Package ‘messy.cats’

November 30, 2022
Title Employs String Distance Tools to Help Clean Categorical Data

Version 1.0

BugReports https://github.com/hkarpl/messy.cats/issues

Description Matching with string distance has never been easier! 'messy.cats' contains various func-
tions that employ string distance tools in order to make data management easier for users work-
ing with categorical data. Categorical data, especially user inputted categorical data that of-
ten tends to be plagued by typos, can be difficult to work with. 'messy.cats' aims to provide func-
tions that make cleaning categorical data simple and easy.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.2

Depends R (>=3.5.0)

Imports dplyr, stringdist, varhandle, rapportools, stringr, gt
Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Andrew Hennessy [aut],
Duncan Kreutter [aut],
Harrison Karp [cre]

Maintainer Harrison Karp <hkarp@wesleyan.edu>
Repository CRAN
Date/Publication 2022-11-30 11:40:02 UTC

R topics documented:

CAL_JOIN o v it e 2
cat_matCh e 4
cat_replace L e e 6
clean_caterpillars L 7

https://github.com/hkarp1/messy.cats/issues

2 cat_join
clean_names.df e e 8
COUMMTY.NAMES« . v v ottt e et e et e e e e e e e e e e 8
country_match L. L e 9
country_replace e e e e e 10
IX_LYPOS . o o e e e 11
fuzzy_rbind 12
messy_caterpillars 13
messy_names.dfo 14
messy_states] L 14
MESSY_StAtES2 e e e e e e e e e e 15
picked_list L e 15
select_ MELriC e e e 16
StAtE.NAMEo i e e e e e e e e e e e e 16
state_match e e 17
state_replace L. e e e e e 18
EYPOS . o v e e e e e e 19

Index 20

cat_join cat_join

Description

cat_join() joins two dataframes using the closest match between two specified columns with mis-
spellings or slight format differences. The closest match can be found using a variety of different
string distance measurement options.

Usage

cat_join(
messy_df,
clean_df,
by,

threshold = NA,
method = "jw",
q=1,

p=20,

bt = 0,

useBytes = FALSE,

weight = c(d =1, i

join = "left"

cat_join

Arguments

messy_df
clean_df

by

threshold

method

q

p
bt

useBytes

weight

join

Details

The dataframe to be joined using a messy categorical variable.

The dataframe to be joined with a clean categorical variable to be used as a
reference for the messy column.

A vector that specifies the columns to match and join by. If the column names
are the same input: "column_name". If the columns have different names input:
c("messy_column" = "clean_column")

The maximum distance that will form a match. If this argument is specified, any
element in the messy vector that has no match closer than the threshold distance
will be replaced with NA. Default: NA

The type of string distance calculation to use. Possible methods are : osa, lv, dl,
hamming, Ics, qgram, cosine, jaccard, jw, and soundex. See package stringdist
for more information. Default: ’jw’

Size of the q-gram used in string distance calculation. Default: 1

Only used with method "jw", the Jaro-Winkler penatly size. Default: 0

Only used with method "jw" with p > 0, Winkler’s boost threshold. Default: 0
Whether or not to perform byte-wise comparison. Default: FALSE

Only used with methods "osa" or "dl", a vector representing the penalty for
deletion, insertion, substitution, and transposition, in that order. Default: c(d =
lL,i=1,t=1)

Choose a join function from the dplyr package to use in joining the datasets.
Default: ’left’

When dealing with messy categorical string data, string distance matching can be an easy and
efficient cleaning tool. A variety of string distance calculation algorithms have been developed
for different types of data, and these algorithms can be used to detect and remedy problems with
categorical string data.

By providing a correctly spelled and specified vector of categories to be compared against a vector
of messy strings, a cleaned vector of categories can be generated by finding the correctly specificed
string most similar to a messy string. This method works particularly well for messy user-inputted
data that often suffers from transposition or misspelling errors.

cat_join() joins the messy and clean datasets using the closest matching elements from designated
columns. The columns from the datasets are inputted into cat_replace() as the messy and clean
vectors, and the datasets are joined using a user inputted dplyr join verb.

