
Package ‘modelbased’
July 10, 2025

Type Package

Title Estimation of Model-Based Predictions, Contrasts and Means

Version 0.12.0

Maintainer Dominique Makowski <officialeasystats@gmail.com>

Description Implements a general interface for model-based estimations
for a wide variety of models, used in the computation of
marginal means, contrast analysis and predictions. For a list of supported models,
see 'insight::supported_models()'.

License GPL-3

URL https://easystats.github.io/modelbased/

BugReports https://github.com/easystats/modelbased/issues

Depends R (>= 3.6)

Imports bayestestR (>= 0.16.1), datawizard (>= 1.1.0), insight (>=
1.3.1), parameters (>= 0.27.0), graphics, stats, tools, utils

Suggests afex, BH, betareg, boot, bootES, brglm2, brms, coda,
collapse, correlation, curl, discovr, easystats, effectsize (>=
1.0.0), emmeans (>= 1.10.2), Formula, gamm4, gganimate,
ggplot2, glmmTMB, httr2, knitr, lme4, lmerTest, logspline,
MASS, Matrix, marginaleffects (>= 0.26.0), mice, mgcv, mvtnorm,
nanoparquet, nnet, ordinal, palmerpenguins, performance (>=
0.14.0), patchwork, pbkrtest, poorman, pscl, RcppEigen, report,
rmarkdown, rstanarm, rtdists, RWiener, sandwich, see (>=
0.11.0), survival, testthat (>= 3.2.1), vdiffr, withr

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

Config/testthat/edition 3

Config/testthat/parallel true

Config/Needs/check stan-dev/cmdstanr

1

https://easystats.github.io/modelbased/
https://github.com/easystats/modelbased/issues

2 coffee_data

Config/Needs/website easystats/easystatstemplate

LazyData true

NeedsCompilation no

Author Dominique Makowski [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5375-9967>),

Daniel Lüdecke [aut] (ORCID: <https://orcid.org/0000-0002-8895-3206>),
Mattan S. Ben-Shachar [aut] (ORCID:

<https://orcid.org/0000-0002-4287-4801>),
Indrajeet Patil [aut] (ORCID: <https://orcid.org/0000-0003-1995-6531>),
Rémi Thériault [aut] (ORCID: <https://orcid.org/0000-0003-4315-6788>)

Repository CRAN

Date/Publication 2025-07-10 17:10:01 UTC

Contents
coffee_data . 2
describe_nonlinear . 3
efc . 4
estimate_contrasts . 4
estimate_expectation . 13
estimate_grouplevel . 19
estimate_means . 20
estimate_slopes . 27
fish . 33
get_emcontrasts . 33
modelbased-options . 40
plot.estimate_predicted . 41
pool_contrasts . 46
pool_predictions . 47
print.estimate_contrasts . 48
puppy_love . 50
smoothing . 51
zero_crossings . 52

Index 53

coffee_data Sample dataset from a course about analysis of factorial designs

Description

A sample data set from a course about the analysis of factorial designs, by Mattan S. Ben-Shachar.
See following link for more information: https://github.com/mattansb/Analysis-of-Factorial-Designs-
foR-Psychologists

The data consists of five variables from 120 observations:

https://orcid.org/0000-0001-5375-9967
https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0002-4287-4801
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0003-4315-6788

describe_nonlinear 3

• ID: A unique identifier for each participant

• sex: The participant’s sex

• time: The time of day the participant was tested (morning, noon, or afternoon)

• coffee: Group indicator, whether participant drank coffee or not ("coffee" or "control").

• alertness: The participant’s alertness score.

describe_nonlinear Describe the smooth term (for GAMs) or non-linear predictors

Description

This function summarises the smooth term trend in terms of linear segments. Using the approx-
imate derivative, it separates a non-linear vector into quasi-linear segments (in which the trend is
either positive or negative). Each of this segment its characterized by its beginning, end, size (in
proportion, relative to the total size) trend (the linear regression coefficient) and linearity (the R2 of
the linear regression).

Usage

describe_nonlinear(data, ...)

S3 method for class 'data.frame'
describe_nonlinear(data, x = NULL, y = NULL, ...)

estimate_smooth(data, ...)

Arguments

data The data containing the link, as for instance obtained by estimate_relation().

... Other arguments to be passed to or from.

x, y The name of the responses variable (y) predicting variable (x).

Value

A data frame of linear description of non-linear terms.

Examples

Create data
data <- data.frame(x = rnorm(200))
data$y <- data$x^2 + rnorm(200, 0, 0.5)

model <<- lm(y ~ poly(x, 2), data = data)
link_data <- estimate_relation(model, length = 100)

describe_nonlinear(link_data, x = "x")

4 estimate_contrasts

efc Sample dataset from the EFC Survey

Description

Selected variables from the EUROFAMCARE survey. Useful when testing on "real-life" data sets,
including random missing values. This data set also has value and variable label attributes.

estimate_contrasts Estimate Marginal Contrasts

Description

Run a contrast analysis by estimating the differences between each level of a factor. See also other
related functions such as estimate_means() and estimate_slopes().

Usage

estimate_contrasts(model, ...)

Default S3 method:
estimate_contrasts(
model,
contrast = NULL,
by = NULL,
predict = NULL,
ci = 0.95,
comparison = "pairwise",
estimate = NULL,
p_adjust = "none",
transform = NULL,
keep_iterations = FALSE,
effectsize = NULL,
iterations = 200,
es_type = "cohens.d",
backend = NULL,
verbose = TRUE,
...

)

Arguments

model A statistical model.

... Other arguments passed, for instance, to insight::get_datagrid(), to func-
tions from the emmeans or marginaleffects package, or to process Bayesian
models via bayestestR::describe_posterior(). Examples:

estimate_contrasts 5

• insight::get_datagrid(): Argument such as length, digits or range
can be used to control the (number of) representative values. For inte-
ger variables, protect_integers modulates whether these should also be
treated as numerics, i.e. values can have fractions or not.

• marginaleffects: Internally used functions are avg_predictions() for
means and contrasts, and avg_slope() for slopes. Therefore, arguments
for instance like vcov, equivalence, df, slope, hypothesis or even newdata
can be passed to those functions. A weights argument is passed to the wts
argument in avg_predictions() or avg_slopes(), however, weights can
only be applied when estimate is "average" or "population" (i.e. for
those marginalization options that do not use data grids). Other arguments,
such as re.form or allow.new.levels, may be passed to predict() (which
is internally used by marginaleffects) if supported by that model class.

• emmeans: Internally used functions are emmeans() and emtrends(). Ad-
ditional arguments can be passed to these functions.

• Bayesian models: For Bayesian models, parameters are cleaned using describe_posterior(),
thus, arguments like, for example, centrality, rope_range, or test are
passed to that function.

• Especially for estimate_contrasts() with integer focal predictors, for
which contrasts should be calculated, use argument integer_as_numeric
to set the maximum number of unique values in an integer predictor to treat
that predictor as "discrete integer" or as numeric. For the first case, contrasts
are calculated between values of the predictor, for the latter, contrasts of
slopes are calculated. If the integer has more than integer_as_numeric
unique values, it is treated as numeric. Defaults to 5.

• For count regression models that use an offset term, use offset = <value>
to fix the offset at a specific value. Or use estimate = "average", to aver-
age predictions over the distribution of the offset (if appropriate).

contrast A character vector indicating the name of the variable(s) for which to compute
the contrasts, optionally including representative values or levels at which con-
trasts are evaluated (e.g., contrast="x=c('a','b')").

by The (focal) predictor variable(s) at which to evaluate the desired effect / mean
/ contrasts. Other predictors of the model that are not included here will be
collapsed and "averaged" over (the effect will be estimated across them). by
can be a character (vector) naming the focal predictors, optionally including
representative values or levels at which focal predictors are evaluated (e.g., by =
"x = c(1, 2)"). When estimate is not "average", the by argument is used to
create a "reference grid" or "data grid" with representative values for the focal
predictors. In this case, by can also be list of named elements. See details in
insight::get_datagrid() to learn more about how to create data grids for
predictors of interest.

predict Is passed to the type argument in emmeans::emmeans() (when backend = "emmeans")
or in marginaleffects::avg_predictions() (when backend = "marginaleffects").
Valid options for predict are:

• backend = "marginaleffects": predict can be "response", "link",
"inverse_link" or any valid type option supported by model’s class predict()
method (e.g., for zero-inflation models from package glmmTMB, you can

6 estimate_contrasts

choose predict = "zprob" or predict = "conditional" etc., see glmmTMB::predict.glmmTMB).
By default, when predict = NULL, the most appropriate transformation is
selected, which usually returns predictions or contrasts on the response-
scale. The "inverse_link" is a special option, comparable to marginalef-
fects’ invlink(link) option. It will calculate predictions on the link scale
and then back-transform to the response scale.

• backend = "emmeans": predict can be "response", "link", "mu", "unlink",
or "log". If predict = NULL (default), the most appropriate transformation
is selected (which usually is "response"). See also this vignette.

See also section Predictions on different scales.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

comparison Specify the type of contrasts or tests that should be carried out.

• When backend = "emmeans", can be one of "pairwise", "poly", "consec",
"eff", "del.eff", "mean_chg", "trt.vs.ctrl", "dunnett", "wtcon"
and some more. To test multiple hypotheses jointly (usually used for facto-
rial designs), comparison can also be "joint". See also method argument
in emmeans::contrast and the ?emmeans::emmc-functions.

• For backend = "marginaleffects", can be a numeric value, vector, or ma-
trix, a string equation specifying the hypothesis to test, a string naming the
comparison method, a formula, or a function. For options not described be-
low, see documentation of marginaleffects::comparisons, this website and
section Comparison options below.

– String: One of "pairwise", "reference", "sequential", "meandev"
"meanotherdev", "poly", "helmert", or "trt_vs_ctrl". To test
multiple hypotheses jointly (usually used for factorial designs), comparison
can also be "joint". In this case, use the test argument to specify
which test should be conducted: "F" (default) or "Chi2".

– String: Two special string options are "inequality" and "inequality_pairwise".
comparison = "inequality" computes the marginal effect inequal-
ity summary of categorical predictors’ overall effects, respectively, the
comprehensive effect of an independent variable across all outcome
categories of a nominal or ordinal dependent variable (total marginal ef-
fect, see Mize and Han, 2025). comparison = "inequality_pairwise"
computes the difference (pairwise comparisons) between marginal ef-
fects inequality measures.

– String equation: To identify parameters from the output, either specify
the term name, or "b1", "b2" etc. to indicate rows, e.g.:"hp = drat",
"b1 = b2", or "b1 + b2 + b3 = 0".

– Formula: A formula like comparison ~ pairs | group, where the left-
hand side indicates the type of comparison (difference or ratio), the
right-hand side determines the pairs of estimates to compare (reference,
sequential, meandev, etc., see string-options). Optionally, compar-
isons can be carried out within subsets by indicating the grouping vari-
able after a vertical bar (|).

– A custom function, e.g. comparison = myfun, or comparison ~ I(my_fun(x))
| groups.

https://CRAN.R-project.org/package=emmeans/vignettes/transformations.html
https://marginaleffects.com/bonus/hypothesis.html

estimate_contrasts 7

– If contrasts should be calculated (or grouped by) factors, comparison
can also be a matrix that specifies factor contrasts (see ’Examples’).

estimate The estimate argument determines how predictions are averaged ("marginal-
ized") over variables not specified in by or contrast (non-focal predictors). It
controls whether predictions represent a "typical" individual, an "average" indi-
vidual from the sample, or an "average" individual from a broader population.

• "typical" (Default): Calculates predictions for a balanced data grid rep-
resenting all combinations of focal predictor levels (specified in by). For
non-focal numeric predictors, it uses the mean; for non-focal categorical
predictors, it marginalizes (averages) over the levels. This represents a "typ-
ical" observation based on the data grid and is useful for comparing groups.
It answers: "What would the average outcome be for a ’typical’ observa-
tion?". This is the default approach when estimating marginal means using
the emmeans package.

• "average": Calculates predictions for each observation in the sample and
then averages these predictions within each group defined by the focal pre-
dictors. This reflects the sample’s actual distribution of non-focal predic-
tors, not a balanced grid. It answers: "What is the predicted value for an
average observation in my data?"

• "population": "Clones" each observation, creating copies with all pos-
sible combinations of focal predictor levels. It then averages the predic-
tions across these "counterfactual" observations (non-observed permuta-
tions) within each group. This extrapolates to a hypothetical broader popu-
lation, considering "what if" scenarios. It answers: "What is the predicted
response for the ’average’ observation in a broader possible target popu-
lation?" This approach entails more assumptions about the likelihood of
different combinations, but can be more apt to generalize. This is also the
option that should be used for G-computation (Chatton and Rohrer 2024).

