Package 'motifr'

October 13, 2022

Title Motif Analysis in Multi-Level Networks

Version 1.0.0

Date 2020-12-01

Description Tools for motif analysis in multi-level networks.

Multi-level networks combine multiple networks in one, e.g. social-ecological networks. Motifs are small configurations of nodes and edges (subgraphs) occurring in networks. 'motifr' can visualize multi-level networks, count multi-level network motifs and compare motif occurrences to baseline models. It also identifies contributions of existing or potential edges to motifs to find critical or missing edges. The package is in many parts an R wrapper for the excellent 'SESMotifAnalyser' 'Python' package written by Tim Seppelt.

License MIT + file LICENSE

URL https://marioangst.github.io/motifr/

BugReports https://github.com/marioangst/motifr/issues

Depends R (>= 3.5.0)

Imports dplyr, ggplot2 (>= 2.1.0), ggraph, igraph, intergraph, network, purrr, RColorBrewer, reshape2, reticulate, rlang, scales, tibble, tidygraph

Suggests ergm, knitr, pkgdown, rmarkdown, shiny, testthat (>= 2.1.0)

VignetteBuilder knitr

Config/reticulate list(packages = list(list(package = ``sma", pip = TRUE), list(package = ``networkx", pip = TRUE)))

Encoding UTF-8

Language en-GB

LazyData true

RoxygenNote 7.1.1

SystemRequirements Python (>= 3.0.0), numpy, pandas

NeedsCompilation no

Author Mario Angst [aut, cre] (<https://orcid.org/0000-0002-8297-9827>), Tim Seppelt [aut] (<https://orcid.org/0000-0002-6447-0568>)

Maintainer Mario Angst <mario.angst@gmail.com>

Repository CRAN

Date/Publication 2020-12-10 15:40:02 UTC

R topics documented:

compare_to_baseline	2
count_motifs	4
critical_dyads	5
directed_dummy_net	6
dummy_net	6
edge_contribution	7
exemplify_motif	8
explore_motifs	9
identify_gaps	9
induced_level_subgraph 1	0
is.directed	1
large_directed_dummy_net	1
list_motifs	2
ml_net	3
motifs_distribution	3
motif_summary	4
plot_critical_dyads	5
plot_gaps	6
pro	17
plot_mnet	8
	9
simulate_baseline	20
supported_classes	22
supported_signatures	22
tidygraph_dummy_net 2	23
to_py_graph	24
update_motifr	25
	26
4	~

Index

compare_to_baseline

Compare motif occurence in empirical network to occurence in a baseline model

Description

This function plots a comparison of the motif counts in a given network with the motif counts in a baseline model.

compare_to_baseline

Usage

```
compare_to_baseline(
   net,
   motifs,
   n = 10,
   lvl_attr = "sesType",
   assume_sparse = TRUE,
   model = "erdos_renyi",
   level = -1,
   ergm_model = NULL,
   directed = NULL
```

)

Arguments

net	network object
motifs	list of motif identifier strings
n	number of random graphs used in baseline model
lvl_attr	character vector specifying the attribute name where level information is stored in net.
assume_sparse	whether the random graphs shall be assumed to be sparse. used to find ideal counting function
model	baseline model to be used. Options are 'erdos_renyi', 'actors_choice', 'ergm', 'partial_ergm' and fixed_densities'. See vignette("random_baselines") for more details. Defaults to 'erdos_renyi'.
level	lvl_attr of the variable level for the Actor's Choice model
ergm_model	ergm model as for example fitted by calling ergm::ergm() on the empirically observed network. Needs to be supplied when model is set to ergm.
directed	whether the graph shall be treated as a directed graph. Per default (NULL), this is determined automatically using the structure of the provided network object

Details

Note that when using the Actor's Choice model this function does not choose the variable level automatically. Use the level parameter to provide a valid level.

