects (or a combination of both). Timestamps of

all objects have to be in the same time zone.

forceTz The time zone, as a character, that the resulting moveStack object should have
(see OlsonNames () for available time zones). If NULL the timestamps of the re-
sulting moveStack will be in the time zone of the computer (see Sys. timezone())

Additional move or moveStack objects.

MoveStack-class 79

Details

This function stacks single Move or Movestacks objects to a MoveStack object.

Value

a ’MoveStack’ object

Note

All animal names are converted into 'good names’ which means, that spaces are replaced with
points and duplicated names get an individual number added. For example:

’Leroy, Leroy’ -> adding number to duplicated names ->’Leroy, Leroy.1’

’Ricky T” -> replacing spaces -> ’Ricky. T’

Author(s)

Marco Smolla, Bart Kranstauber & Anne Scharf

See Also

split

Examples

data(leroy)
ricky<-move(system.file("extdata”,"ricky.csv.gz", package="move"))
leroy<-spTransform(leroy, crs(ricky))

creating a moveStack from a list of move objects
1 <- list(ricky[200:270,], leroy[200:270,]1)
moveStack (1)

creating a moveStack from several move objects
moveStack(ricky[200:270,], leroy[200:270,], forceTz="UTC")

creating a moveStack with the same time zone as input move objects
moveStack(ricky[200:270,], leroy[200:270,], forceTz=attr(timestamps(ricky),"tzone"))

MoveStack-class The MoveStack class

Description

The MoveStack object is a stack of move objects. A MoveStack object can be created with the
functions move, moveStack, getMovebankData or getDataRepositoryData

80 MoveStack-class

Slots

bbox belongs to the SpatialPointsDataFrame

citation Object of class "character”: how to cite the study, when Movebank data are used
coords coordinates of the track, belongs to the SpatialPointsDataFrame

coords.nrs belongs to the SpatialPointsDataFrame

data Object of class "data.frame”: additional data associated to the coordinates
dataUnUsedRecords Object of class "data.frame”: data associated to the unused records
dateCreation Object of class "POSIXct”: timestamp when the MoveStack object was created

idData Object of class "data.frame": additional (one row) data. These data contain information
associated to the animal

license Object of class "character”: the license under which the data were published, when
Movebank data are used

projdstring Object of class "CRS": projection of the coordinates

sensor Object of class "factor”: sensors used to record the coordinates
sensorUnUsedRecords Object of class "factor”: sensors used to record the unused records
study Object of class "character”: name of the study, when Movebank data are used
timestamps Object of class "POSIXct”: timestamps associated to the coordinates

timestampsUnUsedRecords Object of class "POSIXct”: timestamps associated to the unused
records, i.e. lines of the data that were removed because they included NA locations

trackld Object of class "factor”: vector that indicates, which data, coordinates and timestamps
belong to each individual

trackldUnUsedRecords Object of class "factor"”: vector that indicates, which data, coordinates
and timestamps of the unused records belong to each individual

Methods

angle signature(object = "MoveStack"): calculates angles between consecutive locations
as.data.frame signature(object = "MoveStack"): extracts the spatial data frame

brownian.bridge.dyn signature(object = "MoveStack"): calculates the utilization distribu-
tion (UD) of the given track using the dynamic Brownian Bridge Movement Model

brownian.motion.variance.dyn signature(object = "MoveStack"): calculates the motion vari-
ance of the dynamic Brownian Bridge Movement Model

citations signature(object = "MoveStack"): extracts or sets the citation
coordinates signature(object = "MoveStack"): extracts the coordinates from the track

corridor signature(object = "MoveStack”): identifies track segments whose attributes sug-
gest corridor use behavior

distance signature(object = "MoveStack"): calculates distances between consecutive loca-
tions

equalProj signature(object = "MoveStack”): checks whether all objects of a list are in the
same projection

MoveStack-class 81

hrBootstrap signature(object = "MoveStack"): calculates and plots the area of the Minimum
Convex Polygon of a track

idData signature(object = "MoveStack"): returns or replaces the idData slot

lines signature(object = "MoveStack”): add lines of the track of the animals to a plot
move2ade signature(object = "MoveStack"): converts to a adehabitat compatible object
moveStack signature(object = "MoveStack”): stacks a list of MoveStack objects

n.indiv signature(object = "MoveStack"”): returns the number of individuals

n.locs signature(object = "MoveStack"): calculates number of locations

plot signature(object = "MoveStack"): plots the track of the animals

points signature(object = "MoveStack"): add points of the track of the animals to a plot
seglength signature(object = "MoveStack"): calculates the length of each segment of a track
sensor signature(object = "MoveStack"): extracts the sensor(s) used to record the coordinates
show signature(object = "MoveStack”): displays summary the MoveStack object

speed signature(object = "MoveStack"): calculates speed between consecutive locations
split signature(object = "MoveStack"): splits a MoveStack into a list of Move objects

spTransform signature(object = "MoveStack"): transforms coordinates to a different projec-
tion method

summary signature(object = "MoveStack”): summarizes the information of MoveStack object
subset signature(object = "MoveStack"”): subsets the MoveStack object
timelLag signature(object = "MoveStack"): calculates time lag between consecutive locations

timestamps signature(object = "MoveStack"): gets the timestamps associated to the coordi-
nates

trackId signature(object = "MoveStack"): returning the Id of the individual per coordinate

turnAngleGe signature(object = "MoveStack"”): calculates angles between consecutive loca-
tions

unUsedRecords signature(object = "MoveStack”): returns the unUsedRecordsStack object con-
taining the data of the unused records
Note
The MoveStack object contains a .MoveGeneral, .MoveTrackStack and .unUsedRecordsStack
object which can be used to program against.
Author(s)

Marco Smolla & Anne Scharf

82

n.locs

n.indiv Extract the number of individuals of a MoveStack

Description

This function returns the number of individuals from a MoveStack object.

Usage

S4 method for signature 'Move'
n.indiv(obj)

S4 method for signature '.MoveTrackStack'
n.indiv(obj)

Arguments

obj amove or moveStack object

Value

Returns the number of individuals.

It will be always 1 for objects of the class Move
Author(s)

Bart Kranstauber

Examples

data(leroy)
n.indiv(leroy)

data(fishers)
n.indiv(fishers)

n.locs Extract the number of locations of a Move or MoveStack object

Description

This function returns the number of locations of a track from a Move or MoveStack object.

Usage

S4 method for signature 'SpatialPointsDataFrame’
n.locs(obj)

S4 method for signature '.MoveTrackStack'
n.locs(obj)

namesIndiv 83

Arguments

obj amove, moveStack or moveBurst object

Value

number of locations.
If a MoveStack is provided, the number of locations per individual is returned.

Author(s)

Marco Smolla

Examples

data(leroy)

data(fishers)

n.locs(leroy) # of Move object
n.locs(fishers) # of MoveStack object

namesIndiv Extract the names of the individuals of a move or moveStack object

Description

This function returns the names of the individuals from a move or moveStack object.

Usage
namesIndiv(obj)
Arguments
obj amove or moveStack object
Value

Returns the name as a character for a move object, and the names as a character vector from a
moveStack object.
If no name has been provided when creating the move object, "unnamed" will be returned.

Author(s)

Anne Scharf

84 outerProbability

Examples

data(leroy)
namesIndiv(leroy)

data(fishers)
namesIndiv(fishers)

outerProbability Calculates the probabilities at the edges of a raster

Description

The outerProbability method calculates the summed probability of the cells at the border of a raster

Usage

S4 method for signature 'RasterlLayer’
outerProbability(raster,border,...)

S4 method for signature 'DBBMMStack'
outerProbability(raster,border,...)

Arguments

raster a RasterLayer, DBBMM, DBBMMStack, dynBGB or . UD object

border numeric from O to 1; ratio of the number of columns at the border relative to the
whole raster from which the probabilities should be summed up; default is 10%
(0.1)

Currently not implemented

Details

The function returns the summed probability at the border (e.g. the outer 10% of the cells) of a
raster. This value can be used as an indicator whether the extent of the used raster is to small for the
UD calculation and therefore too much probabilities are not calculated because they are outside the
raster.