Value

Returns a dataframe consisting of the two inputted dataframes joined by their designated columns.

4 cat_match

Examples
if(interactive()){
#EXAMPLE1
messy_trees = data.frame()
messy_trees[1:9,1] = c("red oak”, "williw"”, "hemluck”, "white elm”,
"fir tree", "birch tree”, "pone", "dagwood”, "mople")

messy_trees[1:9,2] = c(34,12,43,32,65,23,12,45,35)
clean_trees=data.frame()

clean_trees[1:9,1] = c("oak"”, "willow”, "hemlock”,
"birch”, "pine"”, "dogwood”, "maple")
clean_trees[1:9,2] = "y"
cat_join(messy_trees,clean_trees,by="V1" method="jaccard")

3

n

elm”, "fir",

cat_match cat_match

Description

cat_match() matches the contents of a messy vector with the closest match in a clean vector. The
closest match can be found using a variety of different string distance measurement options.

Usage
cat_match(
messy_v,
clean_v,
return_dists = TRUE,
return_lists = NA,

pick_lists = FALSE,
threshold = NA,

method = "jw",
q=1,
p =0,
bt = 0,

useBytes = FALSE,
weight = c(d =1, i =1, t =1)

)
Arguments
messy_v The messy string vector that will be restructured. This can come in the form of
a column of a dataframe or a lone vector.
clean_v The clean string vector that will be referenced to perform the restructing. Again,

this argument can be a dataframe column or vector.

return_dists If set to TRUE the distance between the matched strings will be returned as a
third column in the output dataframe, Default: TRUE

cat_match 5

return_lists Return list of top X matches, Default: NA
pick_lists Set to TRUE to manually choose matches, Default: F

threshold The maximum distance that will form a match. If this argument is specified, any
element in the messy vector that has no match closer than the threshold distance
will be replaced with NA. Default: NA

method The type of string distance calculation to use. Possible methods are : osa, lv, dl,
hamming, Ics, ggram, cosine, jaccard, jw, and soundex. See package stringdist
for more information. Default: ’jw’

q Size of the g-gram used in string distance calculation. Default: 1

p Only used with method "jw", the Jaro-Winkler penatly size. Default: 0

bt Only used with method "jw" with p > 0, Winkler’s boost threshold. Default: 0
useBytes Whether or not to perform byte-wise comparison. Default: FALSE

weight Only used with methods "osa" or "dl", a vector representing the penalty for

deletion, insertion, substitution, and transposition, in that order. Default: c(d =
lL,i=1,t=1)

Details

When dealing with messy categorical string data, string distance matching can be an easy and
efficient cleaning tool. A variety of string distance calculation algorithms have been developed
for different types of data, and these algorithms can be used to detect and remedy problems with
categorical string data.

By providing a correctly spelled and specified vector of categories to be compared against a vector
of messy strings, a cleaned vector of categories can be generated by finding the correctly specificed
string most similar to a messy string. This method works particularly well for messy user-inputted
data that often suffers from transposition or misspelling errors.

cat_match() is meant as an exploratory tool to discover how the elements of two vectors will
match using string distance measures, and has added functionality to solve issues by hand and
create a dataframe that can be used to create custom matches between the clean and messy vectors.

Value

Returns a dataframe with each unique value in the bad vector and it’s closest match in the good
vector. If return_dists is TRUE the distances between the matches are added as a column.

Examples
if(interactive()){
messy_trees = c("red oak”, "williw"”, "hemluck"”, "white elm”,
"fir tree”, "birch tree”, "pone"”, "dagwood”, "mople")

clean_trees = c("oak"”, "willow"”, "hemlock”, "elm”, "fir", "birch", "pine", "dogwood”, "maple")
matched_trees = cat_match(messy_trees, clean_trees)

}

cat_replace

cat_replace

cat_replace

Description

cat_replace() replaces the contents of a messy vector with the closest match in a clean vector.
The closest match can be found using a variety of different string distance measurement options.

