
An Introduction to Estimating Monte Carlo

Standard Errors with R Package mcmcse

Dootika Vats, Kushagra Gupta

September 9, 2021

Contents

1 Introduction 2

2 An MCMC Example 2

3 Estimating Monte Carlo Standard Error 4

4 Confidence Regions 8

5 Effective Sample Size 10

6 Graphical Diagnostics 13

1

1 Introduction

The R package mcmcse provides estimates of Monte Carlo standard errors for
Markov chain Monte Carlo (MCMC) when estimating means or quantiles of
functions of the MCMC output. In addition to MCMC output, the package
can be used for time series and other correlated processes.
The package is predominantly useful after MCMC output has been obtained
by the user. In addition to estimating the Monte Carlo standard errors,
the package also provides univariate and multivariate estimates of effective
sample size and tools to determine whether enough Monte Carlo samples
have been obtained. The package also samples a stationary Markov chain
from a bivariate normal target. There are also some graphical tools to
ascertain the behavior of the Monte Carlo estimates.

2 An MCMC Example

To illustrate the use of our package, we consider sampling from a bivariate
normal distribution using a Gibbs sampler. For ω1, ω2 > 0 and ρ such that
ρ2 < ω1ω2, the target distribution is(

X1

X2

)
∼ N

((
µ1
µ2

)
,

(
ω1 ρ
ρ ω2

))
.

The Gibbs sampler updates the Markov chain by using the following full
conditional distributions transition equations:

X1 | X2 ∼ N
(
µ1 +

ρ

ω2
(X2 − µ2) , ω1 −

ρ2

ω2

)
,

X2 | X1 ∼ N
(
µ2 +

ρ

ω1
(X1 − µ1) , ω2 −

ρ2

ω1

)
.

The function BVN Gibbs in the package draws samples from the above model.

library(mcmcse)

mu = c(2, 50)

sigma = matrix(c(1, 0.5, 0.5, 1), nrow = 2)

Monte Carlo sample size is N

N <- 5e3

set.seed(100)

chain <- BVN_Gibbs(n = N, mu = mu, sigma = sigma)

2

For using the mcmcse package the rows of the MCMC output should store
each iteration of the algorithm and so the output should have n rows and p

columns. We will denote each row i of the output as yi = (y
(1)
i , y

(2)
i).

#Rows has observations (samples) and each comlumn is a component.

head(chain)

Y1 Y2

[1,] 1.497808 49.86281

[2,] 1.863062 50.69951

[3,] 2.451055 50.50147

[4,] 1.746889 50.49225

[5,] 1.531428 49.45406

[6,] 1.804876 49.98581

This vignette will discuss estimating two sets of features of interest of F .

• EF y: For estimating µ = EF y, the estimator is the Monte Carlo sample
mean

µn =
1

n

n∑
t=1

yt.

In R, µn is obtained using the usual colMeans function. If p = 1, then
use mean instead of colMeans.

colMeans(chain)

Y1 Y2

2.006982 50.006033

• EF

(
y(1)2 + y(2)2

)
: When interested in estimating the sum of the sec-

ond moments of each component of y, define the function g : R2 → R
as g(x1, x2) = x21 +x22. This is defined in R by creating a function that
implements the function g, row-wise.

g <- function(x)

{
return(sum(x^2))

}

3

The Monte Carlo estimator for g is

µg,n =
1

n

n∑
t=1

g(yt),

Apply the function g to each row

gofy <- apply(chain, 1, g)

Monte Carlo estimate

mean(gofy)

[1] 2506.55

Thus, to obtain Monte Carlo estimates from MCMC output, the base pack-
age is sufficient (generally). However, Monte Carlo estimates must be re-
ported with Monte Carlo standard error. That is, if the following central
limit theorems hold

√
n(µn − EF y)

d→ Np(0,Σ) , (1)

and

√
n(µg,n − EF [||y||2]) d→ Np(0,Σg) , (2)

then estimates of Σ and Σg must be reported, directly or indirectly. Since the
samples obtained are correlated, these quantities require more sophisticated
tools than usual sample estimators. (Note that a Markov chain CLT is not
always guaranteed to hold. In fact, it depends on the rate of convergence
of the Markov chain. Most of the functions in this package assume that
a Markov chain CLT holds. Such an assumption is also made when using
many of the convergence diagnostics).