Value

numeric value for a single DBBMM or dynBGB object, or a list of numeric values for a DBBMM-
Stack

Author(s)
Marco Smolla & Anne Scharf

plot 85

Examples

data(leroydbbmm)
#calculate the probabilities of 20% of the raster at the border from a DBBMM
outerProbability(leroydbbmm, border=.2)

#calculate the probabilities of 50% of the raster at the border from a DBBMMStack
outerProbability(leroydbbmm, border=.5)

plot Plotting track or raster

Description

Function for plotting a recorded track from a Move object or the probability values from a DBBMM

object
Usage
S4 method for signature '.MoveTrackSingle,missing'’
plot(x, y,asp=1, ...)
S4 method for signature '.MoveTrackStack,missing'
plot(x, y, type="p",asp=1, ...)
S4 method for signature '.MoveTrackSingleBurst,missing'
plot(x, y, type="p",asp=1, ...)
Arguments
X amove, moveStack, moveBurst, DBBMM, DBBMMStack, DBBMMBurstStack, dynBGB,

dBMvariance, dBMvarianceStack, dBMvarianceBurst, dBGBvariance, .UD,
.UDStack or .UDBurstStack object

y unused variable (listed for compatibility reasons)
type defines the type of the plot (e.g. ’I’, ’p’, ’b’, ’0’)
asp defines the aspect ratio of the plot generally 1 makes most sense since the x and

y dimensions are the same

arguments to be passed to methods, such as graphical parameters, and the logical
add argument (see par). See 'Details’ for col (color) options.

Details

If x is a MoveBurst object colored lines (according to the burstID) are plotted if the type is set to
’I’. By default it is ’p’ which plots the coordinates of the Move object as points.

If x is a DBBMM, DBBMMStack, DBBMMBurstStack or dyynBGB object its raster object is plotted
with the corresponding cell values. Unlike the image function, it keeps the same cell size ratio when
the plot window is re-sized.

In the argument col a vector of colors of the same length as the number of individual for a moveS-
tack, or number of burst levels for a moveBurst object can be specified. If left empty the default
8 colors from R are used, which will be recycled if the object contains more individuals or burst
levels (run palette() to obtain vector of default colors).

86 plotBursts

Note

Have a look on the proportion of the graphic device when printing a track or raster. The plot function
does not use equal sized units on both axes.

Author(s)
Marco Smolla & Anne Scharf

See Also

points, lines

Examples

data(leroy)

data(fishers)

plot(leroy) # plot a Move object

plot(leroy, type="o", col=3)

plot(fishers, col=c(3,5), lwd=3) # plot a MoveStack object
plot(fishers, type="1", col=c(3,5), lwd=3)

data(dbbmmstack)

data(leroydbbmm)

plot(leroydbbmm) # plot the raster of a DBBMM object
plot(dbbmmstack) # plot the raster of a DBBMMStack object

plotBursts Plotting the centroids of a bursted track

Description

The plotBursts function plots bursted Move objects (see burst for how to create a bursted Move
object). The function plots a circle at the midpoint of each burst segment (consecutive coordinates
that belong to a single burst).

Usage

S4 method for signature 'list'
plotBursts(object, add=TRUE,
sizeFUN=function(x){as.numeric(diff(range(timestamps(x))),units ="mins")},
col = NA, breaks = 3, ...)

S4 method for signature '.MoveTrackSingleBurst'
plotBursts(object, add=TRUE,
sizeFUN=function(x){as.numeric(diff(range(timestamps(x))),units ="mins")},
col = NA, breaks = 3, ...)

points 87

Arguments
object amoveBurst object or a list of moveBurst objects
add logical, if FALSE a new plot is generated, default is TRUE
sizeFUN a function to calculate the size of the plotted circles (see ’Details’)
breaks how many size classes should the circles have, default is 3
col a vector of color codes with the same length as the burstID. By default the stan-
dard colors from 1:8 are used (see palette() to obtain vector of default colors).
If there are more than 8 burstIDs the colors are recycled
additional plot attributes
Details
sizeFUN

The color of the circles correspond to the burstIDs. The size of the cycles can have different mean-
ings, depending on what function is defined. By default the size refers to the relative time of the
burst segment compared to the whole track. This argument accepts any personalized function.

Note

If a list of moveBurst objects is provided, the plots are plotted one after another, and not side by
side.

Author(s)
Marco Smolla & Anne Scharf

Examples

data(leroy)

behav <- c(rep(1:4,each=200), rep(5, 118))

testb <- burst(leroy, f=behav)

plot(coordinates(leroy), type="1")

plotBursts(testb, breaks=3, add=TRUE, pch=19)
plotBursts(testb, breaks=5, add=FALSE, pch=19, col=rainbow(5))

plotting circle size of a moveBurst track by realtive segment length
plotBursts(object=testb, breaks=3, sizeFUN=function(x){sum(distance(x))3}, pch=19, add=FALSE)

points Plotting the points of a track

Description

Function for plotting a track from a Move object as points.

88 raster

Usage

S4 method for signature '.MoveTrackSingle'
points(x,...)

S4 method for signature '.MoveTrackStack'
points(x,col=NA,...)

S4 method for signature '.MoveTrackSingleBurst'
points(x,...)

Arguments
X amove, moveStack, moveBurst, dBMvariance, dBMvarianceStack, dBMvarianceBurst
or dBGBvariance object.
col a vector of colors of the same length as the number of individual for a moveS-
tack, or number of burst levels for a moveBurst object. If left empty the default
8 colors from R are used, which will be recycled if the object contains more
individuals or burst levels (run palette() to obtain vector of default colors)
arguments to be passed on, e.g. col for color, or add to add the points to a plot.
See ?par for options.
Author(s)

Marco Smolla & Anne Scharf

See Also

plot, lines

Examples

add a track from a Move object to a plot

data(leroydbbmm)

data(leroy)

plot(leroydbbmm)

points(spTransform(leroy, center=TRUE), col=3) # add a track from a Move object to a plot

plot a moveStack object
data(fishers)

plot(fishers, type="1")
points(fishers, col=3:4, pch=4)

raster Extract raster topology from DBBMM or dynBGB

Description

Extracts the RasterLayer topology from a DBBMM, DBBMMStack and dynBGB object.

raster2contour 89

Usage
S4 method for signature 'DBBMM'
raster(x)
S4 method for signature 'DBBMMStack'
raster(x)
Arguments
X a DBBMM, DBBMMStack or dynBGB object
Details

This function extracts the raster topology (i.e. without values) of the input object. DBBMM, DBB-
MMStack and dynBGB objects can be directly used in most raster functions but in case a raster
with values needs to be extracted as(x, 'RasterLayer') can be used.

Value

An object from class RasterLayer is returned.

Author(s)
Marco Smolla & Anne Scharf

Examples

data(leroydbbmm)

data(dbbmmstack)

raster(leroydbbmm) #returns the raster topology of a DBBMM object
raster(dbbmmstack) # returns the raster topology of a DBBMMStack object

raster2contour Convert raster to contour lines

Description

The function converts a raster UD(stack) object to a SpatialLinesDataFrame. This allows to re-
project the contours to different projections.

Usage

S4 method for signature '.UD'
raster2contour(x, ...)

S4 method for signature '.UDStack'
raster2contour(x, ...)

90 raster2contour

Arguments
X a DBBMM, DBBMMStack, dynBGB, .UD or .UDStack object
additional arguments, like 1evels and nlevels, that can be passed to ’rasterToContour’
function
Details

The contour function creates a shape of the area in which the animal can be found by a certain
probability (i.e. the 90% contour describes the area in which the animal can be found with the 90%
probability).

One or several probabilities can be set with levels (numeric or vector of values between 0 and 1).
If no value is set all contour lines are returned.

You can also use nlevel to set a number of fixed distance levels.

The raster2contour function creates a SpatialLinesDataFrame from the input raster object. This
allows to re-project the contours to different projections.