When using ERGM the parameter net is not used. Networks to create the baseline from are sampled in R using the $ergm_model$ parameter.

Value

data frame with one row for each motif identifier string and one row for every computed random graph

Examples

```
## Not run:
compare_to_baseline(ml_net, list("1,2[I.C]", "1,2[II.C]"), directed = FALSE)
## End(Not run)
```

count_motifs Count multi-level motifs

Description

Count multi-level motifs

Usage

```
count_motifs(
   net,
   motifs,
   lvl_attr = c("sesType"),
   assume_sparse = TRUE,
   omit_total_result = TRUE,
   directed = NULL
)
```

Arguments

net	A network object with a node attribute specifying the level of each node	
motifs	a list of motif identifiers which shall be counted, e.g. list("1,2[I.C]")	
lvl_attr	character vector specifying the vertex attribute name where level information is stored in net	
assume_sparse	whether the network shall be assumed to be sparse (for optimization), default TRUE	
omit_total_result		
	whether total results shall be omitted, default FALSE	
directed	whether the graph shall be treated as a directed graph. Per default (NULL), this is determined automatically using the structure of the provided network object	

Value

data frame with a column containing motif identifier strings and one column containing motif counts

4

critical_dyads

Examples

```
## Not run:
count_motifs(ml_net,
    lvl_attr = c("sesType"),
    motifs = list("1,2[I.C]", "1,2[II.C]", "2,1[II.C]", "2,1[II.C]"),
    directed = FALSE
)
## End(Not run)
```

critical_dyads List critical dyads

Description

Critical dyads are edges on a specified level which break motifs by being removed from the network.

Usage

```
critical_dyads(net, motif, lvl_attr = c("sesType"), level = -1)
```

Arguments

net	network object
motif	motif identifier
lvl_attr	character vector specifying the attribute name where level information is stored in ${\tt net}$
level	level of the dyads which shall be considered, or -1 if the level shall be determined automatically.

Details

The level parameter determines on which level of the network critical dyads are analysed. Per default, when level = -1, the first level in the motif which provides exactly two nodes is selected. Use this parameter to specify a level manually. The procedure for determining the level is the same as for the Actor's Choice Model, cf. vignette.

Note that this only works for undirected graphs. Regardless of whether the input graph is directed it is treated as undirected graph.

Value

data frame with three columns, listing edges and their contribution to motifs described by the motif identifier in descending order

Examples

```
## Not run:
head(critical_dyads(ml_net, motif = "1,2[I.C]"))
## End(Not run)
```

directed_dummy_net Two-level directed network dummy example

Description

Simple igraph network object based on dummy data

Usage

directed_dummy_net

Format

igraph network object

Source

Dummy data https://gitlab.com/t.seppelt/sesmotifanalyser/-/tree/master/test/data, https://github.com/marioangst/motifr/blob/master/notes/directed_dummy_net.R

Examples

plot_mnet(directed_dummy_net)

dummy_net

Three-level network dummy example

Description

A simple statnet network object based on dummy data.

Usage

dummy_net

Format

Statnet network object with 60 nodes and 1035 edges on three levels. The network contains two variables to describe nodes/ vertices.

vertex.names node labes

sesType Categorical variable specifying network levels for every node (levels are 0,1 and 2) ...

6

edge_contribution

Source

Dummy data https://gitlab.com/t.seppelt/sesmotifanalyser/-/tree/master/test/data

Examples

plot_mnet(dummy_net)

edge_contribution List edge contribution

Description

List gaps ordered by contribution to a motif. This is a list of ties together with the number of motifs of a given class the dyad would generate by being flipped. This is a generalisation of motifr::identify_gaps() and motifr::criticial_dyads().

Usage

```
edge_contribution(net, motif, lvl_attr = c("sesType"), level = -1)
```

Arguments

net	network object
motif	motif identifier
lvl_attr	character vector specifying the attribute name where level information is stored in net.
level	level of the dyads which shall be considered, or -1 if the level shall be determined automatically.