Usage

cat_replace(

messy_v,
clean_v,

threshold = NA,
method = "jw",

qg=1,
p =0,
bt = 0,
useBytes

FALSE,

weight = c(d =1, i =1, t =1)

Arguments

messy_v

clean_v

threshold

method

q

p
bt

useBytes

weight

The messy string vector that will be restructured. This can come in the form of
a column of a dataframe or a lone vector.

The clean string vector that will be referenced to perform the restructing. Again,
this argument can be a dataframe column or vector.

The maximum distance that will form a match. If this argument is specified, any
element in the messy vector that has no match closer than the threshold distance
will be replaced with NA. Default: NA

The type of string distance calculation to use. Possible methods are : osa, lv, dl,
hamming, Ics, qgram, cosine, jaccard, jw, and soundex. See package stringdist
for more information. Default: ’jw’

Size of the g-gram used in string distance calculation. Default: 1

Only used with method "jw", the Jaro-Winkler penatly size. Default: 0

Only used with method "jw" with p > 0, Winkler’s boost threshold. Default: 0
Whether or not to perform byte-wise comparison. Default: FALSE

Only used with methods "osa" or "dl", a vector representing the penalty for
deletion, insertion, substitution, and transposition, in that order. Default: c(d =
lLLi=1,t=1)

clean_caterpillars 7

Details

When dealing with messy categorical string data, string distance matching can be an easy and
efficient cleaning tool. A variety of string distance calculation algorithms have been developed
for different types of data, and these algorithms can be used to detect and remedy problems with
categorical string data.

By providing a correctly spelled and specified vector of categories to be compared against a vector
of messy strings, a cleaned vector of categories can be generated by finding the correctly specificed
string most similar to a messy string. This method works particularly well for messy user-inputted
data that often suffers from transposition or misspelling errors.

cat_replace() replaces the elements of the messy vector with the closest matching element from
the clean vector.
Value

cat_replace() returns a cleaned version of the bad vector, with each element replaced by the most
similar element of the good vector.

Examples
if(interactive()){
messy_trees = c("red oak”, "williw”, "hemluck”, "white elm", "fir tree”,
"birch tree”, "pone", "dagwood"”, "mople")

clean_trees = c("oak"”, "willow”, "hemlock”, "elm”, "fir", "birch”, "pine"”, "dogwood”, "maple”)
cleaned_trees = cat_replace(messy_trees, clean_trees)

clean_caterpillars clean_caterpillars

Description

Dataframe with caterpillar counts from three summers.

Usage

clean_caterpillars

Format
A data frame with 74 rows and 3 variables:
species character Full latin names of 29 caterpillar species.

count integer Randomly generated fake counts of the caterpillars.

year double Year of caterpillar observations.

Details

An example dataset with clean caterpillar species names.

country.names

clean_names.df clean_names.df

Description

Data set of clean names

Usage

clean_names.df

Format
A data frame with 20 rows and 2 variables:

first character Clean first names

last character Clean last names

Details

An example data that can be used in testing messy.cats functions

country.names country.names

Description

Dataframe with country names as only variable, contains many popular and official names for coun-

tries.

Usage

country.names

Format
A data frame with 203 rows and 1 variables:

name character Names of countries

Details

This dataframe contains a list of clean country names with many popular and official names for

countries.

country_match 9

country_match country_match

Description

A wrapper function for cat_match() that only requires an inputted vector of messy country names.
country_match() uses a built in clean list of country names country.names as the reference clean
vector.