Value

’SpatiallLinesDataFrame’

Author(s)
Marco Smolla & Anne Scharf

See Also

getVolumelD, contour, outerProbability

Examples

data(leroydbbmm)
data(leroydbgb)
data(dbbmmstack)

from a DBBMM object
(cont1 <- raster2contour(leroydbbmm))
plot(cont1)

from a dynBGB object
(cont2 <- raster2contour(leroydbgh, level=.95))
plot(cont2)

from a DBBMMStack object

(cont3 <- raster2contour (dbbmmstack))

plot(cont3)

(cont4 <- raster2contour(dbbmmstack, level=c(.5,.95)))
plot(cont4)

searchMovebankStudies 91

searchMovebankStudies Search for a study on Movebank

Description

This function searches for studies within Movebank by a specified keyword or phrase.

Usage

searchMovebankStudies(x, login)

Arguments
X a character string to search within the Movebank study names
login a MovebankLogin object, if empty you’ll be asked to enter your username and
password
Details

The search function searches explicitly for the entered phrase. If you for example type *Goose’ it
will not show you studies including ’goose’. So rather search for "oose’ to find both.
Value

The function returns a character vector of study names.

Note
See the ’browseMovebank’ vignette for more information about security and how to use Movebank
from within R.

Author(s)

Marco Smolla

Examples

Not run:

obtain a login

login <- movebankLogin()

returns all studies that include this exact term: "MPIO”
searchMovebankStudies(x="MPI0", login=login)

End(Not run)

92 seglength

seglength Segment lengths of a track

Description

Calculates the length of each segment of a track

Usage
S4 method for signature 'SpatialPointsDataFrame'
seglength(x)
Arguments
X a Move, MoveStack or MoveBurst object
Details

The seglength function calculates the distances between point 1 and point 2, point 2 and point 3,
and so on.
Distances are calculates with the pointDistance function from the package raster.

Value

A numeric vector one element shorter than the number of locations is obtained. Note that in moveS-
tacks distances are not split between animals (see ’Examples’ on how to add the values to a moveS-
tack).

Length in map units.

If the projection of the coordinates is longitude/latitude all values are returned in meters, otherwise
it is the Euclidean distance in the map units of the projection of the move object. Check and set the
projection of your Move, MoveStack or MoveBurst object using the proj4string() function.

Author(s)

Marco Smolla

Examples

Not run:

Move object in longlat projection

data(leroy)

head(seglength(leroy))

to add this information to the move object, a "NA" has to be assigened

e.g. to the last location (it also could be assigend to the first location).
leroy$seglength <- c(seglength(leroy), NA)

MoveStack object in longlat projection

sensor 93

data(fishers)

head(seglength(fishers))

to add this information to the moveStack object, a "NA" has to be assigened

#e.g. to the last location of each individual (it also could be assigend to the first location).
fishers$seglength <- unlist(lapply(lapply(split(fishers),seglength),c, NA))

End(Not run)

sensor Extract the sensor of a Move unUsedRecords object

Description

Extracts the sensor(s) used to record the locations of a track from a Move or unUsedRecords object.

Usage
S4 method for signature '.MoveTrack'
sensor(this,...)
S4 method for signature '.unUsedRecords'
sensor(this,...)
Arguments
this a move, moveStack, moveBurst, .unUsedRecords or .unUsedRecordsStack
object

Currently not used

Value

’factor’ with the sensor(s) name(s).
Note that the returned vector for a MoveStack or .unUsedRecordsStack is not split between animals.

Author(s)

Bart Kranstauber

Examples

data(leroy)
head(sensor(leroy)) ## get the sensor from a Move object

head(sensor (unUsedRecords(leroy))) ## get the sensor from the unused records of a Move object

data(fishers)
head(sensor(fishers)) ## get the sensor from a MoveStack object

94 show

show Show a Move, DBBMM, dynBGB object

Description

Displays a summary of the input object.

Usage
S4 method for signature 'Move'
show(object)
Arguments
object amove, moveStack, moveBurst, DBBMM, DBBMMStack, DBBMMBurstStack, dBMvariance,
dBMvarianceBurst, dBMvarianceStack, dynBGB, dBGBvariance, .UD, .UDStack,
.UDBurstStack or movebankLogin object
Details

For Move, dBMvariance and dBGBvariance objects the function displays a summary including: an-
imal ID, species name, study name, number of track points, receiver type, projection method, date
of file creation, the first three lines of the spatial data frame, study citation, data license, number of
omitted locations due to NAs in the dataset, etc. If the imported data are not from the Movebank
database Animal, Species, nPoints, Receiver, and Study are not shown.

For DBBMM, dynBGB or .UD objects a summary of the raster properties is shown.

For the movebankLogin object the username and password is shown.

Author(s)

Marco Smolla & Anne Scharf

Examples

data(leroy)

show(leroy) # show a move object
data(leroydbbmm)

show(leroydbbmm) # show DBBMM object

speed 95

speed Speed between the locations of a movement track

Description

This function returns the speed between consecutive locations of Move or MoveStack object.

Usage
S4 method for signature '.MoveTrackSingle'
speed(x)
S4 method for signature '.MoveTrackStack'
speed(x)
Arguments
X amove, moveStack or moveBurst object
Value

Speed in map units/second.

If the projection of the coordinates is long/lat all values are returned in m/s, otherwise in the map
units/second of the projection of the move object. Check and set the projection of your Move,
MoveStack or MoveBurst object using the proj4string() function.

If a move or moveBurst object is provided, a numeric vector one element shorter than the number
of locations is obtained.

If amoveStack object is provided, a list with one element per individual containing a numeric vector
one element shorter than the number of locations is obtained.

Author(s)
Marco Smolla & Anne Scharf

Examples

speeds from a Move object

data(leroy)

head(speed(leroy))

to add this information to the move object, a "NA" has to be assigened

e.g. to the last location (it also could be assigend to the first location).
leroy$speed <- c(speed(leroy), NA)

speeds from a MoveStack object

data(fishers)

str(speed(fishers))

to add this information to the moveStack object, a "NA" has to be assigened

e.g. to the last location of each individual (the speed belongs to the following segment).
fishers$speed <- unlist(lapply(speed(fishers),c, NA))

96 split

split Splitting a MoveStack, MoveBurst or DBBMMStack

Description

Splitting a MoveStack or MoveBurst into a list of Move objects. Splitting a DBBMMStack into a
list of DBBMM objects.

Usage
S4 method for signature 'MoveStack,missing'
split(x, f, drop=FALSE, ...)
Arguments
X amoveStack, moveBurst or DBBMMStack object
f not needed
drop not needed

Currently not implemented

Details

A MoveStack is split into a list of Move objects by the tracklId slot of the given MoveStack, obtaining
one move object per unique trackld (usually corresponding to animal names). For staking this list
of move objects use moveStack.

A MoveBurst object is split into a list of Move objects by the burstld slot of the given MoveBurst.
One move object per burst (e.g. segment with given behavior) is obtained. Every location where
the burst is switched will be recycled.

A DBBMMStack is split into a list of DBBMM objects by the trackld slot of the given DBBMMStack.
Value
list’

Note
After splitting any object, the coordinates in the @coords slot in the resulting objects are named
"coords.x1" and "coords.x2" (due to the usage of functions of other packages within this function).
Author(s)

Marco Smolla & Anne Scharf

spTransform 97

Examples

splitting a MoveStack
data(fishers)
split(fishers)

splitting a DBBMMStack
data(dbbmmstack)
split(dbbmmstack)

splitting a MoveBurst

data(leroy)

behav <- c(rep(c("a","b","c","a"),each=200), rep("b", 118))
leroyBurst <- burst(x=leroy, f=behav)

split(leroyBurst)

spTransform Transform projection of movement track

Description

The spTransform function transforms the coordinates stored in the Move object from the default
long/lat coordinates to the default aeqd (Azimuthal Equi-distance) projection or a user defined pro-
jection.

Usage

S4 method for signature 'Move,character’
spTransform(x,CRSobj,center=FALSE)

S4 method for signature 'Move,missing'
spTransform(x,center=FALSE, ...)

Arguments
X amove, moveStack or moveBurst object to be transformed
CRSobj object of class CRS, or of class character in which case it is converted to CRS.
Can be left empty if center=TRUE
center logical, if TRUE the center of the coordinate system is the center of the track;
FALSE is default
for additional arguments
Details

The spTransform function transforms the coordinates of a Move object by default from "+proj=longlat”
to "+proj=aeqd”. In this format the coordinates can be used by the brownian.bridge.dyn func-

tion.