Details

The level parameter determines on which level of the network edge contributions are analysed. Per default, when level = -1, the first level in the motif which provides exactly two nodes is selected. Use this parameter to specify a level manually. The procedure for determining the level is the same as for the Actor's Choice Model, cf. vignette.

Note that this only works for undirected graphs. Regardless of whether the input graph is directed it is treated as undirected graph.

Value

data frame with three columns, listing edges and their contribution to motifs described by the motif identifier in descending order

Examples

```
## Not run:
head(edge_contribution(ml_net, "1,2[I.C]"))
## End(Not run)
```

exemplify_motif *Returns an example for a motif found in a given network*

Description

Returns an example for a motif found in a given network

Usage

```
exemplify_motif(net, motif, lvl_attr = "sesType", directed = NULL)
```

Arguments

net	network object
motif	motif identifier string for the motif
lvl_attr	character vector specifying the attribute name where level information is stored in net.
directed	whether the graph shall be treated as a directed graph. Per default (NULL), this is determined automatically using the structure of the provided network object

Value

vector of nodes in the motif

See Also

```
motifr::show_motif
```

Examples

```
## Not run:
exemplify_motif(ml_net, motif = "1,2[I.C]", directed = FALSE)
## End(Not run)
```

8

explore_motifs

Description

Without any arguments, this launches a shiny app, where all available motifs in motifr can be graphically displayed by selecting signature-class combinations from a dropdown list.

Usage

explore_motifs(net = NULL, lvl_attr = c("sesType"))

Arguments

net	optional: you may supply your own network object here (must be loaded as an R object in the global environment)
lvl_attr	if you supply your own network object, indicate the name of the network at- tribute where level information is stored for each node

Details

If arguments net and lvl_attr are provided, you can load you own network into the shiny app to explore what a given motif classifier looks like for your network. Be aware that if your network does not contain a specific motif, an example of the motif can also not be shown, because motifr illustrates motifs by actually finding an example within a given network.

Value

Launches a shiny app where all available motifs can be displayed or, alternatively, all available motifs for a user-supplied network

identify_gaps List gaps

Description

List gaps ordered by contribution to a motif. This is a list of ties together with the number of motifs of a given class the dyad would generate by being added to the network.

Usage

```
identify_gaps(net, motif, lvl_attr = c("sesType"), level = -1)
```

Arguments

net	network object
motif	motif identifier
lvl_attr	character vector specifying the attribute name where level information is stored in net.
level	level of the dyads which shall be considered, or -1 if the level shall be determined automatically.

Details

The level parameter determines on which level of the network gaps are analysed. Per default, when "level = -1", the first level in the motif which provides exactly two nodes is selected. Use this parameter to specify a level manually. The procedure for determining the level is the same as for the Actor's Choice Model, cf. vignette.

Note that this only works for undirected graphs. Regardless of whether the input graph is directed it is treated as undirected graph.

Value

data frame with three columns, listing edges and their contribution to motifs described by the motif identifier in descending order

Examples

```
## Not run:
head(identify_gaps(ml_net, motif = "1,2[II.C]"))
```

End(Not run)

induced_level_subgraph

Returns subgraph induced by one level of the network

Description

This function is intended to be used together with simulate_baseline() for partial ERGM models. Currently, only network objects are supported as input.

Usage

induced_level_subgraph(net, level, lvl_attr = "sesType")

Arguments

net	the network
level	the (number of the) level
lvl_attr	name of the nodal attribute specifying the level

is.directed

Value

induced subgraph as network object.

Examples

```
subgraph_actors <- induced_level_subgraph(motifr::ml_net, 1)
plot_mnet(subgraph_actors, label = TRUE)</pre>
```

is.directed

Checks whether the given network is directed

Description

Placeholder function for the corresponding functions of the various supported network formats. For example, this function calls network::is.directed() on network objects and igraph::is.directed() on igraph objects.

