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This documentation is intended for readers with:

e A medium level of experience in R. Please refer to the Manual An Introduction to R available with R
distribution if needed;

e Some knowledge about Monte-Carlo simulation (its basic principles and its use) and about Quantitative
Risk Assessment (QRA).

This documentation will not describe all arguments of the functions. The definitive reference remains the
documentation associated with the package. It is recommended to try the examples while reading the explanations.
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1 Introduction

1.1 What is mc2d?

mc2d means Two-Dimensional Monte-Carlo (Monte-Carlo ¢ 2 Dimensions). This package provides:
e additional probability distributions;
e tools to construct One-Dimensional and Two-Dimensional Monte-Carlo Simulations;
e tools to analyse One-Dimensional and Two-Dimensional Monte-Carlo Simulations.

In a previous version, some tools to fit parametric distributions to data were included. Because these functions
can be useful for other purposes, they have been moved to a separate package called fitdistrplus [3].
mc2d was built for QRA in the Food Safety domain but it can be used in other frameworks.

1.2 What is Two-Dimensional Monte-Carlo Simulation (briefly)?

The following text and Figure 1 are adapted from [6] and [7] where this method was used. The principal reference
for Two-Dimensional Monte-Carlo simulation remains [2].

According to international recommendations, a QRA should reflect the variability in the risk and take into
account the uncertainty associated with the risk estimate. The variability represents for instance temporal,
geographical and/or individual heterogeneity of the risk for a given population. The uncertainty is understood
as stemming from a lack of perfect knowledge about the QRA model structure and associated parameters'.

In order to reflect the natural variability of a modelled risk, a Monte-Carlo simulation approach may be useful:
the empirical distribution of the risk within the population may be obtained from the mathematical combination
of distributions reflecting the variability of parameters across the population.

A two-dimensional (or second-order) Monte-Carlo simulation was proposed to superimpose the uncertainty
in the risk estimates stemming from parameter uncertainty [2]. A two-dimensional Monte-Carlo simulation is
a Monte-Carlo simulation where the distributions reflecting variability and the distributions representing uncer-
tainty are sampled separately in the simulation, so that variability and uncertainty in the output may be assessed
separately. It may be described as following (see Figure 1):

1. The parameters of the model should be divided into four categories: the fix parameters, the parameters
whose distributions reflect variability only, hereinafter denoted as variable parameters, the parameters whose
distributions reflect uncertainty only, denoted as uncertain parameters and the parameters whose distribu-
tions reflect both uncertainty and variability, denoted as variable and uncertain parameters. For this latter
category, a hierarchical structure, using hyper-parameters, has to be specified: if a parameter is both un-
certain and variable, one should be able to specify an empirical or parametric distribution representing
variability. This distribution is conditional upon other parameters to which is associated the uncertainty.
As an example, one should be able to specify a relationship such as

r|a,b~ N (a,b)

In the engineering risk community, these concepts are refered as aleatoric uncertainty for variability and epistemic uncertainty
for uncertainty.



where the specified normal distribution represents variability in r conditional upon parameters a and b.
Hyperdistributions, such as

a~Unif(lg,uq)
and
b~ Unif (Ip, up)
represent the uncertainty in the parameters a and b with uniform distribution;

2. A set of uncertain parameters are randomly sampled from their respective distributions;

3. The model is evaluated using a classical (one-dimensional) Monte-Carlo simulation of size N,, treating the
uncertain parameters as fixed. This QRA takes into account the variability in all variable parameters,
and leads to an empirical density function reflecting the variability of exposure/risk across the population,
conditional upon the uncertain parameters. Various statistics (e.g. the mean, the standard deviation,
percentiles) of the resulting empirical density function are evaluated and stored;

4. Steps 2) and 3) are performed a large number (V,) of times , leading to N, sets of statistics. The uncertain
parameters are generated with respect to their uncertain distributions;

5. As output, the 50" percentile (median) of each statistic is used as a point estimate of this statistic; the
2.5t and 97.5"" percentiles of each statistic are used to establish a 95% credible interval (CI95) of this
statistic. The median of the N, estimated values for each of the 101 estimated percentiles allows us to
display a variability cumulative distribution via a graph. This curve is surrounded by the 2.5th and 97.5th
percentiles obtained from the N, estimates of each of the 101 percentiles.