Usage

country_match(messy_countries, threshold = NA, p = 0)

Arguments

messy_countries

Vector containing the messy country names that will be replaced by the closest
match from country.names

threshold The maximum distance that will form a match. If this argument is specified, any
element in the messy vector that has no match closer than the threshold distance
will be replaced with NA. Default: NA

p Only used with method "jw", the Jaro-Winkler penatly size. Default: 0

Details

Country names are often misspelled or abbreviated in datasets, especially datasets that have been
manually digitized or created. country_match() is a warpper function of cat_match() that quickly
solves this common issue of mispellings or different formats of country names across datasets. This
wrapper function uses a built in clean list of country names country.names as the reference clean
vector and matches your inputted messy vector of names to their nearest country in country. names.

Value

country_match() returns a cleaned version of the bad vector, with each element replaced by the
most similar element of the good vector.

Examples

if(interactive()){

#EXAMPLE1

1st <- c("Conagoa"”, "Blearaus"”, "Venzesual”, "Uruagsya”, "England")
matched <- country_match(lst)

3

10 country_replace

country_replace country_replace

Description

A wrapper function for cat_replace() that only requires an inputted vector of messy countries.
country_replace() uses a built in clean list of country names country.names as the reference
clean vector.

Usage

country_replace(messy_countries, threshold = NA, p = @)

Arguments

messy_countries
Vector containing the messy country names that will be replaced by the closest
match from country.names

threshold The maximum distance that will form a match. If this argument is specified, any
element in the messy vector that has no match closer than the threshold distance
will be replaced with NA. Default: NA

p Only used with method "jw", the Jaro-Winkler penatly size. Default: 0

Details

Country names are often misspelled or abbreviated in datasets, especially datasets that have been
manually digitized or created. country_replace() is a warpper function of cat_replace() that
quickly solves this common issue of mispellings or different formats of country names across
datasets. This wrapper function uses a built in clean list of country names country.names as
the reference clean vector and replaces your inputted messy vector of names to their nearest match
in country.names.

Value

country_replace() returns a cleaned version of the bad vector, with each element replaced by the
most similar element of the good vector.

Examples

if(interactive()){

#EXAMPLE1

1st <- c("Conagoa", "Blearaus", "Venzesual”, "Uruagsya"”, "England")
fixed <- country_replace(lst)

}

fix_typos 11

fix_typos Jix_typos

Description
This function is meant to allow users to fix typos in strings that are not normally found in dictionar-
ies.

Usage

fix_typos(typo_v, thr, occ_ratio)

Arguments
typo_v vector of strings that will have its typos cleaned
thr the string distance maximum used to determine typos. This argument is speci-
fied as the percentage of a typo that should at most be expected to be insertions,
additons, deletions, and transpositions.
occ_ratio the minimum ratio of correctly spelled words to their typo. This argument helps
to weed out words that are similar but valid. For example commonly occurring
valid names such as Adam and Amy will not be recognized as typos even though
they are similar because they both appear often. Typos are recognized by their
similarity in addition to their infrequent occurrence.
Details

There are great tools like the hunspell package that allow users to fix typos for words found in
dictionaries, but these functions struggle to work for strings like proper nouns and other specific
terminology not usually found in common dictionaries. This function uses the text being cleaned as
a dictionary. It finds probable correctly spelled words based on their high occurrence and finds typos
based on their low occurence. This is based on the theory that typos will appear as infrequently used
words due no one using them on purpose, and they will be a short string distance from commonly
occurring correctly spelled words.

Value

reformatted vector with typos replaced with correctly spelled words

Examples

if(interactive()){
H#EXAMPLE1
}

12

fuzzy_rbind

fuzzy_rbind

fuzzy_rbind

Description

fuzzy_rbind() binds dataframes based on columns with slightly different names.

Usage

fuzzy_rbind(

df1,
df2,

threshold,

method = "jw",

q=1,
p=0,
bt = o,

useBytes

FALSE,

weight = c(d =1, i =1, t =1)

Arguments
df1

df2
threshold

method

q

p
bt

useBytes

weight

Details

The first dataframe to be bound.
The second dataframe to be bound.