3 Estimating Monte Carlo Standard Error

In this package, the functions mcse, mcse.mat, mcse.multi, and mcse.initseq

estimate the Monte Carlo standard error of µn (or µg,n).

• mcse: consistent estimates of
√

Σ/n (standard error) when Σ is 1× 1.

• mcse.mat: consistent estimates of the square root of the diagonals of
Σ/n.

4

• mcse.multi: consistent estimates of Σ.

• mcse.initseq: asymptotically conservative estimates of Σ using ini-
tial sequence estimators.

Using the mcmcse package we can estimate Σ in (1) with the mcse.multi

and mcse.initseq function.

Batch means estimator

mcerror_bm <- mcse.multi(x = chain, method = "bm", r = 1,

size = NULL, g = NULL, adjust = TRUE,

blather = TRUE)

Overlapping batch means estimator

mcerror_obm <- mcse.multi(x = chain, method = "obm", r = 1,

size = NULL, g = NULL, adjust = TRUE,

blather = TRUE)

Spectral variance estimator with Bartlett window

mcerror_bart <- mcse.multi(x = chain, method = "bartlett", r = 1,

size = NULL, g = NULL, adjust = TRUE,

blather = TRUE)

Spectral variance estimator with Tukey window

mcerror_tuk <- mcse.multi(x = chain, method = "tukey", r = 1,

size = NULL, g = NULL, adjust = TRUE,

blather = TRUE)

Initial sequence estimator, unadjusted

mcerror_is <- mcse.initseq(x = chain, g = NULL,

adjust = FALSE, blather = TRUE)

Initial sequence estimator, adjusted

mcerror_isadj <- mcse.initseq(x = chain, g = NULL,

adjust = TRUE, blather = TRUE)

• x takes the n× p MCMC data. x can take only numeric entries in the
form of a matrix or data frame. The rows of x are the iterations of
the MCMC.

5

• method = bm, obm, bartlett, tukey calculates the estimate using
the batch means method and spectral variance methods with the
modified-Bartlett and Tukey-Hanning windows.

• r is the lugsail parameter that indicates how much to ”lift” the lag
window (this also applies to bm and obm). Higher values will increas-
ingly remove underestimation of Σ but may yield more variable esti-
mators. Values more than 5 are not advised and negative values are
not allowed. Reasonable choices are r = 1, 2, 3, where r = 3 yields
the lugsail estimator, r = 2 is the flat-top estimator, and r = 1 is the
vanilla estimator.

• size is the batch size for the bm method and the truncation point for
tukey and bartlett methods. Default batch size is calulcated using
the exported batchSize function. Other accepted values are size =

sqroot, which sets the size as b
√
nc and size = cuberoot which sets

it at bn1/3c. An integer value of size less than n is also valid as long
as n/size > 1.

For reference on batchSize see Liu et al. (2021).

For reference on bm (batch means estimators) see Jones et al. (2006)
and Vats et al. (2019).

For reference on bartlett and tukey (spectral variance estimators)see
Flegal et al. (2010) and Vats et al. (2018).

For reference on lugsail estimation see Liu and Flegal (2018) and Vats
and Flegal (2018).

• g is a function that is applied to each row of x and represents the
features of interest of the process. Since here we are interested in only
means, g is NULL. g will be explained in later examples.

• adjust is a logical argument indicating whether the resulting matrix
should be adjusted in order to retain positive-definiteness. By default
this is set to be TRUE.

• blather when TRUE outputs under the hood information about the
estimation process. The default is set to FALSE since most users should
be interested in only cov and est.

For reference on mcse.initseq (initial sequence estimators) see Dai
and Jones (2017).

6

mcse.multi and mcse.initseq return an S3 class with multiple compo-
nents. When blather = FALSE, cov stores the estimate of Σ obtained us-
ing the method chosen, est stores the estimate of the mean of g applied on
the Markov chain. In addition, nsim stores the no. of Markov chain sam-
ples, eigen values stores the eigen values of the estimated Σ and cov.adj

stores the adjusted covariance matrix if adjust = TRUE (see mcse.multi

for more details). When blather = TRUE the following are returned in ad-
dition to the above: size which indicates the size of batches/truncation,
method used, Adjustment-used indicating whether an adjusted estimator
was used (adjust) and message containing additional information about the
estimation process (like the numerical adjustments possibly made to keep
the estimate mathematically consistent).