Usage

is.directed(net)

Arguments

net the network

Value

whether the given network is directed

Examples

is.directed(motifr::ml_net)

large_directed_dummy_net

Large two-level directed network dummy example

Description

Large two-level directed network dummy example

Usage

large_directed_dummy_net

Format

network network object

Source

Dummy data https://gitlab.com/t.seppelt/sesmotifanalyser/-/tree/master/test/data

Examples

plot_mnet(large_directed_dummy_net)

list_motifs

Lists motifs of a given class or all motifs with a given signature

Description

Returns a dataframe with one row for each instance of the motif specified by the given motif identifier string. If the identifier string specifies a motif class, e.g. 1,2[I.A], then only motifs of the given class are returned. If the identifier string specifies a signature, e.g. 1,2, then a full list of all motifs of this signature is returned. In the latter case, the dataframe contains an additional column stating the classes of the motifs. The naming scheme of the columns is as follows: Each column is called levelA_nodeB where A is the lvl_attr of the nodes in the column and B the index of the nodes among the nodes on the same level. This index stems from the internal order of the nodes and does not carry any specific meaning.

Usage

```
list_motifs(net, identifier, lvl_attr = "sesType", directed = NULL)
```

Arguments

net	network object
identifier	motif identifier string (with or without class, see above)
lvl_attr	character vector specifying the attribute name where level information is stored in net.
directed	whether the graph shall be treated as a directed graph. Per default (NULL), this is determined automatically using the structure of the provided network object

Value

data frame with one row for each motif

Examples

```
## Not run:
head(list_motifs(ml_net, "1,2[I.C]", directed = FALSE))
## End(Not run)
```

ml_net

Description

A statnet network object based on empirical data about actors and their activities in a case study of Swiss wetlands management

Usage

ml_net

Format

Statnet network object with 132 nodes and 566 edges on two levels. One network level contains actors, a second network level contains activities. Links between actors indicate collaboration among actors. Links between actors and activities indicate that an actor is active in a given activity. Links between activities indicate that the activities are causally interdependent. The network contains two variables to describe nodes/ vertices.

vertex.names node labes

sesType Binary variable specifying network levels for every node (1 = node is a social node (actor) , 0 = node is a non-social node (an activity))...

Source

Surveys and expert interviews in a Swiss wetland. Data is anonymized and should only be used for exemplary purposes.

Examples

plot_mnet(ml_net)

motifs_distribution Compute statistical properties (expectation and variance) of the distribution of motifs in a baseline model

Description

This function supports the Erdős-Rényi Model (erdos_renyi) and the the Actor's Choice Model (actors_choice). The model can be specified using the model parameter. The Erdős-Rényi Model can be used without providing further parameters. In case of the Actor's Choice Model a level of the given network can be specified which is only level assumed to be variable. All other levels are assumed to be fixed. Per default, level = -1, the first level carrying two nodes in the signature of the motif is selected as variable level. Set the level parameter to the value of the lvl_attr of the nodes in the desired level to specify the level manually.

Usage

```
motifs_distribution(
    net,
    motifs,
    lvl_attr = "sesType",
    model = "erdos_renyi",
    level = -1,
    omit_total_result = TRUE,
    directed = NULL
)
```

Arguments

net	network object	
motifs	list of motif identifiers describing the motifs whose distribution shall be analysed	
lvl_attr	character vector specifying the attribute name where level information is stored in net.	
model	baseline model to be used. options are "erdos_renyi" and "actors_choice". Defaults to "erdos_renyi".	
level	Additional parameter to set the level to vary for the actors_choice model manually. All other levels are held fixed.	
omit_total_result		
	whether total results shall be omitted	
directed	whether the graph shall be treated as a directed graph. Per default (NULL), this is determined automatically using the structure of the provided network object	

Value

data frame with one column giving names of motif identifers and two column giving expectation and variances per motif. For other motifs, expectations are computed but variances are returned as NaN.

