## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5 ) ## ----eval=FALSE--------------------------------------------------------------- # # Install from CRAN (when available) # install.packages("mispitools") # # # Or install the development version from GitHub # # devtools::install_github("MarsicoFL/mispitools") ## ----------------------------------------------------------------------------- library(mispitools) # LR for sex evidence # H1: MP is female, POI observed as female # eps = probability of sex observation error lr_sex(LR = TRUE, H = 1, eps = 0.05) ## ----------------------------------------------------------------------------- # LR for age evidence # MP age = 25, tolerance range = 5 years # POI observed age falls within range lr_age(LR = TRUE, H = 1, MPa = 25, MPr = 5, epa = 0.05) ## ----------------------------------------------------------------------------- # CPT under H2 (population hypothesis) cpt_h2 <- cpt_population( propS = c(0.5, 0.5), # 50% female, 50% male MPa = 30, # MP age MPr = 5, # Age range propC = c(0.3, 0.25, 0.2, 0.15, 0.1) # Hair color proportions ) # CPT under H1 (MP hypothesis) cpt_h1 <- cpt_missing_person( MPs = 1, # Female MPc = 2, # Hair color 2 eps = 0.05, # Sex error epa = 0.05, # Age error epc = error_matrix_hair() # Hair color error matrix ) # View dimensions dim(cpt_h1) ## ----fig.height=4------------------------------------------------------------- # Visualize both CPTs and LR heatmap plot_cpt(cpt_h2, cpt_h1) ## ----eval=FALSE--------------------------------------------------------------- # # Basic CPT explorer # app_mispitools() # # # Advanced LR comparison with ROC analysis # app_lr_comparison() ## ----------------------------------------------------------------------------- # Available databases data(Argentina) data(Europe) data(USA) data(Asia) data(Austria) data(BosniaHerz) data(China) data(Japan) # View structure dim(Argentina) names(Argentina)[1:10]