If center is TRUE the center of the coordinate system is set to the center of the track.

98 subset-method

Value

same as input object with coordinates transformed to the new coordinate reference system.

Author(s)
Marco Smolla & Anne Scharf

Examples

create a Move object

data(leroy)

transform the Move object by default into "+aeqd” projection method
and center the coordinate system

spTransform(leroy, center=TRUE)

transform the Move object into another projection method, like mollweide
spTransform(leroy, CRSobj="+proj=moll +ellps=WGS84")

#i#tcheck projection method
proj4string(leroy)

subset-method Subset movement tracks

Description

Extraction of a subset of locations or individuals from a movement track.

Usage
S4 method for signature 'MoveStack,ANY,ANY'
x[i]
S4 method for signature 'MoveStack,character,missing’
x[[il]
Arguments
X amove, moveStack, moveBurst, DBBMM, DBBMMStack, DBBMMBurstStack, dynBGB,
dBMvariance, dBMvarianceBurst, dBMvarianceStack or dBGBvariance ob-
ject
i numeric, character or logical vector for individuals in a stack or a set of locations
Details

The single square bracket method is used to select coordinates from a Move* object. The double
square bracket method is used for sub setting a moveStack to a single move object according to the
individual name or return a stack of multiple individuals.

summary 99

Value

same object class as the input containing the selected locations or individuals

Author(s)

Bart Kranstauber & Anne Scharf

Examples

subseting a Move, MoveBurst, DBBMM, dBMvariance, dBMvarianceBurst,

dBMvarianceStack or dBGBvariance object by locations

data(leroy)

leroy[1:20,] # subset to selected range of coordinates of a move objects
leroy[c(1,10,20),] # subset to selected coordinates of a move objects
leroy[c(TRUE,FALSE),] # subset to every second location
leroy[c(TRUE,FALSE,FALSE),] # subset to every third location

subseting a moveStack, DBBMMStack or DBBMMBurstStack object,

by locations

data(fishers)

subset to selected range of coordinates of a moveStack objects. If the first individual contains
more than, in this case 300, locations, only locations of the fist individual will be returned
fishers[1:300,]

fishers[1] # returns first location of first individual

or individuals

fishers[['Ricky.T']] # returns move object of named individual

fishers[[c('Leroy', 'Ricky.T')]1] # returns subseted moveStack only with the named individual
fishers[[2]] # returns move object of 2nd individual

fishers[[c(1,2)]1]# returns subseted moveStack only with the selected individual

fishers[[c(TRUE,FALSE)]] # returnes move or moveStack object with those individuals that are 'TRUE'

summary Summary of Move, DBBMM, dynBGB objects

Description

Summarizes the information contained in the input object

Usage

S4 method for signature '.UD'
summary (object)

S4 method for signature '.UDStack'
summary (object)

100 thinTrackTime

Arguments
object move, moveStack, moveBurst, DBBMM, DBBMMStack, DBBMMBurstStack, dynBGB,
dBMvariance, dBMvarianceBurst, dBMvarianceStack,dBGBvariance, .UD, .UDStack
or .UDBurstStack object
Details

Returns the projection, extent, and maximum and minimum values of the raster stored within the
DBBMM, DBBMMStack, dynBGB, .UD, .UDStack or .UDBurstStack object. For the remaining
objects it returns a summary of the data contained in the ’@data’ slot.

Author(s)
Marco Smolla & Anne Scharf

Examples

data(leroy)

summary(leroy) # summary of a move object
data(leroydbbmm)

summary (leroydbbmm) # summary of a DBBMM object

thinTrackTime Thinning trajectories to a specific time interval or distance.

Description

These functions thin trajectories, by selecting segments from the original track with a fixed time
interval or distance. Finding all segments of a specific time interval might for example be useful for
fitting step selection functions.

Usage
thinTrackTime(x, interval = NA, tolerance = NA,
criteria = c("closest”, "first"”, "all"), ...)
thinDistanceAlongTrack(x, interval = NA, tolerance = NA,
criteria = c("closest”, "first”, "all"), ...)
Arguments
X a move object
interval in thinTrackTime a object of class difftime specifying a time interval. See
’Examples’.

in thinDistanceAlongTrack a numeric value specifying a distance. The units
will correspond to the map units. If the coordinates are in long/lat, than the value
should be provided in meters.

thinTrackTime 101

tolerance in thinTrackTime a object of class difftime specifying the tolerance of the
specified interval. See ’Examples’.
in thinDistanceAlongTrack a numeric value specifying the tolerance of the
specified interval

criteria the criteria ("closest", "first" or "all") to be used when multiple solutions are
available. Default is "closest".

Currently not implemented.

Details

The functions search for consecutive segments with a cumulative sum of the time lag (or distance)
corresponding to interval and tolerance values. From each selected chunk of the track, only the first
and last location are kept in the new object, this new segment is labeled with "selected". The seg-
ments labeled as "notSelected" are those parts of the track that did not fulfill the indicated interval.
A "notSelected" burst can correspond to multiple consecutive segments that have a larger timelag
than the one specified, or a single large time gap that is present in the original data.

Note that in the case of thinDistanceAlongTrack, the distances between the locations in the new
object do not represent the distance that the animal actually traveled, as the intermediate location
are removed.

Value

A MoveBurst object, with segments labeled either ’selected’ or 'notSelected’, only the selected
segments match the criteria set in the function call.

A list of MoveBurst objects will all possible solutions if the criteria is set to "all".

Note

This function finds the maximal number of segments that meet the criteria but does not ensure that
the average matches the set interval.

Author(s)
Bart Kranstauber & Anne Scharf

See Also

interpolateTime

Examples

data("leroy")

leroysub <- leroy[1:200]

selecting those segments that have a time interval of 15mins pulsminus 5mins

thintime <- thinTrackTime(leroysub, interval = as.difftime(15, units='mins'),
tolerance = as.difftime(5, units='mins'))

summary (timeLag(thintime, "mins"”)[thintime@burstId=="selected"])

selecting those segments that have a distance of 100m pulsminus 10m
thindist <- thinDistanceAlongTrack(leroysub, interval = 100, tolerance = 10)

102 timeLag

summary (distance(thindist)[thindist@burstId=="selected"])

timelag Time lags between the locations of a movement track

Description

Calculates the time lags between consecutive locations of a track.

Usage

S4 method for signature '.MoveTrackSingle'
timelLag(x,...)
S4 method for signature '.MoveTrackStack'

timelLag(x,units, ...)
Arguments
X amove, moveStack or moveBurst object
units The units used for the conversion (e.g. "secs", "mins", "hours", "days" or "weeks").

They should be specified for a moveStack to ensure the same units between in-
dividuals. Optional (but recommended).

Currently not implemented.

Details

Optionally the argument units can be passed on to ensure the time lag is in a certain unit, this is
especially useful in case of a moveStack. For more information on the units argument see the help
of difftime.

Value
Time lags in the specified units.
If a move or moveBurst object is provided, a numeric vector one element shorter than the number
of locations is obtained.
If amoveStack object is provided, a list with one element per individual containing a numeric vector
one element shorter than the number of locations is obtained.

Author(s)

Bart Kranstauber & Anne Scharf

timestamps 103

Examples

time lags from a Move object

data(leroy)

head(timeLag(leroy, units="hours"))

to add this information to the move object, a "NA" has to be assigened

e.g. to the first location (it also could be assigend to the first location).
leroy$timeLag <- c(timelLag(leroy, units="hours"), NA)

time lags from a MoveStack object

data(fishers)

str(timeLag(fishers, units="mins"))

to add this information to the moveStack object, a "NA" has to be assigened
e.g. to the duration is assigned to the first location of each segment
fishers$timeLag <- unlist(lapply(timeLag(fishers, units="mins"), ¢, NA))

timestamps Extract or set the timestamps of a Move or MoveStack object

Description

The timestamps method returns or sets the timestamps of a track from a Move or MoveStack object.

Usage
S4 method for signature '.MoveTrackSingle'
timestamps(this)
S4 method for signature '.MoveTrack'
timestamps(this)

S4 replacement method for signature '.MoveTrack'
timestamps(this) <- value

Arguments
this move, moveStack, moveBurst, .unUsedRecords or .unUsedRecordsStack ob-
ject
value timestamps from class POSIXct
Value

vector of class POSIXct.
Note that for moveStacks a single string is returned without splitting by individual (see ’Examples’).

