| Type: | Package | 
| Title: | Multi-Collinearity Visualization | 
| Version: | 1.0.8 | 
| Description: | Visualize the relationship between linear regression variables and causes of multi-collinearity. Implements the method in Lin et. al. (2020) <doi:10.1080/10618600.2020.1779729>. | 
| Encoding: | UTF-8 | 
| Imports: | assertthat, igraph, ggplot2, purrr, magrittr, reshape2, shiny, dplyr, psych, rlang | 
| RoxygenNote: | 7.1.1.9001 | 
| License: | GPL-3 | 
| Suggests: | testthat (≥ 2.1.0), covr, knitr, rmarkdown | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | no | 
| Packaged: | 2021-07-30 02:56:36 UTC; kevinwang | 
| Author: | Kevin Wang [aut, cre], Chen Lin [aut], Samuel Mueller [aut] | 
| Maintainer: | Kevin Wang <kevin.wang09@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2021-07-30 08:20:05 UTC | 
Multi-collinearity Visualization plots
Description
Multi-collinearity Visualization plots
Multi-collinearity Visualization plots
Multi-collinearity Visualization plots
Usage
alt_mcvis(mcvis_result, eig_max = 1L, var_max = ncol(mcvis_result$MC))
ggplot_mcvis(
  mcvis_result,
  eig_max = 1L,
  var_max = ncol(mcvis_result$MC),
  label_dodge = FALSE
)
igraph_mcvis(mcvis_result, eig_max = 1L, var_max = ncol(mcvis_result$MC))
## S3 method for class 'mcvis'
plot(
  x,
  type = c("ggplot", "igraph", "alt"),
  eig_max = 1L,
  var_max = ncol(x$MC),
  label_dodge = FALSE,
  ...
)
Arguments
| mcvis_result | Output of the mcvis function | 
| eig_max | The maximum number of eigenvalues to be displayed on the plot. | 
| var_max | The maximum number of variables to be displayed on the plot. | 
| label_dodge | If variable names are too long, it might be helpful to dodge the labelling. Default to FALSE. | 
| x | Output of the mcvis function | 
| type | Plotting mcvis result using "igraph" or "ggplot". Default to "ggplot". | 
| ... | additional arguments (currently unused) | 
Value
A mcvis visualization plot
Author(s)
Chen Lin, Kevin Wang, Samuel Mueller
Examples
set.seed(1)
p = 10
n = 100
X = matrix(rnorm(n*p), ncol = p)
X[,1] = X[,2] + rnorm(n, 0, 0.1)
mcvis_result = mcvis(X)
plot(mcvis_result)
plot(mcvis_result, type = "igraph")
plot(mcvis_result, type = "alt")
Multi-collinearity Visualization
Description
Multi-collinearity Visualization
Usage
mcvis(
  X,
  sampling_method = "bootstrap",
  standardise_method = "studentise",
  times = 1000L,
  k = 10L
)
Arguments
| X | A matrix of regressors (without intercept terms). | 
| sampling_method | The resampling method for the data. Currently supports 'bootstrap' or 'cv' (cross-validation). | 
| standardise_method | The standardisation method for the data. Currently supports 'euclidean' (default, centered by mean and divide by Euclidiean length) and 'studentise' (centred by mean and divide by standard deviation) | 
| times | Number of resampling runs we perform. Default is set to 1000. | 
| k | Number of partitions in averaging the MC-index. Default is set to 10. | 
Value
A list of outputs:
- t_square:The t^2 statistics for the regression between the VIFs and the tau's. 
- MC:The MC-indices 
- col_names:Column names (export for plotting purposes) 
Author(s)
Chen Lin, Kevin Wang, Samuel Mueller
Examples
set.seed(1)
p = 10
n = 100
X = matrix(rnorm(n*p), ncol = p)
X[,1] = X[,2] + rnorm(n, 0, 0.1)
mcvis_result = mcvis(X = X)
mcvis_result
Shiny app for mcvis exploration
Description
Shiny app for mcvis exploration
Usage
shiny_mcvis(mcvis_result, X)
Arguments
| mcvis_result | Output of the mcvis function | 
| X | The original X matrix | 
Value
A shiny app allowing for interactive exploration of mcvis results
Author(s)
Chen Lin, Kevin Wang, Samuel Mueller
Examples
if(interactive()){
set.seed(1)
p = 10
n = 100
X = matrix(rnorm(n*p), ncol = p)
mcvis_result = mcvis(X)
shiny_mcvis(mcvis_result = mcvis_result, X = X)
}