You can set a default option for the estimate argument via options(), e.g.
options(modelbased_estimate = "average")

p_adjust The p-values adjustment method for frequentist multiple comparisons. Can be
one of "none" (default), "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr", "tukey", "sidak", "sup-t", "esarey" or "holm". The "esarey" op-
tion is specifically for the case of Johnson-Neyman intervals, i.e. when call-
ing estimate_slopes() with two numeric predictors in an interaction term.
"sup-t" computes simultaneous confidence bands, also called sup-t confidence
band (Montiel Olea & Plagborg-Møller, 2019). Details for the other options can
be found in the p-value adjustment section of the emmeans::test documenta-
tion or ?stats::p.adjust. Note that certain options provided by the emmeans
package are only available if you set backend = "emmeans".

transform A function applied to predictions and confidence intervals to (back-) transform
results, which can be useful in case the regression model has a transformed
response variable (e.g., lm(log(y) ~ x)). For Bayesian models, this function
is applied to individual draws from the posterior distribution, before computing
summaries. Can also be TRUE, in which case insight::get_transformation()
is called to determine the appropriate transformation-function. Note that no
standard errors are returned when transformations are applied.

8 estimate_contrasts

keep_iterations

If TRUE, will keep all iterations (draws) of bootstrapped or Bayesian models.
They will be added as additional columns named iter_1, iter_2, and so on. If
keep_iterations is a positive number, only as many columns as indicated in
keep_iterations will be added to the output. You can reshape them to a long
format by running bayestestR::reshape_iterations().

effectsize Desired measure of standardized effect size, one of "emmeans", "marginal", or
"boot". Default is NULL, i.e. no effect size will be computed.

iterations The number of bootstrap resamples to perform.
es_type Specifies the type of effect-size measure to estimate when using effectsize =

"boot". One of "unstandardized", "cohens.d", "hedges.g", "cohens.d.sigma",
"r", or "akp.robust.d". See effect.type argument of bootES::bootES for
details.

backend Whether to use "marginaleffects" (default) or "emmeans" as a backend. Re-
sults are usually very similar. The major difference will be found for mixed
models, where backend = "marginaleffects" will also average across random
effects levels, producing "marginal predictions" (instead of "conditional predic-
tions", see Heiss 2022).
Another difference is that backend = "marginaleffects" will be slower than
backend = "emmeans". For most models, this difference is negligible. However,
in particular complex models or large data sets fitted with glmmTMB can be
significantly slower.
You can set a default backend via options(), e.g. use options(modelbased_backend
= "emmeans") to use the emmeans package or options(modelbased_backend
= "marginaleffects") to set marginaleffects as default backend.

verbose Use FALSE to silence messages and warnings.

Details

The estimate_slopes(), estimate_means() and estimate_contrasts() functions are forming
a group, as they are all based on marginal estimations (estimations based on a model). All three are
built on the emmeans or marginaleffects package (depending on the backend argument), so read-
ing its documentation (for instance emmeans::emmeans(), emmeans::emtrends() or this website)
is recommended to understand the idea behind these types of procedures.

• Model-based predictions is the basis for all that follows. Indeed, the first thing to understand
is how models can be used to make predictions (see estimate_link()). This corresponds to
the predicted response (or "outcome variable") given specific predictor values of the predictors
(i.e., given a specific data configuration). This is why the concept of reference grid() is so
important for direct predictions.

• Marginal "means", obtained via estimate_means(), are an extension of such predictions,
allowing to "average" (collapse) some of the predictors, to obtain the average response value
at a specific predictors configuration. This is typically used when some of the predictors of
interest are factors. Indeed, the parameters of the model will usually give you the intercept
value and then the "effect" of each factor level (how different it is from the intercept). Marginal
means can be used to directly give you the mean value of the response variable at all the levels
of a factor. Moreover, it can also be used to control, or average over predictors, which is useful
in the case of multiple predictors with or without interactions.

https://marginaleffects.com/

estimate_contrasts 9

• Marginal contrasts, obtained via estimate_contrasts(), are themselves at extension of
marginal means, in that they allow to investigate the difference (i.e., the contrast) between the
marginal means. This is, again, often used to get all pairwise differences between all levels of
a factor. It works also for continuous predictors, for instance one could also be interested in
whether the difference at two extremes of a continuous predictor is significant.

• Finally, marginal effects, obtained via estimate_slopes(), are different in that their focus
is not values on the response variable, but the model’s parameters. The idea is to assess the
effect of a predictor at a specific configuration of the other predictors. This is relevant in the
case of interactions or non-linear relationships, when the effect of a predictor variable changes
depending on the other predictors. Moreover, these effects can also be "averaged" over other
predictors, to get for instance the "general trend" of a predictor over different factor levels.

Example: Let’s imagine the following model lm(y ~ condition * x) where condition is a factor
with 3 levels A, B and C and x a continuous variable (like age for example). One idea is to see how
this model performs, and compare the actual response y to the one predicted by the model (using
estimate_expectation()). Another idea is evaluate the average mean at each of the condition’s
levels (using estimate_means()), which can be useful to visualize them. Another possibility is to
evaluate the difference between these levels (using estimate_contrasts()). Finally, one could
also estimate the effect of x averaged over all conditions, or instead within each condition (using
estimate_slopes()).

Value

A data frame of estimated contrasts.

Comparison options

• comparison = "pairwise": This method computes all possible unique differences between
pairs of levels of the focal predictor. For example, if a factor has levels A, B, and C, it would
compute A-B, A-C, and B-C.

• comparison = "reference": This compares each level of the focal predictor to a specified
reference level (by default, the first level). For example, if levels are A, B, C, and A is the
reference, it computes B-A and C-A.

• comparison = "sequential": This compares each level to the one immediately following it
in the factor’s order. For levels A, B, C, it would compute B-A and C-B.

• comparison = "meandev": This contrasts each level’s estimate against the grand mean of all
estimates for the focal predictor.

• comparison = "meanotherdev": Similar to meandev, but each level’s estimate is compared
against the mean of all other levels, excluding itself.

• comparison = "poly": These are used for ordered categorical variables to test for linear,
quadratic, cubic, etc., trends across the levels. They assume equal spacing between levels.

• comparison = "helmert": Contrast 2nd level to the first, 3rd to the average of the first two,
and so on. Each level (except the first) is compared to the mean of the preceding levels. For
levels A, B, C, it would compute B-A and C-(A+B)/2.

• comparison = "trt_vs_ctrl": This compares all levels (excluding the first, which is typi-
cally the control) against the first level. It’s often used when comparing multiple treatment
groups to a single control group.

10 estimate_contrasts

• To test multiple hypotheses jointly (usually used for factorial designs), comparison can also
be "joint". In this case, use the test argument to specify which test should be conducted:
"F" (default) or "Chi2".

• comparison = "inequality" computes the marginal effect inequality summary of categorical
predictors’ overall effects, respectively, the comprehensive effect of an independent variable
across all outcome categories of a nominal or ordinal dependent variable (total marginal effect,
see Mize and Han, 2025). The marginal effect inequality focuses on the heterogeneity of the
effects of a categorical independent variable. It helps understand how the effect of the variable
differs across its categories or levels. When the dependent variable is categorical (e.g., logistic,
ordinal or multinomial regression), marginal effect inequality provides a holistic view of how
an independent variable affects a nominal or ordinal dependent variable. It summarizes the
overall impact (total marginal effects) across all possible outcome categories.

• comparison = "inequality_pairwise" computes the difference (pairwise comparisons) be-
tween marginal effects inequality measures. Depending on the sign, this measure indicates
which of the predictors has a stronger impact on the dependent variable in terms of inequali-
ties.

Effect Size

By default, estimate_contrasts() reports no standardized effect size on purpose. Should one
request one, some things are to keep in mind. As the authors of emmeans write, "There is substan-
tial disagreement among practitioners on what is the appropriate sigma to use in computing effect
sizes; or, indeed, whether any effect-size measure is appropriate for some situations. The user is
completely responsible for specifying appropriate parameters (or for failing to do so)."

In particular, effect size method "boot" does not correct for covariates in the model, so should
probably only be used when there is just one categorical predictor (with however many levels).
Some believe that if there are multiple predictors or any covariates, it is important to re-compute
sigma adding back in the response variance associated with the variables that aren’t part of the
contrast.

effectsize = "emmeans" uses emmeans::eff_size with sigma = stats::sigma(model), edf = stats::df.residual(model)
and method = "identity". This standardizes using the MSE (sigma). Some believe this works
when the contrasts are the only predictors in the model, but not when there are covariates. The
response variance accounted for by the covariates should not be removed from the SD used to
standardize. Otherwise, d will be overestimated.

effectsize = "marginal" uses the following formula to compute effect size: d_adj <- difference
* (1- R2)/ sigma. This standardizes using the response SD with only the between-groups variance
on the focal factor/contrast removed. This allows for groups to be equated on their covariates, but
creates an appropriate scale for standardizing the response.

effectsize = "boot" uses bootstrapping (defaults to a low value of 200) through bootES::bootES.
Adjusts for contrasts, but not for covariates.

Predictions and contrasts at meaningful values (data grids)

To define representative values for focal predictors (specified in by, contrast, and trend), you
can use several methods. These values are internally generated by insight::get_datagrid(), so
consult its documentation for more details.

• You can directly specify values as strings or lists for by, contrast, and trend.

estimate_contrasts 11

– For numeric focal predictors, use examples like by = "gear = c(4, 8)", by = list(gear
= c(4, 8)) or by = "gear = 5:10"

– For factor or character predictors, use by = "Species = c('setosa', 'virginica')" or
by = list(Species = c('setosa', 'virginica'))

• You can use "shortcuts" within square brackets, such as by = "Sepal.Width = [sd]" or by =
"Sepal.Width = [fivenum]"

• For numeric focal predictors, if no representative values are specified, length and range
control the number and type of representative values:

– length determines how many equally spaced values are generated.
– range specifies the type of values, like "range" or "sd".
– length and range apply to all numeric focal predictors.
– If you have multiple numeric predictors, length and range can accept multiple elements,

one for each predictor.
• For integer variables, only values that appear in the data will be included in the data grid, inde-

pendent from the length argument. This behaviour can be changed by setting protect_integers
= FALSE, which will then treat integer variables as numerics (and possibly produce fractions).

See also this vignette for some examples.

Predictions on different scales

The predict argument allows to generate predictions on different scales of the response variable.
The "link" option does not apply to all models, and usually not to Gaussian models. "link" will
leave the values on scale of the linear predictors. "response" (or NULL) will transform them on
scale of the response variable. Thus for a logistic model, "link" will give estimations expressed in
log-odds (probabilities on logit scale) and "response" in terms of probabilities.
To predict distributional parameters (called "dpar" in other packages), for instance when using
complex formulae in brms models, the predict argument can take the value of the parameter you
want to estimate, for instance "sigma", "kappa", etc.
"response" and "inverse_link" both return predictions on the response scale, however, "response"
first calculates predictions on the response scale for each observation and then aggregates them
by groups or levels defined in by. "inverse_link" first calculates predictions on the link scale
for each observation, then aggregates them by groups or levels defined in by, and finally back-
transforms the predictions to the response scale. Both approaches have advantages and disadvan-
tages. "response" usually produces less biased predictions, but confidence intervals might be
outside reasonable bounds (i.e., for instance can be negative for count data). The "inverse_link"
approach is more robust in terms of confidence intervals, but might produce biased predictions.
However, you can try to set bias_correction = TRUE, to adjust for this bias.
In particular for mixed models, using "response" is recommended, because averaging across ran-
dom effects groups is then more accurate.

References

• Mize, T., & Han, B. (2025). Inequality and Total Effect Summary Measures for Nominal and
Ordinal Variables. Sociological Science, 12, 115–157. doi:10.15195/v12.a7

• Montiel Olea, J. L., and Plagborg-Møller, M. (2019). Simultaneous confidence bands: Theory,
implementation, and an application to SVARs. Journal of Applied Econometrics, 34(1), 1–17.
doi:10.1002/jae.2656

https://easystats.github.io/modelbased/articles/visualisation_matrix.html
https://doi.org/10.15195/v12.a7
https://doi.org/10.1002/jae.2656

12 estimate_contrasts

Examples

Not run:
Basic usage
model <- lm(Sepal.Width ~ Species, data = iris)
estimate_contrasts(model)

Dealing with interactions
model <- lm(Sepal.Width ~ Species * Petal.Width, data = iris)

By default: selects first factor
estimate_contrasts(model)

Can also run contrasts between points of numeric, stratified by "Species"
estimate_contrasts(model, contrast = "Petal.Width", by = "Species")

Or both
estimate_contrasts(model, contrast = c("Species", "Petal.Width"), length = 2)

Or with custom specifications
estimate_contrasts(model, contrast = c("Species", "Petal.Width = c(1, 2)"))

Or modulate it
estimate_contrasts(model, by = "Petal.Width", length = 4)

Standardized differences
estimated <- estimate_contrasts(lm(Sepal.Width ~ Species, data = iris))
standardize(estimated)

custom factor contrasts - contrasts the average effects of two levels
against the remaining third level
data(puppy_love, package = "modelbased")
cond_tx <- cbind("no treatment" = c(1, 0, 0), "treatment" = c(0, 0.5, 0.5))
model <- lm(happiness ~ puppy_love * dose, data = puppy_love)
estimate_slopes(model, "puppy_love", by = "dose", comparison = cond_tx)

Other models (mixed, Bayesian, ...)
data <- iris
data$Petal.Length_factor <- ifelse(data$Petal.Length < 4.2, "A", "B")

model <- lme4::lmer(Sepal.Width ~ Species + (1 | Petal.Length_factor), data = data)
estimate_contrasts(model)

data <- mtcars
data$cyl <- as.factor(data$cyl)
data$am <- as.factor(data$am)

model <- rstanarm::stan_glm(mpg ~ cyl * wt, data = data, refresh = 0)
estimate_contrasts(model)
estimate_contrasts(model, by = "wt", length = 4)

model <- rstanarm::stan_glm(
Sepal.Width ~ Species + Petal.Width + Petal.Length,

estimate_expectation 13

data = iris,
refresh = 0

)
estimate_contrasts(model, by = "Petal.Length = [sd]", test = "bf")

End(Not run)

estimate_expectation Model-based predictions

Description

After fitting a model, it is useful generate model-based estimates of the response variables for
different combinations of predictor values. Such estimates can be used to make inferences about
relationships between variables, to make predictions about individual cases, or to compare the
predicted values against the observed data.