Author(s)
Marco Smolla & Anne Scharf

104 trackld

Examples

data(leroy)
data(fishers)

get the timestamps from a Move object
head(timestamps(leroy))

get the timestamps from a MoveStack object
head(timestamps(fishers))

get the timestamps from a unUsedRecords object
head (timestamps(unUsedRecords(leroy)))

get timestamps separatly for each individual from a MoveStack
str(lapply(split(fishers), timestamps))

change the timestamps and set it for a Move object
timestamps(leroy) <- timestamps(leroy)+60

change the timestamps and set it for a MoveStack object
timestamps(fishers) <- timestamps(fishers)+60.1

trackId Returns trackld

Description

Obtain the Id of the individual per location of a MoveStack or unUsedRecordsStack

Usage
S4 method for signature 'MoveStack'
trackId(x)
Arguments
X amoveStack or .unUsedRecordsStack object
Value

Returns a factor indicating for each location to which individual it belongs.

Author(s)

Bart Kranstauber

Examples

data(fishers)
head(trackId(fishers))
head(trackId(unUsedRecords(fishers)))

turnAngleGe 105

turnAngleGc Turning angles on great circle tracks

Description

This function returns the turning angles of a great circle track. This angle represents the relative
angle between the consecutive segments.

Usage
S4 method for signature '.MoveTrackSingle'
turnAngleGe(x)
Arguments
X amove, moveStack or moveBurst object, in long/lat projection
Details

On great circle tracks the bearing of arrival on a point is not the same as witch the previous point
was left. This function returns the difference between these bearings between -180 and 180. The
bearings are calculated using the functions bearing and finalBearing of the geosphere package.

Value

Angles in degrees (between -180 and 180)

If a move or moveBurst object is provided, a numeric vector two elements shorter than the number
of locations is obtained.

If amoveStack object is provided, a list with one element per individual containing a numeric vector
two elements shorter than the number of locations is obtained.

Author(s)
Bart Kranstauber & Anne Scharf

See Also

angle

Examples

turnAngleGc from a Move object

data(leroy)

head(turnAngleGc(leroy))

to add this information to the move object, a "NA" has to be assigened
to the first and last location.

leroy$turnAngleGe <- c(NA, turnAngleGc(leroy), NA)

106 UDStack

turnAngleGec from a MoveStack object

data(fishers)

str(turnAngleGe(fishers))

to add this information to the moveStack object, a "NA" has to be assigened

to the first and last location of each individual

fishers$turnAngleGe <-unlist(lapply(turnAngleGc(fishers), function(x) c(NA, x, NA)))

UDStack Creating UDStack objects

Description
The function enables the easy generation of .UDStacks, which is for example useful for using other
UD function such as getVolumeUD.

Usage

UDStack(x,...)

Arguments
X A list of rasters, a rasterBrick, a rasterStack or a DBBMMBurstStack ob-
ject that needs to be converted to a .UDStack object.
Currently not used
Details

The values of a DBBMMBurstStack are standardized per raster layer.

Value

An UDStack object

Author(s)
Bart Kranstauber & Anne Scharf

Examples

data(dbbmmstack)
stk<-as(dbbmmstack, "RasterStack")
UDStack(stk)
l1st<-split(dbbmmstack)
UDStack(lst)

transforming a DBBMMBurstStack into UDStack, e.g. to than

use the "getVolumeUD" or "emd” function

data(leroy)

leroyB <- burst(x=leroy,f=c(rep(c("Behav.1","Behav.2"),each=400),rep("Behav.1”, 118)))

unUsedRecords<- 107

leroyBdbb <- brownian.bridge.dyn(object=spTransform(leroyB[785:820], center=TRUE),
location.error=12, dimSize=115, ext=.45,
time.step=25/15, margin=15)

cellStats(leroyBdbb, sum)

leroyBud <- UDStack(leroyBdbb)

cellStats(leroyBud, sum)

unUsedRecords<- Extracts or creates the unUsedRecords

Description

This function returns the unUsedRecords part of the move object or assigns locations as unused, this
could for example be used to remove test locations from a track. unUsedRecords can include events
with no locations, locations flagged as outliers, non-location sensor data when includeExtraSensors
is set to TRUE in the getMovebankData function.

Usage

S4 method for signature '.unUsedRecords'
unUsedRecords(obj,...)

S4 method for signature '.unUsedRecordsStack'
unUsedRecords(obj,...)

S4 replacement method for signature '.MoveTrackSingle,logical'
unUsedRecords(obj) <- value
S4 replacement method for signature '.MoveTrackStack,logical'
unUsedRecords(obj) <- value

Arguments
obj amove, moveStack or moveBurst object
value A logical vector of the same length as the number of locations
Currently not implemented
Value

an .unUsedRecords or .unUsedRecordsStack object

Author(s)

Marco Smolla & Anne Scharf

108 utilization density data

Examples

data(leroy)
data(fishers)

get unused records from a move or moveStack object
str(unUsedRecords(leroy)) # from a move object
str(unUsedRecords(fishers)) # from a moveStack object

assign locations of a move object as unused record
par(mfrow=2:1)

plot(leroy, type='b')

e.g. assign every second location as unused
unUsedRecords(leroy)<-as.logical ((1:n.locs(leroy))%%2)
plot(leroy, type='b')

e.g. assign first 20 locations as unused
data(leroy)
unUsedRecords(leroy)<- as.logical(c(rep("TRUE",20), rep("FALSE"”,n.locs(leroy)-20)))

utilization density data
Dynamic brownian bridges

Description

Utilization densities calculated with brownian.bridge.dyn to exemplify functions.

Usage
data("leroydbbmm™)

Details

see createRDataFile.R in inst/extdata for the exact calculation

Examples

data(dbbmmstack)
data(leroydbbmm)
leroydbbmm

Index

* classes
.UD-class, 5
DBBMM-class, 20
DBBMMBurstStack-class, 22
DBBMMStack-class, 23
dynBGB-class, 30
Move-class, 71
MovebankLogin-class, 75
MoveStack-class, 79

+ datasets
duplicatedDataExample, 27
fishers, 36
leroydbgb, 65

utilization density data, 108

* package
move-package, 3

.MoveGeneral-class (Move-class), 71

.MoveTrack (Move-class), 71
.MoveTrack-class (Move-class), 71
.MoveTrackSingle (Move-class), 71