The maximum string distance between column names, if the distance between
columns is greater than this threshold the columns will not be bound.

The type of string distance calculation to use. Possible methods are : osa, lv, dl,
hamming, Ics, qgram, cosine, jaccard, jw, and soundex. See package stringdist
for more information. Default: ’jw’, Default: "jw’

Size of the q-gram used in string distance calculation. Default: 1

Only used with method "jw", the Jaro-Winkler penatly size. Default: 0

Only used with method "jw" with p > 0, Winkler’s boost threshold. Default: 0
Whether or not to perform byte-wise comparison. Default: FALSE

Only used with methods "osa" or "dl", a vector representing the penalty for
deletion, insertion, substitution, and transposition, in that order. Default: c(d =
lLLi=1,t=1)

When using datasets often times column names are slightly different, and fuzzy_rbind() helps to
bind dataframes using fuzzy matching of the column names.

messy_caterpillars 13

Value

fuzzy_rbind() returns a dataframe that has bound the two inputted dataframes based on the closest
matching columns, column names from dataframe 1 are preserved.

Examples
if(interactive()){
mtcars_colnames_messy = mtcars
colnames(mtcars_colnames_messy)[1:5] = paste@(colnames(mtcars)[1:5], "_17")
colnames(mtcars_colnames_messy)[6:11] = paste@(colnames(mtcars)[6:11], "_2017")

x = fuzzy_rbind(mtcars, mtcars_colnames_messy, .5)
x = fuzzy_rbind(mtcars, mtcars_colnames_messy, .2)

3

messy_caterpillars messy_caterpillars

Description

DATASET_DESCRIPTION

Usage

messy_caterpillars

Format

A data frame with 39 rows and 3 variables:

CaterpillarSpecies character Full latin names of 39 caterpillar species with spelling and for-
matting errors.

Avg Weight (mg) double Randomly generated fake weight data for each caterpillar species.

Avg Length (cm) double Randomly generated fake length data for each caterpillar species.

Details

An example dataset with messy caterpillar species names.

14 messy._states|

messy_names.df messy_names.df

Description

Data set of messy names

Usage

messy_names.df

Format

A data frame with 80 rows and 2 variables:

first character Messy first names

last character MEssy last names

Details

An example data set of messy names that can be used in testing messy.cats functions.

messy_states] messy_statesl

Description

US State names with 1 character randomly changed.

Usage

messy_states]

Format

A data frame with 50 rows and 1 variables:

messy_states1 character All 50 US states with 1 randomly changed character.

Details

An example dataset with mispelled US state names. The names have had 1 character randomly
changed.

messy._states2 15

messy_states2 messy_states2

Description

US State names with 2 characters randomly changed.

Usage

messy_states2

Format
A data frame with 50 rows and 1 variables:

messy_states2 character All 50 US states with 2 randomly changed characters.

Details

An example dataset with mispelled US state names. The names have had 2 characters randomly
changed.

picked_list picked_list

Description

Handpicked matches from the datasets in intro.rmd.

Usage

picked_list

Format
A data frame with 15 rows and 3 variables:

bad character column of bad car names
match character column of good car names

dists double string distance between the good and bad car names

Details

An example dataset of matched car names.

16 state.name

select_metric select_metric

Description

Uses heuristic algorithm to suggest a stringdist metric from among hamming, lv, osa, dl, Ics, jw

Usage

select_metric(messy_v, clean_v)

Arguments

messy_v a messy vector of strings

clean_v a vector of strings for messy_v to be matched against
Details

for each metric, measures certainty via the difference between the best matches for each word and
the average of all matches for each word

Value

a string representing the suggested stringdist metric

See Also

stringdist

Examples

select_metric(c("aapple”, "bamana”, "clemtidne"”), c("apple”, "banana”, "clementine"))

state.name state.name

Description

Testing data set of state names

Usage

state.name

state_match 17

Format

A data frame with 50 rows and 1 variables:

states character State names

Details

Testing data set of state names

state_match state_match

Description

A wrapper function for cat_match()hat only requires an inputted vector of messy states. state_match()
uses a built in clean list of state names state.name as the reference clean vector.