The modelbased package includes 4 "related" functions, that mostly differ in their default argu-
ments (in particular, data and predict):

• estimate_prediction(data = NULL, predict = "prediction", ...)

• estimate_expectation(data = NULL, predict = "expectation", ...)

• estimate_relation(data = "grid", predict = "expectation", ...)

• estimate_link(data = "grid", predict = "link", ...)

While they are all based on model-based predictions (using insight::get_predicted()), they
differ in terms of the type of predictions they make by default. For instance, estimate_prediction()
and estimate_expectation() return predictions for the original data used to fit the model, while
estimate_relation() and estimate_link() return predictions on a insight::get_datagrid().
Similarly, estimate_link returns predictions on the link scale, while the others return predictions
on the response scale. Note that the relevance of these differences depends on the model family (for
instance, for linear models, estimate_relation is equivalent to estimate_link(), since there is
no difference between the link-scale and the response scale).

Note that you can run plot() on the output of these functions to get some visual insights (see the
plotting examples).

See the details section below for details about the different possibilities.

Usage

estimate_expectation(
model,
data = NULL,
by = NULL,
predict = "expectation",
ci = 0.95,
transform = NULL,

14 estimate_expectation

iterations = NULL,
keep_iterations = FALSE,
...

)

estimate_link(
model,
data = "grid",
by = NULL,
predict = "link",
ci = 0.95,
transform = NULL,
iterations = NULL,
keep_iterations = FALSE,
...

)

estimate_prediction(
model,
data = NULL,
by = NULL,
predict = "prediction",
ci = 0.95,
transform = NULL,
iterations = NULL,
keep_iterations = FALSE,
...

)

estimate_relation(
model,
data = "grid",
by = NULL,
predict = "expectation",
ci = 0.95,
transform = NULL,
iterations = NULL,
keep_iterations = FALSE,
...

)

Arguments

model A statistical model.

data A data frame with model’s predictors to estimate the response. If NULL, the
model’s data is used. If "grid", the model matrix is obtained (through insight::get_datagrid()).

by The predictor variable(s) at which to estimate the response. Other predictors of
the model that are not included here will be set to their mean value (for numeric

estimate_expectation 15

predictors), reference level (for factors) or mode (other types). The by argument
will be used to create a data grid via insight::get_datagrid(), which will
then be used as data argument. Thus, you cannot specify both data and by but
only of these two arguments.

predict This parameter controls what is predicted (and gets internally passed to insight::get_predicted()).
In most cases, you don’t need to care about it: it is changed automatically ac-
cording to the different predicting functions (i.e., estimate_expectation(),
estimate_prediction(), estimate_link() or estimate_relation()). The
only time you might be interested in manually changing it is to estimate other
distributional parameters (called "dpar" in other packages) - for instance when
using complex formulae in brms models. The predict argument can then be set
to the parameter you want to estimate, for instance "sigma", "kappa", etc. Note
that the distinction between "expectation", "link" and "prediction" does
not then apply (as you are directly predicting the value of some distributional
parameter), and the corresponding functions will then only differ in the default
value of their data argument.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

transform A function applied to predictions and confidence intervals to (back-) transform
results, which can be useful in case the regression model has a transformed
response variable (e.g., lm(log(y) ~ x)). Can also be TRUE, in which case
insight::get_transformation() is called to determine the appropriate transformation-
function. Note that no standard errors are returned when transformations are
applied.

iterations For Bayesian models, this corresponds to the number of posterior draws. If
NULL, will use all the draws (one for each iteration of the model). For frequentist
models, if not NULL, will generate bootstrapped draws, from which bootstrapped
CIs will be computed. Use keep_iterations to control if and how many draws
will be included in the returned output (data frame), which can be used, for
instance, for plotting.

keep_iterations

If TRUE, will keep all iterations (draws) of bootstrapped or Bayesian models.
They will be added as additional columns named iter_1, iter_2, and so on. If
keep_iterations is a positive number, only as many columns as indicated in
keep_iterations will be added to the output. You can reshape them to a long
format by running bayestestR::reshape_iterations().

... You can add all the additional control arguments from insight::get_datagrid()
(used when data = "grid") and insight::get_predicted(). Furthermore,
for count regression models that use an offset term, use offset = <value> to
fix the offset at a specific value.

Value

A data frame of predicted values and uncertainty intervals, with class "estimate_predicted".
Methods for visualisation_recipe() and plot() are available.

16 estimate_expectation

Expected (average) values

The most important way that various types of response estimates differ is in terms of what quantity
is being estimated and the meaning of the uncertainty intervals. The major choices are expected
values for uncertainty in the regression line and predicted values for uncertainty in the individual
case predictions.

Expected values refer to the fitted regression line - the estimated average response value (i.e., the
"expectation") for individuals with specific predictor values. For example, in a linear model y = 2 +
3x + 4z + e, the estimated average y for individuals with x = 1 and z = 2 is 11.

For expected values, uncertainty intervals refer to uncertainty in the estimated conditional average
(where might the true regression line actually fall)? Uncertainty intervals for expected values are
also called "confidence intervals".

Expected values and their uncertainty intervals are useful for describing the relationship between
variables and for describing how precisely a model has been estimated.

For generalized linear models, expected values are reported on one of two scales:

• The link scale refers to scale of the fitted regression line, after transformation by the link
function. For example, for a logistic regression (logit binomial) model, the link scale gives
expected log-odds. For a log-link Poisson model, the link scale gives the expected log-count.

• The response scale refers to the original scale of the response variable (i.e., without any
link function transformation). Expected values on the link scale are back-transformed to the
original response variable metric (e.g., expected probabilities for binomial models, expected
counts for Poisson models).

Individual case predictions

In contrast to expected values, predicted values refer to predictions for individual cases. Predicted
values are also called "posterior predictions" or "posterior predictive draws".

For predicted values, uncertainty intervals refer to uncertainty in the individual response values
for each case (where might any single case actually fall)? Uncertainty intervals for predicted values
are also called "prediction intervals" or "posterior predictive intervals".

Predicted values and their uncertainty intervals are useful for forecasting the range of values that
might be observed in new data, for making decisions about individual cases, and for checking if
model predictions are reasonable ("posterior predictive checks").

Predicted values and intervals are always on the scale of the original response variable (not the link
scale).

Functions for estimating predicted values and uncertainty

modelbased provides 4 functions for generating model-based response estimates and their uncer-
tainty:

• estimate_expectation():

– Generates expected values (conditional average) on the response scale.
– The uncertainty interval is a confidence interval.
– By default, values are computed using the data used to fit the model.

• estimate_link():

estimate_expectation 17

– Generates expected values (conditional average) on the link scale.
– The uncertainty interval is a confidence interval.
– By default, values are computed using a reference grid spanning the observed range of

predictor values (see insight::get_datagrid()).

• estimate_prediction():

– Generates predicted values (for individual cases) on the response scale.
– The uncertainty interval is a prediction interval.
– By default, values are computed using the data used to fit the model.

• estimate_relation():

– Like estimate_expectation().
– Useful for visualizing a model.
– Generates expected values (conditional average) on the response scale.
– The uncertainty interval is a confidence interval.
– By default, values are computed using a reference grid spanning the observed range of

predictor values (see insight::get_datagrid()).

Data for predictions

If the data = NULL, values are estimated using the data used to fit the model. If data = "grid",
values are computed using a reference grid spanning the observed range of predictor values with
insight::get_datagrid(). This can be useful for model visualization. The number of predictor
values used for each variable can be controlled with the length argument. data can also be a data
frame containing columns with names matching the model frame (see insight::get_data()).
This can be used to generate model predictions for specific combinations of predictor values.

Finite mixture models

For finite mixture models (currently, only the brms::mixture() family from package brms is sup-
ported), use predict = "classification" with data = NULL to predict the class membership for
each observation (e.g., estimate_prediction(model, predict = "classification")). To re-
turn predicted values stratified by class membership, use predict = "link" (possibly in combina-
tion with data or by, e.g. estimate_link(model, by = "predictor")). Other predict options
will return predicted values of the outcome for the full data, not stratified by class membership.

Note

These functions are built on top of insight::get_predicted() and correspond to different spec-
ifications of its parameters. It may be useful to read its documentation, in particular the description
of the predict argument for additional details on the difference between expected vs. predicted
values and link vs. response scales.

Additional control parameters can be used to control results from insight::get_datagrid()
(when data = "grid") and from insight::get_predicted() (the function used internally to com-
pute predictions).

For plotting, check the examples in visualisation_recipe(). Also check out the Vignettes and
README examples for various examples, tutorials and usecases.

https://easystats.github.io/insight/reference/get_predicted.html
https://easystats.github.io/modelbased/articles/
https://easystats.github.io/modelbased/index.html#features

18 estimate_expectation

Examples

library(modelbased)

Linear Models
model <- lm(mpg ~ wt, data = mtcars)

Get predicted and prediction interval (see insight::get_predicted)
estimate_expectation(model)

Get expected values with confidence interval
pred <- estimate_relation(model)
pred

Visualisation (see visualisation_recipe())
plot(pred)

Standardize predictions
pred <- estimate_relation(lm(mpg ~ wt + am, data = mtcars))
z <- standardize(pred, include_response = FALSE)
z
unstandardize(z, include_response = FALSE)

Logistic Models
model <- glm(vs ~ wt, data = mtcars, family = "binomial")
estimate_expectation(model)
estimate_relation(model)

Mixed models
data(mtcars)
mtcars$gear <- as.factor(mtcars$gear)
model <- glmmTMB::glmmTMB(mpg ~ wt + (1 | gear), data = mtcars)
estimate_expectation(model)
estimate_relation(model)

Predict random effects and calculate contrasts
estim <- estimate_relation(model, by = "gear")
estim

estimate_contrasts(estim)

Bayesian models

model <- suppressWarnings(rstanarm::stan_glm(
mpg ~ wt,
data = mtcars, refresh = 0, iter = 200

))
estimate_expectation(model)
estimate_relation(model)

estimate_grouplevel 19

estimate_grouplevel Group-specific parameters of mixed models random effects

Description

Extract random parameters of each individual group in the context of mixed models, commonly
referred to as BLUPs (Best Linear Unbiased Predictors). Can be reshaped to be of the same dimen-
sions as the original data, which can be useful to add the random effects to the original data.

Usage

estimate_grouplevel(model, ...)

Default S3 method:
estimate_grouplevel(model, type = "random", ...)

S3 method for class 'brmsfit'
estimate_grouplevel(
model,
type = "random",
dispersion = TRUE,
test = NULL,
diagnostic = NULL,
...

)

reshape_grouplevel(x, ...)

S3 method for class 'estimate_grouplevel'
reshape_grouplevel(x, indices = "all", group = NULL, ...)

Arguments

model A mixed model with random effects.

... Other arguments passed to parameters::model_parameters().

type "random" or "total". If "random" (default), the coefficients correspond to the
conditional estimates of the random effects (as they are returned by lme4::ranef()).
They typically correspond to the deviation of each individual group from their
fixed effect (assuming the random effect is also included as a fixed effect). As
such, a coefficient close to 0 means that the participants’ effect is the same as the
population-level effect (in other words, it is "in the norm"). If "total", it will
return the sum of the random effect and its corresponding fixed effects, which
internally relies on the coef() method (see ?coef.merMod). Note that type =
"total" yet does not return uncertainty indices (such as SE and CI) for models
from lme4 or glmmTMB, as the necessary information to compute them is not
yet available. However, for Bayesian models, it is possible to compute them.

20 estimate_means

dispersion, test, diagnostic
Arguments passed to parameters::model_parameters() for Bayesian mod-
els. By default, it won’t return significance or diagnostic indices (as it is not
typically very useful).

x The output of estimate_grouplevel().

indices A character vector containing the indices (i.e., which columns) to extract (e.g.,
"Coefficient", "Median").

group The name of the random factor to select as string value (e.g., "Participant",
if the model was y ~ x + (1|Participant).