.MoveTrackSingle-class (Move-class), 71

.MoveTrackSingleBurst-class
(MoveBurst), 76

.MoveTrackStack-class
(MoveStack-class), 79

.UD, 17,21, 31,85

.UD (.UD-class), 5

.UD-class, 5

.UDBurstStack, 85

.UDBurstStack-class (.UD-class), 5

.UDStack, 17, 22, 24, 85

.UDStack-class (.UD-class), 5

.unUsedRecords, 73, 78, 103, 107

.unUsedRecords-class, 6

.unUsedRecordsStack, 81, 103, 107

.unUsedRecordsStack-class
(.unUsedRecords-class), 6

[, .MoveTrack,ANY,ANY-method
(subset-method), 98

109

[, .MoveTrackSingleBurst,ANY,ANY-method
(subset-method), 98

[, .MoveTrackStack,ANY,ANY-method
(subset-method), 98

[, .unUsedRecords, ANY, ANY-method
(subset-method), 98

[, .unUsedRecordsStack, ANY,ANY-method
(subset-method), 98

[,MoveStack,ANY,ANY-class
(MoveStack-class), 79

[,MoveStack,ANY,ANY-method
(subset-method), 98

[,dBGBvariance, ANY, ANY-method
(subset-method), 98

[,dBMvariance, ANY, ANY-method
(subset-method), 98

[,dBMvarianceBurst,ANY,ANY-method
(subset-method), 98

[,dBMvarianceStack,ANY, ANY-method
(subset-method), 98

[<-, .MoveTrack,ANY, ANY-method
(subset-method), 98

L[, .MoveTrackStack,character,missing-method
(subset-method), 98

[[, .MoveTrackStack,logical,missing-method
(subset-method), 98

[[, .MoveTrackStack,numeric,missing-method
(subset-method), 98

[[,MoveStack, character,missing-method
(subset-method), 98

angle, 7,72,77,80, 105

angle, .MoveTrackSingle-method (angle), 7

angle, .MoveTrackStack-method (angle), 7

as.data.frame, 7, 8, 24, 26, 72, 77, 80

as.data.frame, .unUsedRecords-method
(as.data.frame), 8

as.data.frame, .unUsedRecordsStack-method
(as.data.frame), 8

110 INDEX

as.data.frame,dBMvariance-method burst,ANY,numeric-method (burst), 14
(as.data.frame), 8 burst,Move, factor-method (burst), 14
as.data.frame,Move-method burstId, /4, 15,77
(as.data.frame), 8 burstld, .MoveTrackSingleBurst-method
as.data.frame,MoveBurst-method (burstId), 15
(as.data.frame), 8 burstId,MoveBurst-method (burstId), 15
as.data.frame,MoveStack-method burstId<- (burstId), 15
(as.data.frame), 8 burstId<-,.MoveTrackSingleBurst,character-method
(burstld), 15
bearing, 7, 105 burstId<-,.MoveTrackSingleBurst,factor-method
binClstPath, 67, 68 (burstId), 15
binClstStck, 68
brownian.bridge.dyn, 10, 13, 20, 22, 23, 26, citations, 16, 66, 72, 77, 80
30, 39, 72,77, 80, 97 citations, .MoveGeneral-method
brownian.bridge.dyn, .MoveTrackSingle,missing,missing,feinertiomethéd
(brownian.bridge.dyn), 10 citations<- (citations), 16
brownian.bridge.dyn, .MoveTrackSingle,RasterLayetatisning, Moecdenaeshodethod
(brownian.bridge.dyn), 10 (citations), 16
brownian.bridge.dyn,ANY,RasterLayer,missing, chamecderémgzhdd, 17, 21, 23, 30, 31, 59, 90
(brownian.bridge.dyn), 10 contour, .UD-method (contour), 17
brownian.bridge.dyn,dBMvariance,RasterLayer,missiogrs nuoestisckemdobod (contour), 17
(brownian.bridge.dyn), 10 coordinates, 18, 24, 26, 72, 77, 80
brownian.bridge.dyn,dBMvarianceBurst,RasterlLayesraissiog, noveriethediiedordinates),
(brownian.bridge.dyn), 10 18
brownian.bridge.dyn,dBMvarianceStack,RasterLayerr;indssing,, ARmE6,iz7me@hod
(brownian.bridge.dyn), 10 corridor, .MoveTrackSingle-method
brownian.bridge.dyn,MoveStack,RasterLayer,missing, numaroira-inksriod 8
(brownian.bridge.dyn), 10 corridor, .MoveTrackStack-method

brownian.bridge.dyn,SpatialPointsDataFrame,missing, nufigsrirc,dd¥y);method
(brownian.bridge.dyn), 10
brownian.bridge.dyn,SpatialPointsDataFrame, nubBBNM, hd ssing3ARY-fAethod

(brownian.bridge.dyn), 10 DBBMM (DBBMM-class), 20
brownian.motion.variance.dyn, 12,13, 25, DBBMM-class, 20

30, 32,39,72,77,80 DBBMMBurstStack, 12, 85
brownian.motion.variance.dyn, .MoveTrackSinglel)BBMMdBGcsbbineck ¢, numeric-method

(brownian.motion.variance.dyn), (DBBMMBurstStack-class), 22

13 DBBMMBurstStack-class, 22
brownian.motion.variance.dyn, .MoveTrackSingleBBBNNS backeri2, himéri8Indtmeric-method

(brownian.motion.variance.dyn), DBBMMStack (DBBMMStack-class), 23

13 dbbmmstack (utilization density data),
brownian.motion.variance.dyn,MoveStack,numeric,numeritQ8umeric-method

(brownian.motion.variance.dyn), DBBMMStack-class, 23

13 dBGBvariance, 28, 30, 31, 66, 85, 88
burst, 14, 15,72, 76, 86 dBGBvariance-class, 24, 32
burst, .MoveTrackSingleBurst,factor-method dBGBvarianceTmp-class

(burst), 14 (dBGBvariance-class), 24
burst, .MoveTrackSingleBurst,missing-method dBMvariance, 10, 13, 20, 21, 25, 66, 85, 88

(burst), 14 dBMvariance-class (dBMvariance), 25

burst,ANY, character-method (burst), 14 dBMvarianceBurst, 13, 22, 66, 85, 88

INDEX

dBMvarianceBurst-class (dBMvariance), 25

dBMvarianceStack, 10, 13, 23, 24, 66, 85, 88

dBMvarianceStack-class (dBMvariance), 25

dBMvarianceTmp-class (dBMvariance), 25

distance, 26, 72, 77, 80

distance, .MoveTrackSingle,missing-method
(distance), 26

distance, .MoveTrackStack,missing-method
(distance), 26

duplicatedDataExample, 27

dynamic Bivariate Gaussian Bridges, 39

dynamic Brownian Bridges, 39

dynBGB, 12, 17, 24, 28, 30, 32, 39,72, 77, 85

dynBGB, .MoveTrackSingle,ANY, character-method

(dynBGB), 28

dynBGB, .MoveTrackSingle,missing, ANY-method
(dynBGB), 28

dynBGB, .MoveTrackSingle,numeric, ANY-method
(dynBGB), 28

dynBGB, .MoveTrackSingle,RasterLayer,numeric-method

(dynBGB), 28

dynBGB, dBGBvariance,RasterLayer,numeric-method

(dynBGB), 28
dynBGB-class, 29, 30
dynBGBvariance, 12, 13, 24, 30, 31, 39, 72,77

111

getDuplicatedTimestamps, character-method
(getDuplicatedTimestamps), 37
getDuplicatedTimestamps, connection-method
(getDuplicatedTimestamps), 37
getDuplicatedTimestamps,data.frame-method
(getDuplicatedTimestamps), 37
getDuplicatedTimestamps, factor-method
(getDuplicatedTimestamps), 37
getMotionVariance, 12, 21-23, 25, 26, 30,
31,39
getMotionVariance,DBBMM-method
(getMotionVariance), 39
getMotionVariance,DBBMMBurstStack-method
(getMotionVariance), 39
getMotionVariance,DBBMMStack-method
(getMotionVariance), 39
getMotionVariance, dBGBvarianceTmp-method
(getMotionVariance), 39
getMotionVariance, dBMvarianceBurst-method
(getMotionVariance), 39
getMotionVariance, dBMvarianceStack-method
(getMotionVariance), 39
getMotionVariance, dBMvarianceTmp-method
(getMotionVariance), 39
getMotionVariance, dynBGB-method

dynBGBvariance, .MoveTrackSingle, numeric, numeric, numerfigstsfiashvariance), 39

(dynBGBvariance), 31

emd, 6, 21, 23, 33

emd,RasterlLayer,RasterLayer-method
(emd), 33

emd,RasterStackBrick,missing-method
(emd), 33

emd,RasterStackBrick,RasterStackBrick-method

(emd), 33
emd, SpatialPoints,SpatialPoints-method
(emd), 33
equalProj, 21,23, 31,35,72,77,80
equalProj,list-method (equalProj), 35

finalBearing, 105
fishers, 36

getDataRepositoryData, 36, 71, 79

getDataRepositoryData, character-method
(getDataRepositoryData), 36

getDuplicatedTimestamps, 27, 37, 37, 41,
46, 69

getMovebank, 37, 40, 45,49, 51, 75

getMovebank, character,missing-method
(getMovebank), 40

getMovebank, character,MovebankLogin-method
(getMovebank), 40

getMovebankAnimals, 41, 42,43, 75

getMovebankAnimals, ANY,missing-method
(getMovebankAnimals), 43

getMovebankAnimals, ANY,MovebankLogin-method
(getMovebankAnimals), 43

getMovebankAnimals, character,MovebankLogin-method

(getMovebankAnimals), 43

getMovebankAnimals, numeric,MovebankLogin-method

(getMovebankAnimals), 43
getMovebankData, 37, 41, 42, 44, 49, 50, 52,

71,75,79
getMovebankData, ANY, ANY ,missing-method

(getMovebankData), 44

getMovebankData, ANY, ANY,MovebankLogin-method

(getMovebankData), 44
getMovebankData,ANY,missing,missing-method
(getMovebankData), 44