Examples

```
## Not run:
motifs_distribution(ml_net, motif = list("1,2[I.C]"), directed = FALSE)
## End(Not run)
```

motif_summary Summary for motif counts and Erdős-Rényi distribution

Description

Returns a data frame with counts and statistical properties (expectation, variances) of six selected motifs in the given network. Note that this function implicitly assumes that the network is undirected, cf. motifr::to_py_graph.

14

Usage

motif_summary(net, lvl_attr = c("sesType"))

Arguments

net	network object
lvl_attr	character vector specifying the attribute name where level information is stored in net.

Value

dataframe with motif counts, expectations and variances for set of selected motifs

Examples

```
## Not run:
motif_summary(ml_net)
```

End(Not run)

Description

Note that this only works for undirected graphs. Regardless of whether the input graph is directed it is treated as undirected graph.

Usage

```
plot_critical_dyads(
    net,
    motif,
    lvl_attr = c("sesType"),
    level = -1,
    cutoff = 2,
    subset_graph = "none",
    ...
)
```

Arguments

net	Statnet network object
motif	Motif to explore gaps in for
lvl_attr	Node attribute specifying level information
level	Focal level for gap analysis

cutoff	Cut-off point in contributions of an edge to the number of motifs above which to analyse gaps
subset_graph	Whether to subset the graph to only show nodes involved in gaps. One of "none" (no subset, default), "partial" (only focal level is subset) or "focal" (only focal level shown)
	list of additional parameters to be passed to plotting function (see motifr::plot_mnet), e.g. label = TRUE

Value

A plot of gaps, sized by weight in a multilevel network

Examples

```
## Not run:
plot_critical_dyads(ml_net, "1,2[I.C]", level = -1)
plot_critical_dyads(ml_net, "1,2[I.C]",
    level = -1,
    subset_graph = "focal", cutoff = 4, label = TRUE
)
plot_critical_dyads(ml_net, "1,2[I.C]",
    level = -1,
    subset_graph = "partial", cutoff = 4, label = TRUE
)
## End(Not run)
```

plot_gaps

Plot gaps in network visualisation

Description

Note that this only works for undirected graphs. Regardless of whether the input graph is directed it is treated as undirected graph.

Usage

```
plot_gaps(
    net,
    motif,
    lvl_attr = c("sesType"),
    level = -1,
    cutoff = 2,
    subset_graph = "none",
    ...
)
```

Arguments

net	Statnet network object
motif	Motif to explore gaps in for
lvl_attr	Node attribute specifying level information
level	Focal level for gap analysis
cutoff	Cut-off point in contributions of an edge to the number of motifs above which to analyse gaps
subset_graph	Whether to subset the graph to only show nodes involved in gaps. One of "none" (no subset, default), "partial" (only focal level is subset) or "focal" (only focal level shown)
	<pre>list of additional parameters to be passed to plotting function (see motifr::plot_mnet), e.g. label = TRUE</pre>

Value

A plot of gaps, sized by weight in a multilevel network

Examples

```
## Not run:
plot_gaps(ml_net, "1,2[II.C]", level = -1)
plot_gaps(ml_net, "1,2[II.C]",
    level = -1,
    subset_graph = "focal", cutoff = 4, label = TRUE
)
plot_gaps(ml_net, "1,2[II.C]",
    level = -1,
    subset_graph = "partial", cutoff = 4, label = TRUE
)
## End(Not run)
```

plot_gaps_or_critical_dyads Helper function for plotting gaps and critical edges

Description

Note that this only works for undirected graphs. Regardless of whether the input graph is directed it is treated as undirected graph.