Details

Unlike raw group means, BLUPs apply shrinkage: they are a compromise between the group esti-
mate and the population estimate. This improves generalizability and prevents overfitting.

Examples

lme4 model
data(mtcars)
model <- lme4::lmer(mpg ~ hp + (1 | carb), data = mtcars)
random <- estimate_grouplevel(model)

Show group-specific effects
random

Visualize random effects
plot(random)

Reshape to wide data...
reshaped <- reshape_grouplevel(random, group = "carb", indices = c("Coefficient", "SE"))

...and can be easily combined with the original data
alldata <- merge(mtcars, reshaped)

overall coefficients
estimate_grouplevel(model, type = "total")

estimate_means Estimate Marginal Means (Model-based average at each factor level)

Description

Estimate average values of the response variable at each factor level or at representative values,
respectively at values defined in a "data grid" or "reference grid". For plotting, check the examples
in visualisation_recipe(). See also other related functions such as estimate_contrasts()
and estimate_slopes().

estimate_means 21

Usage

estimate_means(
model,
by = "auto",
predict = NULL,
ci = 0.95,
estimate = NULL,
transform = NULL,
keep_iterations = FALSE,
backend = NULL,
verbose = TRUE,
...

)

Arguments

model A statistical model.

by The (focal) predictor variable(s) at which to evaluate the desired effect / mean
/ contrasts. Other predictors of the model that are not included here will be
collapsed and "averaged" over (the effect will be estimated across them). by
can be a character (vector) naming the focal predictors, optionally including
representative values or levels at which focal predictors are evaluated (e.g., by =
"x = c(1, 2)"). When estimate is not "average", the by argument is used to
create a "reference grid" or "data grid" with representative values for the focal
predictors. In this case, by can also be list of named elements. See details in
insight::get_datagrid() to learn more about how to create data grids for
predictors of interest.

predict Is passed to the type argument in emmeans::emmeans() (when backend = "emmeans")
or in marginaleffects::avg_predictions() (when backend = "marginaleffects").
Valid options for predict are:

• backend = "marginaleffects": predict can be "response", "link",
"inverse_link" or any valid type option supported by model’s class predict()
method (e.g., for zero-inflation models from package glmmTMB, you can
choose predict = "zprob" or predict = "conditional" etc., see glmmTMB::predict.glmmTMB).
By default, when predict = NULL, the most appropriate transformation is
selected, which usually returns predictions or contrasts on the response-
scale. The "inverse_link" is a special option, comparable to marginalef-
fects’ invlink(link) option. It will calculate predictions on the link scale
and then back-transform to the response scale.

• backend = "emmeans": predict can be "response", "link", "mu", "unlink",
or "log". If predict = NULL (default), the most appropriate transformation
is selected (which usually is "response"). See also this vignette.

See also section Predictions on different scales.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

estimate The estimate argument determines how predictions are averaged ("marginal-
ized") over variables not specified in by or contrast (non-focal predictors). It

https://CRAN.R-project.org/package=emmeans/vignettes/transformations.html

22 estimate_means

controls whether predictions represent a "typical" individual, an "average" indi-
vidual from the sample, or an "average" individual from a broader population.

• "typical" (Default): Calculates predictions for a balanced data grid rep-
resenting all combinations of focal predictor levels (specified in by). For
non-focal numeric predictors, it uses the mean; for non-focal categorical
predictors, it marginalizes (averages) over the levels. This represents a "typ-
ical" observation based on the data grid and is useful for comparing groups.
It answers: "What would the average outcome be for a ’typical’ observa-
tion?". This is the default approach when estimating marginal means using
the emmeans package.

• "average": Calculates predictions for each observation in the sample and
then averages these predictions within each group defined by the focal pre-
dictors. This reflects the sample’s actual distribution of non-focal predic-
tors, not a balanced grid. It answers: "What is the predicted value for an
average observation in my data?"

• "population": "Clones" each observation, creating copies with all pos-
sible combinations of focal predictor levels. It then averages the predic-
tions across these "counterfactual" observations (non-observed permuta-
tions) within each group. This extrapolates to a hypothetical broader popu-
lation, considering "what if" scenarios. It answers: "What is the predicted
response for the ’average’ observation in a broader possible target popu-
lation?" This approach entails more assumptions about the likelihood of
different combinations, but can be more apt to generalize. This is also the
option that should be used for G-computation (Chatton and Rohrer 2024).

You can set a default option for the estimate argument via options(), e.g.
options(modelbased_estimate = "average")

transform A function applied to predictions and confidence intervals to (back-) transform
results, which can be useful in case the regression model has a transformed
response variable (e.g., lm(log(y) ~ x)). For Bayesian models, this function
is applied to individual draws from the posterior distribution, before computing
summaries. Can also be TRUE, in which case insight::get_transformation()
is called to determine the appropriate transformation-function. Note that no
standard errors are returned when transformations are applied.

keep_iterations

If TRUE, will keep all iterations (draws) of bootstrapped or Bayesian models.
They will be added as additional columns named iter_1, iter_2, and so on. If
keep_iterations is a positive number, only as many columns as indicated in
keep_iterations will be added to the output. You can reshape them to a long
format by running bayestestR::reshape_iterations().

backend Whether to use "marginaleffects" (default) or "emmeans" as a backend. Re-
sults are usually very similar. The major difference will be found for mixed
models, where backend = "marginaleffects" will also average across random
effects levels, producing "marginal predictions" (instead of "conditional predic-
tions", see Heiss 2022).
Another difference is that backend = "marginaleffects" will be slower than
backend = "emmeans". For most models, this difference is negligible. However,

estimate_means 23

in particular complex models or large data sets fitted with glmmTMB can be
significantly slower.
You can set a default backend via options(), e.g. use options(modelbased_backend
= "emmeans") to use the emmeans package or options(modelbased_backend
= "marginaleffects") to set marginaleffects as default backend.

verbose Use FALSE to silence messages and warnings.
... Other arguments passed, for instance, to insight::get_datagrid(), to func-

tions from the emmeans or marginaleffects package, or to process Bayesian
models via bayestestR::describe_posterior(). Examples:

• insight::get_datagrid(): Argument such as length, digits or range
can be used to control the (number of) representative values. For inte-
ger variables, protect_integers modulates whether these should also be
treated as numerics, i.e. values can have fractions or not.

• marginaleffects: Internally used functions are avg_predictions() for
means and contrasts, and avg_slope() for slopes. Therefore, arguments
for instance like vcov, equivalence, df, slope, hypothesis or even newdata
can be passed to those functions. A weights argument is passed to the wts
argument in avg_predictions() or avg_slopes(), however, weights can
only be applied when estimate is "average" or "population" (i.e. for
those marginalization options that do not use data grids). Other arguments,
such as re.form or allow.new.levels, may be passed to predict() (which
is internally used by marginaleffects) if supported by that model class.

• emmeans: Internally used functions are emmeans() and emtrends(). Ad-
ditional arguments can be passed to these functions.

• Bayesian models: For Bayesian models, parameters are cleaned using describe_posterior(),
thus, arguments like, for example, centrality, rope_range, or test are
passed to that function.

• Especially for estimate_contrasts() with integer focal predictors, for
which contrasts should be calculated, use argument integer_as_numeric
to set the maximum number of unique values in an integer predictor to treat
that predictor as "discrete integer" or as numeric. For the first case, contrasts
are calculated between values of the predictor, for the latter, contrasts of
slopes are calculated. If the integer has more than integer_as_numeric
unique values, it is treated as numeric. Defaults to 5.

• For count regression models that use an offset term, use offset = <value>
to fix the offset at a specific value. Or use estimate = "average", to aver-
age predictions over the distribution of the offset (if appropriate).

Details

The estimate_slopes(), estimate_means() and estimate_contrasts() functions are forming
a group, as they are all based on marginal estimations (estimations based on a model). All three are
built on the emmeans or marginaleffects package (depending on the backend argument), so read-
ing its documentation (for instance emmeans::emmeans(), emmeans::emtrends() or this website)
is recommended to understand the idea behind these types of procedures.

• Model-based predictions is the basis for all that follows. Indeed, the first thing to understand
is how models can be used to make predictions (see estimate_link()). This corresponds to

https://marginaleffects.com/

24 estimate_means

the predicted response (or "outcome variable") given specific predictor values of the predictors
(i.e., given a specific data configuration). This is why the concept of reference grid() is so
important for direct predictions.

• Marginal "means", obtained via estimate_means(), are an extension of such predictions,
allowing to "average" (collapse) some of the predictors, to obtain the average response value
at a specific predictors configuration. This is typically used when some of the predictors of
interest are factors. Indeed, the parameters of the model will usually give you the intercept
value and then the "effect" of each factor level (how different it is from the intercept). Marginal
means can be used to directly give you the mean value of the response variable at all the levels
of a factor. Moreover, it can also be used to control, or average over predictors, which is useful
in the case of multiple predictors with or without interactions.

• Marginal contrasts, obtained via estimate_contrasts(), are themselves at extension of
marginal means, in that they allow to investigate the difference (i.e., the contrast) between the
marginal means. This is, again, often used to get all pairwise differences between all levels of
a factor. It works also for continuous predictors, for instance one could also be interested in
whether the difference at two extremes of a continuous predictor is significant.

• Finally, marginal effects, obtained via estimate_slopes(), are different in that their focus
is not values on the response variable, but the model’s parameters. The idea is to assess the
effect of a predictor at a specific configuration of the other predictors. This is relevant in the
case of interactions or non-linear relationships, when the effect of a predictor variable changes
depending on the other predictors. Moreover, these effects can also be "averaged" over other
predictors, to get for instance the "general trend" of a predictor over different factor levels.

Example: Let’s imagine the following model lm(y ~ condition * x) where condition is a factor
with 3 levels A, B and C and x a continuous variable (like age for example). One idea is to see how
this model performs, and compare the actual response y to the one predicted by the model (using
estimate_expectation()). Another idea is evaluate the average mean at each of the condition’s
levels (using estimate_means()), which can be useful to visualize them. Another possibility is to
evaluate the difference between these levels (using estimate_contrasts()). Finally, one could
also estimate the effect of x averaged over all conditions, or instead within each condition (using
estimate_slopes()).

Value

A data frame of estimated marginal means.

Predictions and contrasts at meaningful values (data grids)

To define representative values for focal predictors (specified in by, contrast, and trend), you
can use several methods. These values are internally generated by insight::get_datagrid(), so
consult its documentation for more details.

• You can directly specify values as strings or lists for by, contrast, and trend.

– For numeric focal predictors, use examples like by = "gear = c(4, 8)", by = list(gear
= c(4, 8)) or by = "gear = 5:10"

– For factor or character predictors, use by = "Species = c('setosa', 'virginica')" or
by = list(Species = c('setosa', 'virginica'))

estimate_means 25

• You can use "shortcuts" within square brackets, such as by = "Sepal.Width = [sd]" or by =
"Sepal.Width = [fivenum]"

• For numeric focal predictors, if no representative values are specified, length and range
control the number and type of representative values:

– length determines how many equally spaced values are generated.
– range specifies the type of values, like "range" or "sd".
– length and range apply to all numeric focal predictors.
– If you have multiple numeric predictors, length and range can accept multiple elements,

one for each predictor.
• For integer variables, only values that appear in the data will be included in the data grid, inde-

pendent from the length argument. This behaviour can be changed by setting protect_integers
= FALSE, which will then treat integer variables as numerics (and possibly produce fractions).

See also this vignette for some examples.

Predictions on different scales

The predict argument allows to generate predictions on different scales of the response variable.
The "link" option does not apply to all models, and usually not to Gaussian models. "link" will
leave the values on scale of the linear predictors. "response" (or NULL) will transform them on
scale of the response variable. Thus for a logistic model, "link" will give estimations expressed in
log-odds (probabilities on logit scale) and "response" in terms of probabilities.

To predict distributional parameters (called "dpar" in other packages), for instance when using
complex formulae in brms models, the predict argument can take the value of the parameter you
want to estimate, for instance "sigma", "kappa", etc.

"response" and "inverse_link" both return predictions on the response scale, however, "response"
first calculates predictions on the response scale for each observation and then aggregates them
by groups or levels defined in by. "inverse_link" first calculates predictions on the link scale
for each observation, then aggregates them by groups or levels defined in by, and finally back-
transforms the predictions to the response scale. Both approaches have advantages and disadvan-
tages. "response" usually produces less biased predictions, but confidence intervals might be
outside reasonable bounds (i.e., for instance can be negative for count data). The "inverse_link"
approach is more robust in terms of confidence intervals, but might produce biased predictions.
However, you can try to set bias_correction = TRUE, to adjust for this bias.

In particular for mixed models, using "response" is recommended, because averaging across ran-
dom effects groups is then more accurate.