112 INDEX

getMovebankData, character,ANY,MovebankLogin-mgébtdavebankNonLocationData, numeric,character,ANY,MovebankL

(getMovebankData), 44 (getMovebankNonLocationData),
getMovebankData, numeric, character,MovebankLogin-methodl

(getMovebankData), 44 getMovebankNonLocationData,numeric,missing, ANY,MovebankLog
getMovebankData,numeric,missing,MovebankLogin-method (getMovebankNonLocationData),

(getMovebankData), 44 51
getMovebankData, numeric,numeric,MovebankLogingatNMbwebankNonLocationData, numeric,numeric, character,Moveb

(getMovebankData), 44 (getMovebankNonLocationData),
getMovebanklID, 40, 42, 43, 45,47, 49, 51, 51

53-55,58,75 getMovebankNonLocationData, numeric,numeric,missing,Moveban
getMovebankID, character,missing-method (getMovebankNonLocationData),

(getMovebankID), 47 51
getMovebankID, character,MovebankLogin-method getMovebankNonLocationData,numeric,numeric,numeric,Moveban

(getMovebankID), 47 (getMovebankNonLocationData),
getMovebankLocationData, 41, 42, 46, 47, 51

48, 52,69, 70, 75 getMovebankReferenceTable, 41, 42, 44, 46,
getMovebankLocationData,ANY,ANY,ANY,missing-method 53,76

(getMovebankLocationData), 48 getMovebankReferenceTable,ANY,missing-method
getMovebankLocationData,ANY,ANY,missing,missing-metho@etMovebankReferenceTable), 53

(getMovebankLocationData), 48 getMovebankReferenceTable, ANY,MovebankLogin-method
getMovebankLocationData,ANY,missing,missing,missing-mggfdtbvebankReferenceTable), 53

(getMovebanklLocationData), 48 getMovebankReferenceTable, character,MovebankLogin-method
getMovebankLocationData, character, ANY, ANY, MovebankLogfigetMenrltankReferenceTable), 53

(getMovebankLocationData), 48 getMovebankReferenceTable, numeric,MovebankLogin-method
getMovebankLocationData,numeric,character, ANY, Movebanfgeddiovehatidte ferenceTable), 53

(getMovebankLocationData), 48 getMovebankSensors, 40—42, 49, 52, 54, 56,
getMovebanklLocationData,numeric,missing, ANY,MovebankL4&in-method

(getMovebankLocationData), 48 getMovebankSensors, ANY,missing-method
getMovebankLocationData, numeric, numeric, character, Movigsditavabianifertsats), 54

(getMovebankLocationData), 48 getMovebankSensors, ANY,MovebankLogin-method
getMovebankLocationData,numeric, numeric,missing, MovebigaiMpiabankdensors), 54

(getMovebankLocationData), 48 getMovebankSensors, character,MovebankLogin-method
getMovebankLocationData, numeric, numeric, numeric, MovebigaiMpigbankdensors), 54

(getMovebankLocationData), 48 getMovebankSensors,missing,missing-method
getMovebankNonLocationData, 37, 41, 42, (getMovebankSensors), 54

45,47, 50, 51,75 getMovebankSensors,missing,MovebankLogin-method
getMovebankNonLocationData, ANY,ANY,ANY,missing-method(getMovebankSensors), 54

(getMovebankNonLocationData), getMovebankSensors, numeric,MovebankLogin-method

51 (getMovebankSensors), 54
getMovebankNonLocationData, ANY,ANY,missing, migetiMgvekahkSensorsAttributes, 42, 55, 75

(getMovebankNonLocationData), getMovebankSensorsAttributes, ANY,missing-method

51 (getMovebankSensorsAttributes),
getMovebankNonLocationData,ANY,missing,missing,missingSmethod

(getMovebankNonLocationData), getMovebankSensorsAttributes, character,MovebankLogin-metho

51 (getMovebankSensorsAttributes),
getMovebankNonLocationData, character,ANY,ANY,Movebankbidgin-method

(getMovebankNonLocationData), getMovebankSensorsAttributes, numeric,MovebanklLogin-method

51 (getMovebankSensorsAttributes),

INDEX 113

55 licenseTerms<- (licenseTerms), 65
getMovebankStudies, 41, 42, 56, 75 licenseTerms<-, .MoveGeneral-method
getMovebankStudies,missing-method (licenseTerms), 65

(getMovebankStudies), 56 lines, 25, 26, 66, 72, 77, 81, 86, 88
getMovebankStudies,MovebankLogin-method lines, .MoveTrackSingle-method (lines),

(getMovebankStudies), 56 66
getMovebankStudy, 41, 42,57, 75 lines, .MoveTrackSingleBurst-method
getMovebankStudy, ANY,missing-method (lines), 66

(getMovebankStudy), 57 lines, .MoveTrackStack-method (lines), 66

getMovebankStudy, ANY,MovebankLogin-method ltraj, 67, 68,73
(getMovebankStudy), 57
getMovebankStudy,character,MovebankLogin—meth%@p,60

(getMovebankStudy), 57 Move, 45, 46, 68, 69, 96
getMovebankStudy, numeric,MovebankLogin-methodmove, 7, 10, 13, 14, 19, 27, 28, 32, 37, 46, 63,
(getMovebankStudy), 57 66, 67,69,71,79,85,88, 95, 102,
getVolumeUD, 6, 12, 21, 23, 30, 31, 58, 90, 106 103, 105
getVolumeUD, .UD-method (getVolumeUD), 58 move,binClstPath,missing,missing,missing,missing-method
getVolumeUD, .UDStack-method (move), 67
(getVolumeUD), 58 move,binClstStck,missing,missing,missing,missing-method
(move), 67
hrBootstrap, 60, 72, 77, 81 move, character,missing,missing,missing,missing-method
hrBootstrap, .MoveTrackStack-method (move), 67
(hrBootstrap), 60 move,connection,missing,missing,missing,missing-method
hrBootstrap, SpatialPoints-method (move), 67
(hrBootstrap), 60 move,data.frame,missing,missing,missing,missing-method
(move), 67
idData, 61, 72, 77, 81 move,list,missing,missing,missing,missing-method
idData, .MoveTrack-method (idData), 61 (move), 67
idData<- (idData), 61 move,ltraj,missing,missing,missing,missing-method
idData<-, .MoveTrack, ANY,ANY, ANY-method (move), 67
(idData), 61 move,numeric,numeric,POSIXct,data.frame,character-method
idData<-, .MoveTrack,missing,missing,data. frame-method(move), 67
(idData), 61 move,numeric,numeric,POSIXct,data.frame,CRS-method
image, 85 (move), 67
interpolateTime, 62, 72, 77, 101 move,numeric,numeric,POSIXct,data.frame,missing-method
interpolateTime, .MoveTrackSingle,difftime-method (move), 67
(interpolateTime), 62 move,numeric,numeric,POSIXct,missing, ANY-method
interpolateTime, .MoveTrackSingle, numeric-method (move), 67
(interpolateTime), 62 move, telemetry,missing,missing,missing,missing-method
interpolateTime, .MoveTrackSingle,POSIXct-method (move), 67
(interpolateTime), 62 move, track,missing,missing,missing,missing-method
(move), 67
leroy, 64 move, track_xyt,missing,missing,missing,missing-method
leroydbbmm (utilization density data), (move), 67
108 Move-class, 63, 71
leroydbgb, 65 move-package, 3
licenseTerms, 16, 65 move2ade, 72, 73,77, 81
licenseTerms, .MoveGeneral-method move2ade, .MoveTrackSingle-method