Usage

```
plot_gaps_or_critical_dyads(
    net,
    edge_contribution,
    colour,
    title,
    lvl_attr = c("sesType"),
    cutoff = 2,
    subset_graph = "none",
    ...
)
```

Arguments

net	network object
edge_contribution	
	data frame providing edge contribution data
colour	colour code for the weighted edges
title	title of the plot
lvl_attr	nodal attribute specifying level information
cutoff	Cut-off point in contributions of an edge to the number of motifs above which to analyse gaps
subset_graph	Whether to subset the graph to only show nodes involved in gaps. One of "none" (no subset, default), "partial" (only focal level is subset) or "focal" (only focal level shown)
	<pre>list of additional parameters to be passed to plotting function (see motifr::plot_mnet), e.g. label = TRUE</pre>

Value

A plot of gaps or critical edges, sized by weight in a multilevel network

See Also

plot_gaps, plot_critical_dyads.

plot_mnet

Visualize a multi-level network (using ggraph)

Description

Visualize a multi-level network, with the possibility of specifying separate layouts for each level. This is a somewhat hacky wrapper for arranging separate ggraph calls for each network level in a circle.

18

show_motif

Usage

```
plot_mnet(
   net,
   lvl_attr = c("sesType"),
   layouts = rep("kk", n_levels),
   label = FALSE,
   directed = NULL,
   nodesize = 3,
   edgewidth = 0.5
)
```

Arguments

net	A tidygraph, igraph or statnet network object
lvl_attr	The name of the categorical node attribute specifying at which level a node is situated
layouts	A list of layouts (see ggraph::layout_ggraph) for every level e.g. for two levels list("auto","circle")
label	logical - should nodes be labelled? (defaults to false)
directed	whether the network object shall be interpreted as directed network. Per default, motifr::is.directed is used to determine that.
nodesize	The size of node displays, if displayed as points (if label = false)
edgewidth	The width of lines illustrating edges

Details

For more extensive visualization options, it is recommended to explore the layout_as_multilevel function included in the package graphlayouts.

Value

A ggraph object

Examples

```
plot_mnet(net = motifr::ml_net, lvl_attr = "sesType", layouts = list("kk", "circle"))
```

show_motif	Plots an example for a motif with given motif identifier string taken
	from the given graph.

Description

If no network is provided, a motif in a dummy network (motifr::dummy_netormotifr::large_directed_dummy_net) will be shown.

```
show_motif(motif, net = NULL, lvl_attr = c("sesType"), directed = NULL, ...)
```

Arguments

motif	motif identifier string for the motif
net	network object
lvl_attr	character vector specifying the attribute name where level information is stored in net.
directed	whether the graph shall be treated as a directed graph. Per default (NULL), this is determined automatically using the structure of the provided network object
	additional arguments to be passed to plotting function (e.g. label = TRUE)

Value

plot

See Also

motifr::exemplify_motif

Examples

```
## Not run:
show_motif("1,2[I.C]", net = ml_net, directed = FALSE, label = TRUE)
## End(Not run)
```

simulate_baseline Simulate a baseline baseline model

Description

A baseline distribution of motif counts from a specified number of networks using a specified baseline model is computed. Options for the baseline model are - Erdős–Rényi - Actor's choice - Fixed density - Providing an ERGM fit for the whole network - Providing a partial ERGM fit (for only one level)

Usage

```
simulate_baseline(
   net,
   motifs,
   n = 10,
   lvl_attr = "sesType",
   assume_sparse = TRUE,
```

simulate_baseline

```
model = "erdos_renyi",
level = -1,
ergm_model = NULL,
directed = NULL
```

Arguments

net	network object
motifs	list of motif identifier strings
n	number of random graphs
lvl_attr	character string specifying the attribute name where level information is stored in net.
assume_sparse	whether the random graphs shall be assumed to be sparse. used to find ideal counting function. defaults to TRUE.
model	baseline model to be used. Options are 'erdos_renyi', 'fixed_densities', 'ac- tors_choice', 'ergm' and 'partial_ergm'. See vignette("random_baselines") for more details. Defaults to 'erdos_renyi'.
level	lvl_attr of the variable level for the Actor's Choice model and for partial ERGM
ergm_model	ergm model as for example fitted by calling ergm::ergm(). Used when model is set to 'ergm' or 'partial_ergm' to sample random networks.
directed	whether the graph shall be treated as a directed graph. Per default (NULL), this is determined automatically using the structure of the provided network object

Details

Note that when using the Actor's Choice model this function does not choose the variable level automatically. Use the level parameter to provide a valid level.