Finite mixture models

For finite mixture models (currently, only the brms::mixture() family from package brms is sup-
ported), use predict = "link" to return predicted values stratified by class membership. To predict
the class membership, use estimate_link().

Global Options to Customize Estimation of Marginal Means

• modelbased_backend: options(modelbased_backend = <string>) will set a default value
for the backend argument and can be used to set the package used by default to calculate
marginal means. Can be "marginalmeans" or "emmeans".

https://easystats.github.io/modelbased/articles/visualisation_matrix.html

26 estimate_means

• modelbased_estimate: options(modelbased_estimate = <string>) will set a default
value for the estimate argument.

References

Chatton, A. and Rohrer, J.M. 2024. The Causal Cookbook: Recipes for Propensity Scores, G-
Computation, and Doubly Robust Standardization. Advances in Methods and Practices in Psycho-
logical Science. 2024;7(1). doi:10.1177/25152459241236149

Dickerman, Barbra A., and Miguel A. Hernán. 2020. Counterfactual Prediction Is Not Only for
Causal Inference. European Journal of Epidemiology 35 (7): 615–17. doi:10.1007/s10654020-
006598

Heiss, A. (2022). Marginal and conditional effects for GLMMs with marginaleffects. Andrew
Heiss. doi:10.59350/xwnfmx1827

Examples

library(modelbased)

Frequentist models

model <- lm(Petal.Length ~ Sepal.Width * Species, data = iris)

estimate_means(model)

the `length` argument is passed to `insight::get_datagrid()` and modulates
the number of representative values to return for numeric predictors
estimate_means(model, by = c("Species", "Sepal.Width"), length = 2)

an alternative way to setup your data grid is specify the values directly
estimate_means(model, by = c("Species", "Sepal.Width = c(2, 4)"))

or use one of the many predefined "tokens" that help you creating a useful
data grid - to learn more about creating data grids, see help in
`?insight::get_datagrid`.
estimate_means(model, by = c("Species", "Sepal.Width = [fivenum]"))

Not run:
same for factors: filter by specific levels
estimate_means(model, by = "Species = c('versicolor', 'setosa')")
estimate_means(model, by = c("Species", "Sepal.Width = 0"))

estimate marginal average of response at values for numeric predictor
estimate_means(model, by = "Sepal.Width", length = 5)
estimate_means(model, by = "Sepal.Width = c(2, 4)")

or provide the definition of the data grid as list
estimate_means(

model,
by = list(Sepal.Width = c(2, 4), Species = c("versicolor", "setosa"))

)

https://doi.org/10.1177/25152459241236149
https://doi.org/10.1007/s10654-020-00659-8
https://doi.org/10.1007/s10654-020-00659-8
https://doi.org/10.59350/xwnfm-x1827

estimate_slopes 27

Methods that can be applied to it:
means <- estimate_means(model, by = c("Species", "Sepal.Width = 0"))

plot(means) # which runs visualisation_recipe()
standardize(means)

grids for numeric predictors, combine range and length
model <- lm(Sepal.Length ~ Sepal.Width * Petal.Length, data = iris)

create a "grid": value range for first numeric predictor, mean +/-1 SD
for remaining numeric predictors.
estimate_means(model, c("Sepal.Width", "Petal.Length"), range = "grid")

range from minimum to maximum spread over four values,
and mean +/- 1 SD (a total of three values)
estimate_means(

model,
by = c("Sepal.Width", "Petal.Length"),
range = c("range", "sd"),
length = c(4, 3)

)

data <- iris
data$Petal.Length_factor <- ifelse(data$Petal.Length < 4.2, "A", "B")

model <- lme4::lmer(
Petal.Length ~ Sepal.Width + Species + (1 | Petal.Length_factor),
data = data

)
estimate_means(model)
estimate_means(model, by = "Sepal.Width", length = 3)

End(Not run)

estimate_slopes Estimate Marginal Effects

Description

Estimate the slopes (i.e., the coefficient) of a predictor over or within different factor levels, or
alongside a numeric variable. In other words, to assess the effect of a predictor at specific configu-
rations data. It corresponds to the derivative and can be useful to understand where a predictor has
a significant role when interactions or non-linear relationships are present.

Other related functions based on marginal estimations includes estimate_contrasts() and estimate_means().

See the Details section below, and don’t forget to also check out the Vignettes and README
examples for various examples, tutorials and use cases.

https://easystats.github.io/modelbased/articles/estimate_slopes.html
https://easystats.github.io/modelbased/index.html#features
https://easystats.github.io/modelbased/index.html#features

28 estimate_slopes

Usage

estimate_slopes(
model,
trend = NULL,
by = NULL,
predict = NULL,
ci = 0.95,
p_adjust = "none",
transform = NULL,
keep_iterations = FALSE,
backend = NULL,
verbose = TRUE,
...

)

Arguments

model A statistical model.

trend A character indicating the name of the variable for which to compute the slopes.
To get marginal effects at specific values, use trend="<variable>" along with
the by argument, e.g. by="<variable>=c(1, 3, 5)", or a combination of by
and length, for instance, by="<variable>", length=30. To calculate aver-
age marginal effects over a range of values, use trend="<variable>=seq(1,
3, 0.1)" (or similar) and omit the variable provided in trend from the by argu-
ment.

by The (focal) predictor variable(s) at which to evaluate the desired effect / mean
/ contrasts. Other predictors of the model that are not included here will be
collapsed and "averaged" over (the effect will be estimated across them). by
can be a character (vector) naming the focal predictors, optionally including
representative values or levels at which focal predictors are evaluated (e.g., by =
"x = c(1, 2)"). When estimate is not "average", the by argument is used to
create a "reference grid" or "data grid" with representative values for the focal
predictors. In this case, by can also be list of named elements. See details in
insight::get_datagrid() to learn more about how to create data grids for
predictors of interest.

predict Is passed to the type argument in emmeans::emmeans() (when backend = "emmeans")
or in marginaleffects::avg_predictions() (when backend = "marginaleffects").
Valid options for predict are:

• backend = "marginaleffects": predict can be "response", "link",
"inverse_link" or any valid type option supported by model’s class predict()
method (e.g., for zero-inflation models from package glmmTMB, you can
choose predict = "zprob" or predict = "conditional" etc., see glmmTMB::predict.glmmTMB).
By default, when predict = NULL, the most appropriate transformation is
selected, which usually returns predictions or contrasts on the response-
scale. The "inverse_link" is a special option, comparable to marginalef-
fects’ invlink(link) option. It will calculate predictions on the link scale
and then back-transform to the response scale.

estimate_slopes 29

• backend = "emmeans": predict can be "response", "link", "mu", "unlink",
or "log". If predict = NULL (default), the most appropriate transformation
is selected (which usually is "response"). See also this vignette.

See also section Predictions on different scales.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

p_adjust The p-values adjustment method for frequentist multiple comparisons. For estimate_slopes(),
multiple comparison only occurs for Johnson-Neyman intervals, i.e. in case of
interactions with two numeric predictors (one specified in trend, one in by). In
this case, the "esarey" or "sup-t" options are recommended, but p_adjust
can also be one of "none" (default), "hochberg", "hommel", "bonferroni",
"BH", "BY", "fdr", "tukey", "sidak", or "holm". "sup-t" computes simul-
taneous confidence bands, also called sup-t confidence band (Montiel Olea &
Plagborg-Møller, 2019).

transform A function applied to predictions and confidence intervals to (back-) transform
results, which can be useful in case the regression model has a transformed
response variable (e.g., lm(log(y) ~ x)). For Bayesian models, this function
is applied to individual draws from the posterior distribution, before computing
summaries. Can also be TRUE, in which case insight::get_transformation()
is called to determine the appropriate transformation-function. Note that no
standard errors are returned when transformations are applied.

keep_iterations

If TRUE, will keep all iterations (draws) of bootstrapped or Bayesian models.
They will be added as additional columns named iter_1, iter_2, and so on. If
keep_iterations is a positive number, only as many columns as indicated in
keep_iterations will be added to the output. You can reshape them to a long
format by running bayestestR::reshape_iterations().

backend Whether to use "marginaleffects" (default) or "emmeans" as a backend. Re-
sults are usually very similar. The major difference will be found for mixed
models, where backend = "marginaleffects" will also average across random
effects levels, producing "marginal predictions" (instead of "conditional predic-
tions", see Heiss 2022).
Another difference is that backend = "marginaleffects" will be slower than
backend = "emmeans". For most models, this difference is negligible. However,
in particular complex models or large data sets fitted with glmmTMB can be
significantly slower.
You can set a default backend via options(), e.g. use options(modelbased_backend
= "emmeans") to use the emmeans package or options(modelbased_backend
= "marginaleffects") to set marginaleffects as default backend.

verbose Use FALSE to silence messages and warnings.

... Other arguments passed, for instance, to insight::get_datagrid(), to func-
tions from the emmeans or marginaleffects package, or to process Bayesian
models via bayestestR::describe_posterior(). Examples:

• insight::get_datagrid(): Argument such as length, digits or range
can be used to control the (number of) representative values. For inte-
ger variables, protect_integers modulates whether these should also be
treated as numerics, i.e. values can have fractions or not.

https://CRAN.R-project.org/package=emmeans/vignettes/transformations.html

30 estimate_slopes

• marginaleffects: Internally used functions are avg_predictions() for
means and contrasts, and avg_slope() for slopes. Therefore, arguments
for instance like vcov, equivalence, df, slope, hypothesis or even newdata
can be passed to those functions. A weights argument is passed to the wts
argument in avg_predictions() or avg_slopes(), however, weights can
only be applied when estimate is "average" or "population" (i.e. for
those marginalization options that do not use data grids). Other arguments,
such as re.form or allow.new.levels, may be passed to predict() (which
is internally used by marginaleffects) if supported by that model class.

• emmeans: Internally used functions are emmeans() and emtrends(). Ad-
ditional arguments can be passed to these functions.

• Bayesian models: For Bayesian models, parameters are cleaned using describe_posterior(),
thus, arguments like, for example, centrality, rope_range, or test are
passed to that function.

• Especially for estimate_contrasts() with integer focal predictors, for
which contrasts should be calculated, use argument integer_as_numeric
to set the maximum number of unique values in an integer predictor to treat
that predictor as "discrete integer" or as numeric. For the first case, contrasts
are calculated between values of the predictor, for the latter, contrasts of
slopes are calculated. If the integer has more than integer_as_numeric
unique values, it is treated as numeric. Defaults to 5.

• For count regression models that use an offset term, use offset = <value>
to fix the offset at a specific value. Or use estimate = "average", to aver-
age predictions over the distribution of the offset (if appropriate).

Details

The estimate_slopes(), estimate_means() and estimate_contrasts() functions are forming
a group, as they are all based on marginal estimations (estimations based on a model). All three are
built on the emmeans or marginaleffects package (depending on the backend argument), so read-
ing its documentation (for instance emmeans::emmeans(), emmeans::emtrends() or this website)
is recommended to understand the idea behind these types of procedures.

• Model-based predictions is the basis for all that follows. Indeed, the first thing to understand
is how models can be used to make predictions (see estimate_link()). This corresponds to
the predicted response (or "outcome variable") given specific predictor values of the predictors
(i.e., given a specific data configuration). This is why the concept of reference grid() is so
important for direct predictions.

• Marginal "means", obtained via estimate_means(), are an extension of such predictions,
allowing to "average" (collapse) some of the predictors, to obtain the average response value
at a specific predictors configuration. This is typically used when some of the predictors of
interest are factors. Indeed, the parameters of the model will usually give you the intercept
value and then the "effect" of each factor level (how different it is from the intercept). Marginal
means can be used to directly give you the mean value of the response variable at all the levels
of a factor. Moreover, it can also be used to control, or average over predictors, which is useful
in the case of multiple predictors with or without interactions.

• Marginal contrasts, obtained via estimate_contrasts(), are themselves at extension of
marginal means, in that they allow to investigate the difference (i.e., the contrast) between the

https://marginaleffects.com/

estimate_slopes 31

marginal means. This is, again, often used to get all pairwise differences between all levels of
a factor. It works also for continuous predictors, for instance one could also be interested in
whether the difference at two extremes of a continuous predictor is significant.

• Finally, marginal effects, obtained via estimate_slopes(), are different in that their focus
is not values on the response variable, but the model’s parameters. The idea is to assess the
effect of a predictor at a specific configuration of the other predictors. This is relevant in the
case of interactions or non-linear relationships, when the effect of a predictor variable changes
depending on the other predictors. Moreover, these effects can also be "averaged" over other
predictors, to get for instance the "general trend" of a predictor over different factor levels.

Example: Let’s imagine the following model lm(y ~ condition * x) where condition is a factor
with 3 levels A, B and C and x a continuous variable (like age for example). One idea is to see how
this model performs, and compare the actual response y to the one predicted by the model (using
estimate_expectation()). Another idea is evaluate the average mean at each of the condition’s
levels (using estimate_means()), which can be useful to visualize them. Another possibility is to
evaluate the difference between these levels (using estimate_contrasts()). Finally, one could
also estimate the effect of x averaged over all conditions, or instead within each condition (using
estimate_slopes()).