(licenseTerms), 65 (move2ade), 73

114

move2ade, .MoveTrackStack-method
(move2ade), 73
MovebankLogin, 40, 43, 45, 47,49, 51, 53-55,
57, 58,74, 91
MovebankLogin (MovebankLogin-class), 75
movebankLogin, 42, 44, 45, 47-52, 54-56, 74,
75
movebankLogin, character, character-method
(movebankLogin), 74
movebankLogin, character,missing-method
(movebankLogin), 74
movebankLogin,missing,character-method
(movebankLogin), 74
movebankLogin,missing,missing-method
(movebankLogin), 74
MovebankLogin-class, 75
MoveBurst, 76, 101
moveBurst, 7, 10, 13, 14, 19, 27, 63, 66, 85,
88, 95, 96, 102, 103, 105
MoveBurst-class (MoveBurst), 76
MoveStack, 45, 46, 68, 69, 79
MoveStack (MoveStack-class), 79
moveStack, 7, 10, 13, 19, 27, 37, 66, 69, 72,
78,79, 81,85, 88, 95, 96, 102, 103,
105
moveStack, list-method (moveStack), 78
moveStack,Move-method (moveStack), 78
moveStack,MoveStack-method (moveStack),
78
MoveStack-class, 79

n.indiv, 81, 82

n.indiv, .MoveTrackStack-method
(n.indiv), 82

n.indiv,Move-method (n.indiv), 82

n.locs, 72,77, 81, 82

n.locs, .MoveTrackStack-method (n.locs),
82

n.locs,SpatialPointsDataFrame-method
(n.locs), 82

namesIndiv, 83

namesIndiv, .MoveTrackSingle-method
(namesIndiv), 83

namesIndiv, .MoveTrackStack-method
(namesIndiv), 83

outerProbability, 6, 12, 21, 23, 30, 31, 84,
90

INDEX

outerProbability,DBBMMStack-method
(outerProbability), 84

outerProbability,RasterLayer-method
(outerProbability), 84

par, 85

plot, 6, 21-23, 25, 26, 31, 67, 72,77, 81, 85,
88

plot, .MoveTrackSingle,missing-method
(plot), 85

plot, .MoveTrackSingleBurst,missing-method
(plot), 85

plot, .MoveTrackStack,missing-method
(plot), 85

plotBursts, 14, 77, 86

plotBursts, .MoveTrackSingleBurst-method
(plotBursts), 86

plotBursts,list-method (plotBursts), 86

pointDistance, 27, 92

points, 25, 26, 67,72,77,81, 86, 87

points, .MoveTrackSingle-method
(points), 87

points, .MoveTrackSingleBurst-method
(points), 87

points, .MoveTrackStack-method (points),
87

raster, 12, 30, 88

raster,DBBMM-method (raster), 88

raster,DBBMMStack-method (raster), 88

Raster-class, 5, 21-23, 30

raster2contour, 6, 12, 21, 24, 30, 31, 59, 89

raster2contour, .UD-method
(raster2contour), 89

raster2contour, .UDStack-method
(raster2contour), 89

rasterToContour, 90

read.csv, 69

searchMovebankStudies, 42, 75, 91

searchMovebankStudies, character,missing-method

(searchMovebankStudies), 91

searchMovebankStudies, character,MovebankLogin-method

(searchMovebankStudies), 91
seglength, 72,77, 81, 92
seglength,SpatialPointsDataFrame-method

(seglength), 92
sensor, 7, 72,77,81,93
sensor, .MoveTrack-method (sensor), 93

INDEX 115

sensor, .unUsedRecords-method (sensor), thinTrackTime, .MoveTrackSingle-method
93 (thinTrackTime), 100
show, 6, 21, 22, 24-26, 31, 72,76, 77, 81, 94 timelLag, 72, 78, 81, 102
show, .MoveGeneral-method (show), 94 timelLag, .MoveTrackSingle-method
show, .MoveTrack-method (show), 94 (timelLag), 102
show, .MoveTrackSingle-method (show), 94 timelLag, .MoveTrackStack-method
show, .MoveTrackSingleBurst-method (timelLag), 102
(show), 94 timestamps, 7, 72, 78, 81, 103
show, .MoveTrackStack-method (show), 94 timestamps, .MoveTrack-method
show, . unUsedRecords-method (show), 94 (timestamps), 103
show, dBMvariance-method (show), 94 timestamps, .MoveTrackSingle-method
show, dBMvarianceTmp-method (show), 94 (timestamps), 103
show, Move-method (show), 94 timestamps, .unUsedRecords-method
show,MoveBurst-method (show), 94 (timestamps), 103
show,MoveStack-method (show), 94 timestamps<- (timestamps), 103
SpatiallLinesDataFrame, 90 timestamps<-, .MoveTrack-method
speed, 72, 77, 81,95 (timestamps), 103
speed, .MoveTrackSingle-method (speed), track, 67, 68
95 track_xyt, 67, 68
speed, .MoveTrackStack-method (speed), 95 tracklId, 7, 81, 104
split, 6, 14, 24, 77, 79, 81, 96 trackId, .MoveTrackStack-method

split, .MoveTrackSingleBurst,missing-method (trackld), 104
(split), 96 tracklId, .unUsedRecordsStack-method

split, .MoveTrackStack,missing-method (trackld), 104
(split), 96 trackId,MoveStack-method (trackId), 104

split, .UDStack,missing-method (split), turnAnglch,8,72,78,81,%05
9 turnAngleGc, .MoveTrackSingle-method

split,DBBMMStack,missing-method (turnAngleGe), 105
. turnAngleGc, .MoveTrackStack-method
(split), 96

split,MoveStack,missing-method (split), (turnAngleGe), 105

96 UDStack, 5, 22, 59, 106, 106
spTransform, 72,77, 81,97 UDStack, .UDBurstStack-method (UDStack),
spTransform,Move, character-method 106
(spTransFOfm),?7 UDStack, list-method (UDStack), 106
spTransform,Move,missing-method UDStack,RasterBrick-method (UDStack),
(spTransform), 97 106
subset, 6, 21, 22, 24-26, 31,72, 78, 81 UDStack,RasterStack-method (UDStack),
subset-method, 98 106
summary, 6, 21, 24-26, 31, 72,77, 81, 99 UDStack-class (.UD-class), 5
summary, .UD-method (summary), 99 unUsedRecords, 6, 72, 78, 81
summary, .UDStack-method (summary), 99 unUsedRecords (unUsedRecords<-), 107
unUsedRecords, .unUsedRecords-method
telemetry, 67, 68 (unUsedRecords<-), 107
thinDistanceAlongTrack (thinTrackTime), unUsedRecords, .unUsedRecordsStack-method
100 (unUsedRecords<-), 107
thinDistanceAlongTrack, .MoveTrackSingle-methodnUsedRecords<-, 107
(thinTrackTime), 100 unUsedRecords<-, .MoveTrackSingle, logical-method

thinTrackTime, 100 (unUsedRecords<-), 107

116 INDEX

unUsedRecords<-, .MoveTrackStack, logical-method
(unUsedRecords<-), 107
utilization density data, 108

	move-package
	.UD-class
	.unUsedRecords-class
	angle
	as.data.frame
	brownian.bridge.dyn
	brownian.motion.variance.dyn
	burst
	burstId
	citations
	contour
	coordinates
	corridor
	DBBMM-class
	DBBMMBurstStack-class
	DBBMMStack-class
	dBGBvariance-class
	dBMvariance
	distance
	duplicatedDataExample
	dynBGB
	dynBGB-class
	dynBGBvariance
	emd
	equalProj
	fishers
	getDataRepositoryData
	getDuplicatedTimestamps
	getMotionVariance
	getMovebank
	getMovebankAnimals
	getMovebankData
	getMovebankID
	getMovebankLocationData
	getMovebankNonLocationData
	getMovebankReferenceTable
	getMovebankSensors
	getMovebankSensorsAttributes
	getMovebankStudies
	getMovebankStudy
	getVolumeUD
	hrBootstrap
	idData
	interpolateTime
	leroy
	leroydbgb
	licenseTerms
	lines
	move
	Move-class
	move2ade
	movebankLogin
	MovebankLogin-class
	MoveBurst
	moveStack
	MoveStack-class
	n.indiv
	n.locs
	namesIndiv
	outerProbability
	plot
	plotBursts
	points
	raster
	raster2contour
	searchMovebankStudies
	seglength
	sensor
	show
	speed
	split
	spTransform
	subset-method
	summary
	thinTrackTime
	timeLag
	timestamps
	trackId
	turnAngleGc
	UDStack
	unUsedRecords<-
	utilization density data
	Index