Usage

state_match(messy_states, threshold = NA, p = @)

Arguments

messy_states Vector containing the messy state names that will be replaced by the closest
match from state.name

threshold The maximum distance that will form a match. If this argument is specified, any
element in the messy vector that has no match closer than the threshold distance
will be replaced with NA. Default: NA

p Only used with method "jw", the Jaro-Winkler penatly size. Default: 0

Details

State names are often misspelled or abbreviated in datasets, especially datasets that have been manu-
ally digitized or created. state_match() is a warpper function of cat_match() that quickly solves
this common issue of mispellings or different formats of country names across datasets. This wrap-
per function uses a built in clean list of country names state.name as the reference clean vector
and matches your inputted messy vector of names to their nearest state in state.name.

Value

state_match() returns a cleaned version of the bad vector, with each element replaced by the most
similar element of the good vector.

18 state_replace

Examples
if(interactive()){
#EXAMPLE1
1st <- c("Indianaa”, "Wisvconsin"”, "alaska"”, "NewJersey"”, "Claifoarni")
matched <- state_match(lst)
3
state_replace Sstate_replace
Description

A wrapper function for cat_replace() that only requires an inputted vector of messy US state
names. state_replace() uses the built-in character vector state.name as the reference clean
vector.

Usage

state_replace(messy_states, threshold = NA, p = 0)

Arguments

messy_states Vector containing the messy state names that will be replaced by the closest
match from state.name

threshold The maximum distance that will form a match. If this argument is specified, any
element in the messy vector that has no match closer than the threshold distance
will be replaced with NA. Default: NA

p Only used with method "jw", the Jaro-Winkler penatly size. Default: 0

Details

State names are often misspelled or abbreviated in datasets, especially datasets that have been man-
ually digitized or created. state_replace() is a warpper function of cat_replace() that quickly
solves this common issue of mispellings or different formats of state names across datasets. This
wrapper function uses a built in clean list of country names state.name as the reference clean
vector and replaces your inputted messy vector of names to their nearest match in state.name.

Value

state_replace() returns a cleaned version of the bad vector, with each element replaced by the
most similar element of the good vector.

Examples

if(interactive()){

#EXAMPLE1

1st <- c("Indianaa”, "Wisvconsin”, "alLaska", "NewJersey”, "Claifoarni")
fixed <- state_replace(lst)

3

typos

19

typos typos

Description

Data set of words, some correctly spelled, some typos, with their occurrence in text

Usage

typos

Format

A data frame with 27 rows and 2 variables:

occurrence double number of times word appears in text

species character words in text

Details

An example data set that can be used in testing fix_typos().

Index

+ datasets
clean_caterpillars, 7
clean_names.df, 8
country.names, 8
messy_caterpillars, 13
messy_names.df, 14
messy_states1, 14
messy_states2, 15
picked_list, 15
state.name, 16
typos, 19

cat_join, 2
cat_match, 4
cat_replace, 6
clean_caterpillars, 7
clean_names.df, 8
country.names, 8
country_match, 9
country_replace, 10

fix_typos, 11
fuzzy_rbind, 12

messy_caterpillars, 13
messy_names.df, 14
messy_states1, 14
messy_states2, 15

picked_list, 15

select_metric, 16
state.name, 16
state_match, 17
state_replace, 18
stringdist, 16

typos, 19

20

	cat_join
	cat_match
	cat_replace
	clean_caterpillars
	clean_names.df
	country.names
	country_match
	country_replace
	fix_typos
	fuzzy_rbind
	messy_caterpillars
	messy_names.df
	messy_states1
	messy_states2
	picked_list
	select_metric
	state.name
	state_match
	state_replace
	typos
	Index