Value

A data.frame of class estimate_slopes.

Predictions and contrasts at meaningful values (data grids)

To define representative values for focal predictors (specified in by, contrast, and trend), you
can use several methods. These values are internally generated by insight::get_datagrid(), so
consult its documentation for more details.

• You can directly specify values as strings or lists for by, contrast, and trend.

– For numeric focal predictors, use examples like by = "gear = c(4, 8)", by = list(gear
= c(4, 8)) or by = "gear = 5:10"

– For factor or character predictors, use by = "Species = c('setosa', 'virginica')" or
by = list(Species = c('setosa', 'virginica'))

• You can use "shortcuts" within square brackets, such as by = "Sepal.Width = [sd]" or by =
"Sepal.Width = [fivenum]"

• For numeric focal predictors, if no representative values are specified, length and range
control the number and type of representative values:

– length determines how many equally spaced values are generated.
– range specifies the type of values, like "range" or "sd".
– length and range apply to all numeric focal predictors.
– If you have multiple numeric predictors, length and range can accept multiple elements,

one for each predictor.

• For integer variables, only values that appear in the data will be included in the data grid, inde-
pendent from the length argument. This behaviour can be changed by setting protect_integers
= FALSE, which will then treat integer variables as numerics (and possibly produce fractions).

See also this vignette for some examples.

https://easystats.github.io/modelbased/articles/visualisation_matrix.html

32 estimate_slopes

References

Montiel Olea, J. L., and Plagborg-Møller, M. (2019). Simultaneous confidence bands: Theory,
implementation, and an application to SVARs. Journal of Applied Econometrics, 34(1), 1–17.
doi:10.1002/jae.2656

Examples

library(ggplot2)
Get an idea of the data
ggplot(iris, aes(x = Petal.Length, y = Sepal.Width)) +

geom_point(aes(color = Species)) +
geom_smooth(color = "black", se = FALSE) +
geom_smooth(aes(color = Species), linetype = "dotted", se = FALSE) +
geom_smooth(aes(color = Species), method = "lm", se = FALSE)

Model it
model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)
Compute the marginal effect of Petal.Length at each level of Species
slopes <- estimate_slopes(model, trend = "Petal.Length", by = "Species")
slopes

Not run:
Plot it
plot(slopes)
standardize(slopes)

model <- mgcv::gam(Sepal.Width ~ s(Petal.Length), data = iris)
slopes <- estimate_slopes(model, by = "Petal.Length", length = 50)
summary(slopes)
plot(slopes)

model <- mgcv::gam(Sepal.Width ~ s(Petal.Length, by = Species), data = iris)
slopes <- estimate_slopes(model,

trend = "Petal.Length",
by = c("Petal.Length", "Species"), length = 20

)
summary(slopes)
plot(slopes)

marginal effects, grouped by Species, at different values of Petal.Length
estimate_slopes(model,

trend = "Petal.Length",
by = c("Petal.Length", "Species"), length = 10

)

marginal effects at different values of Petal.Length
estimate_slopes(model, trend = "Petal.Length", by = "Petal.Length", length = 10)

marginal effects at very specific values of Petal.Length
estimate_slopes(model, trend = "Petal.Length", by = "Petal.Length=c(1, 3, 5)")

average marginal effects of Petal.Length,

https://doi.org/10.1002/jae.2656

fish 33

just for the trend within a certain range
estimate_slopes(model, trend = "Petal.Length=seq(2, 4, 0.01)")

End(Not run)

fish Sample data set

Description

A sample data set, used in tests and some examples. Useful for demonstrating count models (with
or without zero-inflation component). It consists of nine variables from 250 observations.

get_emcontrasts Consistent API for ’emmeans’ and ’marginaleffects’

Description

These functions are convenient wrappers around the emmeans and the marginaleffects packages.
They are mostly available for developers who want to leverage a unified API for getting model-
based estimates, and regular users should use the estimate_* set of functions.

The get_emmeans(), get_emcontrasts() and get_emtrends() functions are wrappers around
emmeans::emmeans() and emmeans::emtrends().

Usage

get_emcontrasts(
model,
contrast = NULL,
by = NULL,
predict = NULL,
comparison = "pairwise",
keep_iterations = FALSE,
verbose = TRUE,
...

)

get_emmeans(
model,
by = "auto",
predict = NULL,
keep_iterations = FALSE,
verbose = TRUE,
...

34 get_emcontrasts

)

get_emtrends(
model,
trend = NULL,
by = NULL,
predict = NULL,
keep_iterations = FALSE,
verbose = TRUE,
...

)

get_marginalcontrasts(
model,
contrast = NULL,
by = NULL,
predict = NULL,
ci = 0.95,
comparison = "pairwise",
estimate = NULL,
p_adjust = "none",
transform = NULL,
keep_iterations = FALSE,
verbose = TRUE,
...

)

get_marginalmeans(
model,
by = "auto",
predict = NULL,
ci = 0.95,
estimate = NULL,
transform = NULL,
keep_iterations = FALSE,
verbose = TRUE,
...

)

get_marginaltrends(
model,
trend = NULL,
by = NULL,
predict = NULL,
ci = 0.95,
p_adjust = "none",
transform = NULL,
keep_iterations = FALSE,

get_emcontrasts 35

verbose = TRUE,
...

)

Arguments

model A statistical model.

contrast A character vector indicating the name of the variable(s) for which to compute
the contrasts, optionally including representative values or levels at which con-
trasts are evaluated (e.g., contrast="x=c('a','b')").

by The (focal) predictor variable(s) at which to evaluate the desired effect / mean
/ contrasts. Other predictors of the model that are not included here will be
collapsed and "averaged" over (the effect will be estimated across them). by
can be a character (vector) naming the focal predictors, optionally including
representative values or levels at which focal predictors are evaluated (e.g., by =
"x = c(1, 2)"). When estimate is not "average", the by argument is used to
create a "reference grid" or "data grid" with representative values for the focal
predictors. In this case, by can also be list of named elements. See details in
insight::get_datagrid() to learn more about how to create data grids for
predictors of interest.

predict Is passed to the type argument in emmeans::emmeans() (when backend = "emmeans")
or in marginaleffects::avg_predictions() (when backend = "marginaleffects").
Valid options for predict are:

• backend = "marginaleffects": predict can be "response", "link",
"inverse_link" or any valid type option supported by model’s class predict()
method (e.g., for zero-inflation models from package glmmTMB, you can
choose predict = "zprob" or predict = "conditional" etc., see glmmTMB::predict.glmmTMB).
By default, when predict = NULL, the most appropriate transformation is
selected, which usually returns predictions or contrasts on the response-
scale. The "inverse_link" is a special option, comparable to marginalef-
fects’ invlink(link) option. It will calculate predictions on the link scale
and then back-transform to the response scale.

• backend = "emmeans": predict can be "response", "link", "mu", "unlink",
or "log". If predict = NULL (default), the most appropriate transformation
is selected (which usually is "response"). See also this vignette.

See also section Predictions on different scales.

comparison Specify the type of contrasts or tests that should be carried out.

• When backend = "emmeans", can be one of "pairwise", "poly", "consec",
"eff", "del.eff", "mean_chg", "trt.vs.ctrl", "dunnett", "wtcon"
and some more. To test multiple hypotheses jointly (usually used for facto-
rial designs), comparison can also be "joint". See also method argument
in emmeans::contrast and the ?emmeans::emmc-functions.

• For backend = "marginaleffects", can be a numeric value, vector, or ma-
trix, a string equation specifying the hypothesis to test, a string naming the
comparison method, a formula, or a function. For options not described be-
low, see documentation of marginaleffects::comparisons, this website and
section Comparison options below.

https://CRAN.R-project.org/package=emmeans/vignettes/transformations.html
https://marginaleffects.com/bonus/hypothesis.html

36 get_emcontrasts

– String: One of "pairwise", "reference", "sequential", "meandev"
"meanotherdev", "poly", "helmert", or "trt_vs_ctrl". To test
multiple hypotheses jointly (usually used for factorial designs), comparison
can also be "joint". In this case, use the test argument to specify
which test should be conducted: "F" (default) or "Chi2".

– String: Two special string options are "inequality" and "inequality_pairwise".
comparison = "inequality" computes the marginal effect inequal-
ity summary of categorical predictors’ overall effects, respectively, the
comprehensive effect of an independent variable across all outcome
categories of a nominal or ordinal dependent variable (total marginal ef-
fect, see Mize and Han, 2025). comparison = "inequality_pairwise"
computes the difference (pairwise comparisons) between marginal ef-
fects inequality measures.

– String equation: To identify parameters from the output, either specify
the term name, or "b1", "b2" etc. to indicate rows, e.g.:"hp = drat",
"b1 = b2", or "b1 + b2 + b3 = 0".

– Formula: A formula like comparison ~ pairs | group, where the left-
hand side indicates the type of comparison (difference or ratio), the
right-hand side determines the pairs of estimates to compare (reference,
sequential, meandev, etc., see string-options). Optionally, compar-
isons can be carried out within subsets by indicating the grouping vari-
able after a vertical bar (|).

– A custom function, e.g. comparison = myfun, or comparison ~ I(my_fun(x))
| groups.

– If contrasts should be calculated (or grouped by) factors, comparison
can also be a matrix that specifies factor contrasts (see ’Examples’).

keep_iterations

If TRUE, will keep all iterations (draws) of bootstrapped or Bayesian models.
They will be added as additional columns named iter_1, iter_2, and so on. If
keep_iterations is a positive number, only as many columns as indicated in
keep_iterations will be added to the output. You can reshape them to a long
format by running bayestestR::reshape_iterations().

verbose Use FALSE to silence messages and warnings.

... Other arguments passed, for instance, to insight::get_datagrid(), to func-
tions from the emmeans or marginaleffects package, or to process Bayesian
models via bayestestR::describe_posterior(). Examples:

• insight::get_datagrid(): Argument such as length, digits or range
can be used to control the (number of) representative values. For inte-
ger variables, protect_integers modulates whether these should also be
treated as numerics, i.e. values can have fractions or not.

• marginaleffects: Internally used functions are avg_predictions() for
means and contrasts, and avg_slope() for slopes. Therefore, arguments
for instance like vcov, equivalence, df, slope, hypothesis or even newdata
can be passed to those functions. A weights argument is passed to the wts
argument in avg_predictions() or avg_slopes(), however, weights can
only be applied when estimate is "average" or "population" (i.e. for
those marginalization options that do not use data grids). Other arguments,

get_emcontrasts 37

such as re.form or allow.new.levels, may be passed to predict() (which
is internally used by marginaleffects) if supported by that model class.

• emmeans: Internally used functions are emmeans() and emtrends(). Ad-
ditional arguments can be passed to these functions.

• Bayesian models: For Bayesian models, parameters are cleaned using describe_posterior(),
thus, arguments like, for example, centrality, rope_range, or test are
passed to that function.

• Especially for estimate_contrasts() with integer focal predictors, for
which contrasts should be calculated, use argument integer_as_numeric
to set the maximum number of unique values in an integer predictor to treat
that predictor as "discrete integer" or as numeric. For the first case, contrasts
are calculated between values of the predictor, for the latter, contrasts of
slopes are calculated. If the integer has more than integer_as_numeric
unique values, it is treated as numeric. Defaults to 5.

• For count regression models that use an offset term, use offset = <value>
to fix the offset at a specific value. Or use estimate = "average", to aver-
age predictions over the distribution of the offset (if appropriate).

trend A character indicating the name of the variable for which to compute the slopes.
To get marginal effects at specific values, use trend="<variable>" along with
the by argument, e.g. by="<variable>=c(1, 3, 5)", or a combination of by
and length, for instance, by="<variable>", length=30. To calculate aver-
age marginal effects over a range of values, use trend="<variable>=seq(1,
3, 0.1)" (or similar) and omit the variable provided in trend from the by argu-
ment.

ci Confidence Interval (CI) level. Default to 0.95 (95%).

estimate The estimate argument determines how predictions are averaged ("marginal-
ized") over variables not specified in by or contrast (non-focal predictors). It
controls whether predictions represent a "typical" individual, an "average" indi-
vidual from the sample, or an "average" individual from a broader population.

• "typical" (Default): Calculates predictions for a balanced data grid rep-
resenting all combinations of focal predictor levels (specified in by). For
non-focal numeric predictors, it uses the mean; for non-focal categorical
predictors, it marginalizes (averages) over the levels. This represents a "typ-
ical" observation based on the data grid and is useful for comparing groups.
It answers: "What would the average outcome be for a ’typical’ observa-
tion?". This is the default approach when estimating marginal means using
the emmeans package.

• "average": Calculates predictions for each observation in the sample and
then averages these predictions within each group defined by the focal pre-
dictors. This reflects the sample’s actual distribution of non-focal predic-
tors, not a balanced grid. It answers: "What is the predicted value for an
average observation in my data?"