Note: The Monte Carlo estimates of µ are not affected by the choice of
the method.

Note: For consistent estimation, the batch means estimators are signifi-
cantly faster to calculate than the spectral variance estimators. The user is
advised to use the default method = "bm" for large input matrices.

Note: cov returns an estimate of Σ and not Σ/n.

If the diagonals of Σ are σ2ii, the function mcse and mcse.mat returns σii/
√
n.

mcse does it for one component and mcse.mat does it for all diagonals.

mcse(x = chain[,1], method = "bm", g = NULL)

$est

[1] 2.006982

##

$se

[1] 0.01792272

mcse.mat(x = chain, method = "bm", g = NULL)

est se

Y1 2.006982 0.01792272

Y2 50.006033 0.01814934

In order to estimate µn,g and Σg as in (2), we use the R function g we had
defined before. Recall that g should be a function that takes vector inputs.

7

g

function(x)

{

return(sum(x^2))

}

<bytecode: 0x7f862c641cd8>

mcerror_g_bm <- mcse.multi(x = chain, g = g, blather = TRUE)

mcerror_g_is <- mcse.initseq(x = chain, g = g, blather = TRUE)

mcerror_g_bm$cov

[,1]

[1,] 17464.29

Initial Sequence error is larger than batch means, as expected.

mcerror_g_is$cov

[,1]

[1,] 16091.86

Returned value is asymptotic variance.

So we calculate the standard error here.

sqrt(mcerror_g_bm$cov/N)

[,1]

[1,] 1.868919

sqrt(mcerror_g_is$cov/N)

[,1]

[1,] 1.793982

4 Confidence Regions

Using the function confRegion in the package, the user can create joint con-
fidence regions for two parameters. The input for this function is the output
list from the mcse.multi or mcse.initseq function. The function uses the
attributes cov, est, and nsim from the output list. If the mcse.initseq is

8

input and adjust = TRUE had been used, then cov.adj is used instead of
cov. mcse.multi also uses the attribute size.

plot(confRegion(mcerror_bm, which = c(1,2), level = .90), type = 'l', asp = 1)

lines(confRegion(mcerror_bart, which = c(1,2), level = .90), col = "red")

1.98 2.00 2.02 2.04

49
.98

50
.00

50
.02

50
.04

x

y

• which should be a vector of size 2 that indicates the two components
for which the confidence ellipse is to be constructed.

• level is the confidence level of the confidence region. The default is
.95

NOTE: confRegion calls on the function ellipse in package ellipse to
draw the ellipse.

NOTE: Since the confidence region is created for two parameters only, the
size of the ellipse is determined by setting p = 2 irrespective of the original
dimension of the problem.

To determine the effect of the confidence level, we draw two regions with
different confidence levels. We use mcse.initseq this time.

9

plot(confRegion(mcerror_is, which = c(1,2), level = .95), type = 'l', asp = 1)

lines(confRegion(mcerror_is, which = c(1,2), level = .90), col = "red")

1.96 1.98 2.00 2.02 2.04

49
.98

50
.00

50
.02

50
.04

x

y

5 Effective Sample Size

Reporting p × p covariance matrix estimates is impractical and uninter-
pretable. The motivation of estimating Monte Carlo standard error is to
ensure that said error is small. This is essentially the idea behind estimat-
ing effective sample size and ensuring that the estimated effective sample
size is larger than a prespecified lower bound.
Before sampling the Markov chain, the user is advised to use the function
minESS to ascertain what is the minimum effective sample size needed for
stable analysis. See Vats et al. (2019) for theoretical details.

For mu

minESS(p = 2, alpha = .05, eps = .05)

minESS

7529

#For mu_g

minESS(p = 1, alpha = .05, eps = .05)

10

minESS

6146

• p is the dimension of the estimation problem.