When using (partial) ERGM the parameter net is not used. Random networks are sampled in R using the ergm_model parameter.

Value

data frame with one column for each motif identifier string and one row for every computed random graph

Examples

```
## Not run:
simulate_baseline(ml_net, list("1,2[I.C]"), n = 10, directed = FALSE)
## End(Not run)
```

supported_classes Lists all supported motif classes for a given signature

Description

Returns a list with all supported motif classes for the given signature. Raises an error if the given signature is not supported.

Usage

supported_classes(signature, directed)

Arguments

signature	head of a motif identifier string, i.e. string with comma-separated list specifying
	the signature of the motif
directed	whether the motifs are directed.

Value

list of supported motif classes

See Also

supported_signatures()

Examples

```
## Not run:
supported_classes("1,2", FALSE)
supported_classes("1,1", TRUE)
```

End(Not run)

supported_signatures Lists all supported signatures

Description

Returns a data frame with three columns: signature, a Boolean value indicating whether the motifs are directed, the number of levels which the motif spans across

Usage

supported_signatures()

tidygraph_dummy_net

Value

data frame with all supported signatures

See Also

supported_classes()

Examples

Not run: supported_signatures()

End(Not run)

tidygraph_dummy_net Two-level tidygraph network example

Description

Simple tidygraph network object for testing

Usage

tidygraph_dummy_net

Format

tidygraph network object

Source

Dummy data https://github.com/marioangst/motifr/blob/master/notes/tidygraph_dummy_ net.R

Examples

plot_mnet(tidygraph_dummy_net)

to_py_graph

Description

The function motifr::is.directed is used to determine whether the provided network is directed (if directed = FALSE).

Usage

```
to_py_graph(g, lvl_attr, relabel = TRUE, directed = NULL)
```

Arguments

g	statnet or igraph network object
lvl_attr	character vector specifying the attribute name where level information is stored in net.
relabel	should nodes be relabelled with statnet vertex.names or igraph nodal attribute name
directed	whether the graph shall be treated as a directed graph. Per default (NULL), this is determined automatically using the structure of the provided network object

Details

The nodal attribute specified by lvl_attr indicates the levels of the nodes. Values are automatically converted to integers. Levels must be numbered starting with 0, 1,

Value

Python networkx graph object

Examples

```
## Not run:
to_py_graph(motifr::dummy_net, lvl_attr = "sesType")
## End(Not run)
```

update_motifr

Description

It might be necessary to restart your R session after updating the sma package.

Usage

update_motifr()

Index

* datasets directed_dummy_net, 6 dummy_net, 6 large_directed_dummy_net, 11 ml_net, 13 tidygraph_dummy_net, 23 compare_to_baseline, 2 count_motifs,4 critical_dyads, 5 directed_dummy_net, 6 dummy_net, 6 edge_contribution, 7 exemplify_motif, 8 explore_motifs,9 identify_gaps, 9 induced_level_subgraph, 10 is.directed, 11 large_directed_dummy_net, 11 layout_as_multilevel, 19 list_motifs, 12 ml_net, 13 motif_summary, 14 motifs_distribution, 13 plot_critical_dyads, 15 plot_gaps, 16 plot_gaps_or_critical_dyads, 17 plot_mnet, 18 show_motif, 19 simulate_baseline, 20 supported_classes, 22 supported_signatures, 22

tidygraph_dummy_net, 23
to_py_graph, 24

update_motifr, 25