• "population": "Clones" each observation, creating copies with all pos-
sible combinations of focal predictor levels. It then averages the predic-
tions across these "counterfactual" observations (non-observed permuta-
tions) within each group. This extrapolates to a hypothetical broader popu-
lation, considering "what if" scenarios. It answers: "What is the predicted

38 get_emcontrasts

response for the ’average’ observation in a broader possible target popu-
lation?" This approach entails more assumptions about the likelihood of
different combinations, but can be more apt to generalize. This is also the
option that should be used for G-computation (Chatton and Rohrer 2024).

You can set a default option for the estimate argument via options(), e.g.
options(modelbased_estimate = "average")

p_adjust The p-values adjustment method for frequentist multiple comparisons. For estimate_slopes(),
multiple comparison only occurs for Johnson-Neyman intervals, i.e. in case of
interactions with two numeric predictors (one specified in trend, one in by). In
this case, the "esarey" or "sup-t" options are recommended, but p_adjust
can also be one of "none" (default), "hochberg", "hommel", "bonferroni",
"BH", "BY", "fdr", "tukey", "sidak", or "holm". "sup-t" computes simul-
taneous confidence bands, also called sup-t confidence band (Montiel Olea &
Plagborg-Møller, 2019).

transform A function applied to predictions and confidence intervals to (back-) transform
results, which can be useful in case the regression model has a transformed
response variable (e.g., lm(log(y) ~ x)). For Bayesian models, this function
is applied to individual draws from the posterior distribution, before computing
summaries. Can also be TRUE, in which case insight::get_transformation()
is called to determine the appropriate transformation-function. Note that no
standard errors are returned when transformations are applied.

Examples

Basic usage
model <- lm(Sepal.Width ~ Species, data = iris)
get_emcontrasts(model)

Not run:
Dealing with interactions
model <- lm(Sepal.Width ~ Species * Petal.Width, data = iris)
By default: selects first factor
get_emcontrasts(model)
Or both
get_emcontrasts(model, contrast = c("Species", "Petal.Width"), length = 2)
Or with custom specifications
get_emcontrasts(model, contrast = c("Species", "Petal.Width=c(1, 2)"))
Or modulate it
get_emcontrasts(model, by = "Petal.Width", length = 4)

End(Not run)

model <- lm(Sepal.Length ~ Species + Petal.Width, data = iris)

By default, 'by' is set to "Species"
get_emmeans(model)

Not run:
Overall mean (close to 'mean(iris$Sepal.Length)')

get_emcontrasts 39

get_emmeans(model, by = NULL)

One can estimate marginal means at several values of a 'modulate' variable
get_emmeans(model, by = "Petal.Width", length = 3)

Interactions
model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)

get_emmeans(model)
get_emmeans(model, by = c("Species", "Petal.Length"), length = 2)
get_emmeans(model, by = c("Species", "Petal.Length = c(1, 3, 5)"), length = 2)

End(Not run)

Not run:
model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)

get_emtrends(model)
get_emtrends(model, by = "Species")
get_emtrends(model, by = "Petal.Length")
get_emtrends(model, by = c("Species", "Petal.Length"))

End(Not run)

model <- lm(Petal.Length ~ poly(Sepal.Width, 4), data = iris)
get_emtrends(model)
get_emtrends(model, by = "Sepal.Width")

model <- lm(Sepal.Length ~ Species + Petal.Width, data = iris)

By default, 'by' is set to "Species"
get_marginalmeans(model)

Overall mean (close to 'mean(iris$Sepal.Length)')
get_marginalmeans(model, by = NULL)

Not run:
One can estimate marginal means at several values of a 'modulate' variable
get_marginalmeans(model, by = "Petal.Width", length = 3)

Interactions
model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)

get_marginalmeans(model)
get_marginalmeans(model, by = c("Species", "Petal.Length"), length = 2)
get_marginalmeans(model, by = c("Species", "Petal.Length = c(1, 3, 5)"), length = 2)

End(Not run)

model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)

40 modelbased-options

get_marginaltrends(model, trend = "Petal.Length", by = "Species")
get_marginaltrends(model, trend = "Petal.Length", by = "Petal.Length")
get_marginaltrends(model, trend = "Petal.Length", by = c("Species", "Petal.Length"))

modelbased-options Global options from the modelbased package

Description

Global options from the modelbased package

Global options to set defaults for function arguments

For calculating marginal means

• options(modelbased_backend = <string>) will set a default value for the backend argu-
ment and can be used to set the package used by default to calculate marginal means. Can be
"marginaleffects" or "emmeans".

• options(modelbased_estimate = <string>) will set a default value for the estimate
argument, which modulates the type of target population predictions refer to.

For printing

• options(modelbased_select = <string>) will set a default value for the select argument
and can be used to define a custom default layout for printing.

• options(modelbased_include_grid = TRUE) will set a default value for the include_grid
argument and can be used to include data grids in the output by default or not.

• options(modelbased_full_labels = FALSE) will remove redundant (duplicated) labels from
rows.

For plotting

• options(modelbased_join_dots = <logical>) will set a default value for the join_dots.

• options(modelbased_numeric_as_discrete = <number>) will set a default value for the
modelbased_numeric_as_discrete argument. Can also be FALSE.

plot.estimate_predicted 41

plot.estimate_predicted

Automated plotting for ’modelbased’ objects

Description

Most modelbased objects can be visualized using the plot() function, which internally calls the
visualisation_recipe() function. See the examples below for more information and examples
on how to create and customize plots.

The plotting works by mapping any predictors from the by argument to the x-axis, colors, alpha
(transparency) and facets. Thus, the appearance of the plot depends on the order of the variables that
you specify in the by argument. For instance, the plots corresponding to estimate_relation(model,
by=c("Species", "Sepal.Length")) and estimate_relation(model, by=c("Sepal.Length",
"Species")) will look different.

The automated plotting is primarily meant for convenient visual checks, but for publication-ready
figures, we recommend re-creating the figures using the {ggplot2} package directly.

Usage

S3 method for class 'estimate_predicted'
plot(x, ...)

S3 method for class 'estimate_means'
plot(x, ...)

S3 method for class 'estimate_predicted'
visualisation_recipe(
x,
show_data = FALSE,
point = NULL,
line = NULL,
pointrange = NULL,
ribbon = NULL,
facet = NULL,
grid = NULL,
join_dots = NULL,
numeric_as_discrete = NULL,
...

)

S3 method for class 'estimate_slopes'
visualisation_recipe(
x,
line = NULL,
pointrange = NULL,
ribbon = NULL,

42 plot.estimate_predicted

facet = NULL,
grid = NULL,
...

)

S3 method for class 'estimate_grouplevel'
visualisation_recipe(
x,
line = NULL,
pointrange = NULL,
ribbon = NULL,
facet = NULL,
grid = NULL,
...

)

Arguments

x A modelbased object.

... Arguments passed from plot() to visualisation_recipe().

show_data Logical, if TRUE, display the "raw" data as a background to the model-based esti-
mation. This argument will be ignored for plotting objects returned by estimate_slopes()
or estimate_grouplevel().

point, line, pointrange, ribbon, facet, grid
Additional aesthetics and parameters for the geoms (see customization exam-
ple).

join_dots Logical, if TRUE (default) and for categorical focal terms in by, dots (estimates)
are connected by lines, i.e. plots will be a combination of dots with error bars
and connecting lines. If FALSE, only dots and error bars are shown. It is possible
to set a global default value using options(), e.g. options(modelbased_join_dots
= FALSE).

numeric_as_discrete

Maximum number of unique values in a numeric predictor to treat that predictor
as discrete. Defaults to 8. Numeric predictors are usually mapped to a contin-
uous color scale, unless they have only few unique values. In the latter case,
numeric predictors are assumed to represent "categories", e.g. when only the
mean value and +/- 1 standard deviation around the mean are chosen as repre-
sentative values for that predictor. Use FALSE to always use continuous color
scales for numeric predictors. It is possible to set a global default value using
options(), e.g. options(modelbased_numeric_as_discrete = 10).

Details

There are two options to remove the confidence bands or errors bars from the plot. To remove
error bars, simply set the pointrange geom to point, e.g. plot(..., pointrange = list(geom =
"point")). To remove the confidence bands from line geoms, use ribbon = "none".

plot.estimate_predicted 43

Value

An object of class visualisation_recipe that describes the layers used to create a plot based on
{ggplot2}. The related plot() method is in the {see} package.

Global Options to Customize Plots

Some arguments for plot() can get global defaults using options():

• modelbased_join_dots: options(modelbased_join_dots = <logical>) will set a de-
fault value for the join_dots.

• modelbased_numeric_as_discrete: options(modelbased_numeric_as_discrete = <number>)
will set a default value for the modelbased_numeric_as_discrete argument. Can also be
FALSE.

Examples

library(ggplot2)
library(see)
==
estimate_relation, estimate_expectation, ...
==
Simple Model ---------------
x <- estimate_relation(lm(mpg ~ wt, data = mtcars))
layers <- visualisation_recipe(x)
layers
plot(layers)

visualization_recipe() is called implicitly when you call plot()
plot(estimate_relation(lm(mpg ~ qsec, data = mtcars)))

Not run:
It can be used in a pipe workflow
lm(mpg ~ qsec, data = mtcars) |>

estimate_relation(ci = c(0.5, 0.8, 0.9)) |>
plot()

Customize aesthetics ----------

plot(x,
point = list(color = "red", alpha = 0.6, size = 3),
line = list(color = "blue", size = 3),
ribbon = list(fill = "green", alpha = 0.7)

) +
theme_minimal() +
labs(title = "Relationship between MPG and WT")

Customize raw data -------------

plot(x, point = list(geom = "density_2d_filled"), line = list(color = "white")) +
scale_x_continuous(expand = c(0, 0)) +
scale_y_continuous(expand = c(0, 0)) +

44 plot.estimate_predicted

theme(legend.position = "none")

Single predictors examples -----------

plot(estimate_relation(lm(Sepal.Length ~ Species, data = iris)))

2-ways interaction ------------

Numeric * numeric
x <- estimate_relation(lm(mpg ~ wt * qsec, data = mtcars))
plot(x)

Numeric * factor
x <- estimate_relation(lm(Sepal.Width ~ Sepal.Length * Species, data = iris))
plot(x)

==
estimate_means
==
Simple Model ---------------
x <- estimate_means(lm(Sepal.Width ~ Species, data = iris), by = "Species")
layers <- visualisation_recipe(x)
layers
plot(layers)

Customize aesthetics
layers <- visualisation_recipe(x,

point = list(width = 0.03, color = "red"),
pointrange = list(size = 2, linewidth = 2),
line = list(linetype = "dashed", color = "blue")

)
plot(layers)

Two levels ---------------
data <- mtcars
data$cyl <- as.factor(data$cyl)

model <- lm(mpg ~ cyl * wt, data = data)

x <- estimate_means(model, by = c("cyl", "wt"))
plot(x)

GLMs ---------------------
data <- data.frame(vs = mtcars$vs, cyl = as.factor(mtcars$cyl))
x <- estimate_means(glm(vs ~ cyl, data = data, family = "binomial"), by = c("cyl"))
plot(x)

End(Not run)

==
estimate_slopes

plot.estimate_predicted 45

==
model <- lm(Sepal.Width ~ Species * Petal.Length, data = iris)
x <- estimate_slopes(model, trend = "Petal.Length", by = "Species")

layers <- visualisation_recipe(x)
layers
plot(layers)

Not run:
Customize aesthetics and add horizontal line and theme
layers <- visualisation_recipe(x, pointrange = list(size = 2, linewidth = 2))
plot(layers) +

geom_hline(yintercept = 0, linetype = "dashed", color = "red") +
theme_minimal() +
labs(y = "Effect of Petal.Length", title = "Marginal Effects")

model <- lm(Petal.Length ~ poly(Sepal.Width, 4), data = iris)
x <- estimate_slopes(model, trend = "Sepal.Width", by = "Sepal.Width", length = 20)
plot(visualisation_recipe(x))

model <- lm(Petal.Length ~ Species * poly(Sepal.Width, 3), data = iris)
x <- estimate_slopes(model, trend = "Sepal.Width", by = c("Sepal.Width", "Species"))
plot(visualisation_recipe(x))

End(Not run)

==
estimate_grouplevel
==
Not run:
data <- lme4::sleepstudy
data <- rbind(data, data)
data$Newfactor <- rep(c("A", "B", "C", "D"))

1 random intercept
model <- lme4::lmer(Reaction ~ Days + (1 | Subject), data = data)
x <- estimate_grouplevel(model)
layers <- visualisation_recipe(x)
layers
plot(layers)

2 random intercepts
model <- lme4::lmer(Reaction ~ Days + (1 | Subject) + (1 | Newfactor), data = data)
x <- estimate_grouplevel(model)
plot(x) +

geom_hline(yintercept = 0, linetype = "dashed") +
theme_minimal()

Note: we need to use hline instead of vline because the axes is flipped

model <- lme4::lmer(Reaction ~ Days + (1 + Days | Subject) + (1 | Newfactor), data = data)
x <- estimate_grouplevel(model)
plot(x)

46 pool_contrasts

End(Not run)

pool_contrasts Pool contrasts and comparisons from estimate_contrasts()

Description

This function "pools" (i.e. combines) multiple estimate_contrasts objects, returned by estimate_contrasts(),
in a similar fashion as mice::pool().