• alpha is the confidence level

• eps is the tolerance level. Default is .05. Reasonable levels are any-
where from .01 to .05. The smaller the tolerance, the larger the min-
imum effective samples. eps represents a tolerance level relative to
the variability in the target distribution. It is akin to the idea of
margin-of-error.

minESS is independent of the Markov chain or process, and is only a function
of p, α, and ε. The user should find minESS and then sample their process
until the required minimum samples are achieved.
Alternatively, we often don’t have the luxury of obtaining a lot of samples,
and reaching a minimum effective sample size is not possible. In such a
scenario, it is useful to know the ε tolerance level the number of estimated
effective samples correspond to. So if we can only obtain 1000 effective
samples,

For mu

minESS(p = 2, alpha = .05, ess = 1000)

Epsilon

0.137196

#For mu_g

minESS(p = 1, alpha = .05, ess = 1000)

Epsilon

0.123959

Thus, if you obtained a sample with estimated effective sample size equaling
1000 for estimating µg and µn,g, then the precision level of your estimate is
ε = .137 and ε = .124, respectively. multiESS and ess are two functions that
calculate the effective sample size of a correlated sample. ess calculations
are based on Gong and Flegal (2016) and is component-wise, and multiESS

utilizes the multivariate nature of the problem.

11

Since ess produces a different estimate for each component, conservative
practice dictates choosing the smallest of the values. multiESS returns one
estimate of the effective sample size based on the whole sample. The function
calls mcse.multi function to obtain a batch means estimate of Σ. The user
can provide another estimate of Σ using the covmat argument.

multiESS(chain)

[1] 4024.471

Using spectral variance estimators

multiESS(chain, covmat = mcerror_bart$cov)

[1] 4377.303

Using initial sequence estimators

Since this is a conservative estimator, ess will be smaller

multiESS(chain, covmat = mcerror_is$cov)

[1] 4263.715

Since the effective sample size is less than the minimum effective samples,
we should simulate more. Looking at the formula of ESS, we might need
around 10, 000 Monte Carlo samples.

set.seed(100)

chain <- BVN_Gibbs(1e4, mu, sigma)

larger than 7529

multiESS(chain)

[1] 9203.001

larger than 7529

multiESS(chain, covmat = mcerror_bart$cov)

[1] 8847.715

larger than 7529

multiESS(chain, covmat = mcerror_is$cov)

[1] 8618.124

12

So no matter which estimator we choose for the Monte Carlo standard error,
10, 000 Monte Carlo samples are sufficient to have ε = .05 relative tolerance.

NOTE: Ideally, we want to get more samples using the last iteration of the
previous Markov chain. However, BVN Gibbs does not allow user specified
starting values and starts from stationarity itself, so to demonstrate the use
of minESS and multiESS, we get a new sample altogether.

6 Graphical Diagnostics

The function estvssamp plots the Monte Carlo estimates versus the sample
size for a component of the MCMC output. This plot indicates whether the
Monte Carlo estimate has stabilized.

estvssamp(chain[,1])

0 2000 4000 6000 8000 10000

1.
90

1.
92

1.
94

1.
96

1.
98

2.
00

2.
02

Estimates vs Sample Size

Sample Size

M
C

 E
st

im
at

e

References

Dai, N. and Jones, G. L. (2017). Multivariate initial sequence estimators in
Markov chain Monte Carlo. Journal of Multivariate Analysis (to appear).

Flegal, J. M., Jones, G. L., et al. (2010). Batch means and spectral vari-
ance estimators in Markov chain Monte Carlo. The Annals of Statistics,
38:1034–1070.

13

Gong, L. and Flegal, J. M. (2016). A practical sequential stopping rule for
high-dimensional Markov chain Monte Carlo. Journal of Computational
and Graphical Statistics, 25(3):684–700.

Jones, G. L., Haran, M., Caffo, B. S., and Neath, R. (2006). Fixed-width
output analysis for Markov chain Monte Carlo. Journal of the American
Statistical Association, 101:1537–1547.

Liu, Y. and Flegal, J. (2018). Weighted batch means estimators in Markov
chain Monte Carlo. Electronic Journal of Statistics, 12:3397–3442.

Liu, Y., Vats, D., and Flegal, J. (2021). Batch size selection for variance
estimators in mcmc. Methodology and Computing in Applied Probability,
pages 1573–7713.

Vats, D. and Flegal, J. M. (2018). Lugsail lag windows and their application
to MCMC. arXiv preprint arXiv:1809.04541.

Vats, D., Flegal, J. M., and Jones, G. L. (2018). Strong consistency of
multivariate spectral variance estimators in Markov chain Monte Carlo.
Bernoulli, 24:1860–1909.

Vats, D., Flegal, J. M., and Jones, G. L. (2019). Multivariate output analysis
for Markov chain Monte Carlo. Biometrika, 106:321–337.

14