Usage

pool_contrasts(x, ...)

Arguments

x A list of estimate_contrasts objects, as returned by estimate_contrasts().

... Currently not used.

Details

Averaging of parameters follows Rubin’s rules (Rubin, 1987, p. 76).

Value

A data frame with pooled comparisons or contrasts of predictions.

References

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and
Sons.

Examples

data("nhanes2", package = "mice")
imp <- mice::mice(nhanes2, printFlag = FALSE)
comparisons <- lapply(1:5, function(i) {

m <- lm(bmi ~ age + hyp + chl, data = mice::complete(imp, action = i))
estimate_contrasts(m, "age")

})
pool_contrasts(comparisons)

pool_predictions 47

pool_predictions Pool Predictions and Estimated Marginal Means

Description

This function "pools" (i.e. combines) multiple estimate_means objects, in a similar fashion as
mice::pool().

Usage

pool_predictions(x, transform = NULL, ...)

pool_slopes(x, transform = NULL, ...)

Arguments

x A list of estimate_means objects, as returned by estimate_means(), or estimate_predicted
objects, as returned by estimate_relation() and related functions. For pool_slopes(),
must be a list of estimate_slopes objects, as returned by estimate_slopes().

transform A function applied to predictions and confidence intervals to (back-) transform
results, which can be useful in case the regression model has a transformed
response variable (e.g., lm(log(y) ~ x)). For Bayesian models, this function
is applied to individual draws from the posterior distribution, before computing
summaries. Can also be TRUE, in which case insight::get_transformation()
is called to determine the appropriate transformation-function. Note that no
standard errors are returned when transformations are applied.

... Currently not used.

Details

Averaging of parameters follows Rubin’s rules (Rubin, 1987, p. 76). Pooling is applied to the
predicted values and based on the standard errors as they are calculated in the estimate_means
or estimate_predicted objects provided in x. For objects of class estimate_means, the pre-
dicted values are on the response scale by default, and standard errors are calculated using the delta
method. Then, pooling estimates and calculating standard errors for the pooled estimates based ob
Rubin’s rule is carried out. There is no back-transformation to the link-scale of predicted values
before applying Rubin’s rule.

Value

A data frame with pooled predictions.

References

Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John Wiley and
Sons.

48 print.estimate_contrasts

Examples

example for multiple imputed datasets
data("nhanes2", package = "mice")
imp <- mice::mice(nhanes2, printFlag = FALSE)

estimated marginal means
predictions <- lapply(1:5, function(i) {

m <- lm(bmi ~ age + hyp + chl, data = mice::complete(imp, action = i))
estimate_means(m, "age")

})
pool_predictions(predictions)

estimated slopes (marginal effects)
slopes <- lapply(1:5, function(i) {

m <- lm(bmi ~ age + hyp + chl, data = mice::complete(imp, action = i))
estimate_slopes(m, "chl")

})
pool_slopes(slopes)

print.estimate_contrasts

Printing modelbased-objects

Description

print() method for modelbased objects. Can be used to tweak the output of tables.

Usage

S3 method for class 'estimate_contrasts'
print(x, select = NULL, include_grid = NULL, full_labels = NULL, ...)

Arguments

x An object returned by the different estimate_*() functions.

select Determines which columns are printed and the table layout. There are two op-
tions for this argument:

• A string expression with layout pattern
select is a string with "tokens" enclosed in braces. These tokens will
be replaced by their associated columns, where the selected columns will
be collapsed into one column. Following tokens are replaced by the re-
lated coefficients or statistics: {estimate}, {se}, {ci} (or {ci_low} and
{ci_high}), {p}, {pd} and {stars}. The token {ci} will be replaced by
{ci_low}, {ci_high}. Example: select = "{estimate}{stars} ({ci})"
It is possible to create multiple columns as well. A | separates values into
new cells/columns. Example: select = "{estimate} ({ci})|{p}".

print.estimate_contrasts 49

• A string indicating a pre-defined layout
select can be one of the following string values, to create one of the fol-
lowing pre-defined column layouts:

– "minimal": Estimates, confidence intervals and numeric p-values, in
two columns. This is equivalent to select = "{estimate} ({ci})|{p}".

– "short": Estimate, standard errors and numeric p-values, in two columns.
This is equivalent to select = "{estimate} ({se})|{p}".

– "ci": Estimates and confidence intervals, no asterisks for p-values.
This is equivalent to select = "{estimate} ({ci})".

– "se": Estimates and standard errors, no asterisks for p-values. This is
equivalent to select = "{estimate} ({se})".

– "ci_p": Estimates, confidence intervals and asterisks for p-values. This
is equivalent to select = "{estimate}{stars} ({ci})".

– "se_p": Estimates, standard errors and asterisks for p-values. This is
equivalent to select = "{estimate}{stars} ({se})"..

Using select to define columns will re-order columns and remove all columns
related to uncertainty (standard errors, confidence intervals), test statistics, and
p-values (and similar, like pd or BF for Bayesian models), because these are as-
sumed to be included or intentionally excluded when using select. The new
column order will be: Parameter columns first, followed by the "glue" columns,
followed by all remaining columns. If further columns should also be placed
first, add those as focal_terms attributes to x. I.e., following columns are con-
siders as "parameter columns" and placed first: c(easystats_columns("parameter"),
attributes(x)$focal_terms).
Note: glue-like syntax is still experimental in the case of more complex models
(like mixed models) and may not return expected results.

include_grid Logical, if TRUE, the data grid is included in the table output. Only applies to
prediction-functions like estimate_relation() or estimate_link(). Default
is NULL, which will set the value based on options(modelbased_include_grid),
and use FALSE is no option is set.

full_labels Logical, if TRUE (default), all labels for focal terms are shown. If FALSE, redun-
dant (duplicated) labels are removed from rows. Default is NULL, which will set
the value based on options(modelbased_full_labels), and use TRUE is no
option is set.

... Arguments passed to insight::format_table() or insight::export_table().

Value

Invisibly returns x.

Global Options to Customize Tables when Printing

Columns and table layout can be customized using options():

• modelbased_select: options(modelbased_select = <string>) will set a default value
for the select argument and can be used to define a custom default layout for printing.

50 puppy_love

• modelbased_include_grid: options(modelbased_include_grid = TRUE) will set a de-
fault value for the include_grid argument and can be used to include data grids in the output
by default or not.

• modelbased_full_labels: options(modelbased_full_labels = FALSE) will remove re-
dundant (duplicated) labels from rows.

Note

Use print_html() and print_md() to create tables in HTML or markdown format, respectively.

Examples

model <- lm(Petal.Length ~ Species, data = iris)
out <- estimate_means(model, "Species")

default
print(out)

smaller set of columns
print(out, select = "minimal")

remove redundant labels
data(efc, package = "modelbased")
efc <- datawizard::to_factor(efc, c("c161sex", "c172code", "e16sex"))
levels(efc$c172code) <- c("low", "mid", "high")
fit <- lm(neg_c_7 ~ c161sex * c172code * e16sex, data = efc)
out <- estimate_means(fit, c("c161sex", "c172code", "e16sex"))
print(out, full_labels = FALSE, select = "{estimate} ({se})")

puppy_love More puppy therapy data

Description

Fictitious data related to whether puppy therapy works when you adjust for a person’s love of
puppies, taken from the {discovr} package (Field 2025)

Details

Following variables are included in the dataset:

• ‘id“: Participant id

• dose: Treatment group to which the participant was randomly assigned (No puppies (control),
15 minutes of puppy therapy, 30 minutes of puppy therapy)

• happiness: Self-reported happiness from 0 (as unhappy as I can possibly imagine being) to
10 (as happy as I can possibly imagine being)

smoothing 51

• puppy_love: Self-reported love of puppies from 0 (I am a weird person who hates puppies,
please be deeply suspicious of me) to 7 (puppies are the best thing ever, one day I might marry
one)

For further details, see ?discovr::puppy_love.

References

Field, A. P. (2025). Discovering statistics using R and RStudio (2nd ed.). London: Sage.

smoothing Smoothing a vector or a time series

Description

Smoothing a vector or a time series. For data.frames, the function will smooth all numeric variables
stratified by factor levels (i.e., will smooth within each factor level combination).

Usage

smoothing(x, method = "loess", strength = 0.25, ...)

Arguments

x A numeric vector.

method Can be "loess" (default) or "smooth". A loess smoothing can be slow.

strength This argument only applies when method = "loess". Degree of smoothing
passed to span (see loess()).

... Arguments passed to or from other methods.

Value

A smoothed vector or data frame.

Examples

x <- sin(seq(0, 4 * pi, length.out = 100)) + rnorm(100, 0, 0.2)
plot(x, type = "l")
lines(smoothing(x, method = "smooth"), type = "l", col = "blue")
lines(smoothing(x, method = "loess"), type = "l", col = "red")

x <- sin(seq(0, 4 * pi, length.out = 10000)) + rnorm(10000, 0, 0.2)
plot(x, type = "l")
lines(smoothing(x, method = "smooth"), type = "l", col = "blue")
lines(smoothing(x, method = "loess"), type = "l", col = "red")

52 zero_crossings

zero_crossings Find zero-crossings and inversion points

Description

Find zero crossings of a vector, i.e., indices when the numeric variable crosses 0. It is useful for
finding the points where a function changes by looking at the zero crossings of its derivative.

Usage

zero_crossings(x)

find_inversions(x)

Arguments

x A numeric vector.

Value

Vector of zero crossings or points of inversion.

See Also

Based on the uniroot.all function from the rootSolve package.

Examples

x <- sin(seq(0, 4 * pi, length.out = 100))
plot(x, type = "b")

modelbased::zero_crossings(x)
modelbased::find_inversions(x)

Index

∗ data
coffee_data, 2
efc, 4
fish, 33
puppy_love, 50

bayestestR::describe_posterior(), 4, 23,
29, 36

bayestestR::reshape_iterations(), 8, 15,
22, 29, 36

bootES::bootES, 8, 10
brms::mixture(), 17, 25

coffee_data, 2

describe_nonlinear, 3

efc, 4
emmeans::contrast, 6, 35
emmeans::eff_size, 10
emmeans::emmeans(), 8, 23, 30
emmeans::emtrends(), 8, 23, 30
estimate_contrasts, 4
estimate_contrasts(), 8, 9, 20, 23, 24, 27,

30, 31, 46
estimate_expectation, 13
estimate_expectation(), 9, 24, 31
estimate_grouplevel, 19
estimate_link (estimate_expectation), 13
estimate_link(), 8, 23, 25, 30
estimate_means, 20
estimate_means(), 4, 8, 9, 23, 24, 27, 30, 31,

47
estimate_prediction

(estimate_expectation), 13
estimate_relation

(estimate_expectation), 13
estimate_relation(), 3, 47
estimate_slopes, 27
estimate_slopes(), 4, 8, 9, 20, 23, 24, 30,

31, 47

estimate_smooth (describe_nonlinear), 3

find_inversions (zero_crossings), 52
fish, 33

get_emcontrasts, 33
get_emmeans (get_emcontrasts), 33
get_emtrends (get_emcontrasts), 33
get_marginalcontrasts

(get_emcontrasts), 33
get_marginalmeans (get_emcontrasts), 33
get_marginaltrends (get_emcontrasts), 33
glmmTMB::predict.glmmTMB, 6, 21, 28, 35

insight::get_data(), 17
insight::get_datagrid(), 4, 5, 13–15, 17,

21, 23, 28, 29, 35, 36
insight::get_predicted(), 13, 15, 17

loess(), 51

marginaleffects::comparisons, 6, 35
mice::pool(), 46, 47
modelbased-options, 40

parameters::model_parameters(), 19, 20
plot(), 13, 15
plot.estimate_means

(plot.estimate_predicted), 41
plot.estimate_predicted, 41
plotting examples, 13
pool_contrasts, 46
pool_predictions, 47
pool_slopes (pool_predictions), 47
print.estimate_contrasts, 48
puppy_love, 50

reshape_grouplevel
(estimate_grouplevel), 19

smoothing, 51

53

54 INDEX

visualisation_recipe(), 15, 17, 20
visualisation_recipe.estimate_grouplevel

(plot.estimate_predicted), 41
visualisation_recipe.estimate_predicted

(plot.estimate_predicted), 41
visualisation_recipe.estimate_slopes

(plot.estimate_predicted), 41

zero_crossings, 52

	coffee_data
	describe_nonlinear
	efc
	estimate_contrasts
	estimate_expectation
	estimate_grouplevel
	estimate_means
	estimate_slopes
	fish
	get_emcontrasts
	modelbased-options
	plot.estimate_predicted
	pool_contrasts
	pool_predictions
	print.estimate_contrasts
	puppy_love
	smoothing
	zero_crossings
	Index