More formally, the two-dimensional Monte-Carlo simulation is a tool proposed to estimate the uncertainty of
probability distributions of random variables of interest (and then some of its characteristics such as the mean or
some percentiles). In its simplest version, an illustration of the basic framework could be written as a chain of
three random variables:

p—m—=Y

characterised by the marginal distribution of p : [p] and the conditional distributions of 7 : [7 | p] and Y : [V | ],
under the assumption that the joint distribution of these three random variables is the product:

[, m, Y] = [pllm [ pI[Y | 7).
The interpretation for each of these variables is:

Y is the variable of interest;

7 is the parameter characterising the distribution of Y. 7 is not known precisely but the uncertainty associated
to 7 can be characterised through a distribution [r | p);

p is the parameter characterising the distribution of uncertainty of 7. It is assumed that its distribution, [p], is
known.

A two-dimensional Monte-Carlo simulation provides a bundle of N, distributions [Y | 7 = m;] where m;,i =
{1,...,N,} are independent random draws from [7 | p], this later distribution characterising the uncertainty
distribution of .

mc2d is a set of R functions that will help to implement such two-dimensional Monte-Carlo simulations. The
main point to understand is that mc2d uses arrays of (at least) two dimensions to derive the results: the first
dimension will reflect variability, the second will reflect uncertainty. This document will not develop the method
further, but will illustrate the practical application of mc2d, using a fictitious example.
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Figure 1: Schematic Representation of a Two-Dimensional Monte-Carlo Simulation.



1.3 A basic example

Quantitative Risk Assessment: Escherichia coli O157:H7 infection linked to the consumption of
frozen ground beef in <3 year old children.

Warning: the data are fictitious and the model is over-simplified to better illustrate the use of the package:
the results will not and should not be interpreted.

The model is built assuming that:

e in a given batch of ground beef, E. coli O157:H7 are randomly distributed with a mean concentration of
¢ = 10 bacteria (cfu) per gram of product;

e 10 bacterial growth occurs in storage, since the product is kept frozen until it is cooked, just before con-
sumption;

o 2.7% of consumers cook their beef rare, 37.3% medium and 60.0% well done;
e The following bacterial inactivation ¢ is associated with these cooking practices:

— No inactivation for rare cooking;
— 1/5 surviving bacteria for a medium cooking;
— 1/50 surviving bacteria for a well done cooking.

e The variability in steak serving sizes s for <3 year children can be described with a gamma distribution
with parameters: shape = 3.93, rate = 0.0806.

e The dose-response relationship, describing the probability of illness, P, according to the dose is a one-hit
model. The probability of illness per hit r is assumed to be constant with » = 0.001.

The question is: What is the risk of illness in the population that consumed the contaminated lot?

This distribution will be estimated using Monte-Carlo simulations performed with R via the mc2d package.
First, the model will be developed in a one dimensional framework. Then, in order to include some uncertainties
in the model, it will be derived in a two dimensional framework.

1.3.1 One Dimensional Monte-Carlo Simulation

As a first step, we assume that no uncertainty exists in our model. All distributions represent variability only.
The model may be written as:

c = 10.

i ~ emp({1,1/5,1/50},{0.027,0.373,0.600})
s ~ gamma (3.93,0.0806)

n ~ Poisson(cx1iXs)

r = 0.001
P = 1-(1-7)"

where emp (X, P) is an empirical distribution wherein each value X; is associated with a probability P;.We will
use a classical one dimensional Monte-Carlo simulation, with 1,001 iterations. Using the mc2d package, the model
may be written as:

> library(mc2d)
> ndvar(1001)

[1] 1001



> conc <- 10
> cook <- mcstoc(rempiricalD, values=c(1,1/5,1/50), prob=c(0.027,0.373,0.600))
> serving <- mcstoc(rgamma,shape=3.93,rate=0.0806)
> expo <- conc * cook * serving
> dose <- mcstoc(rpois,lambda=expo)
> r <- 0.001
> risk <- 1-(1-r)~dose
> EC1 <- mc(cook,serving,expo,dose,risk)
> print (EC1)

node mode nsv nsu nva variate min mean median max Nas type outm
1 cook numeric 1001 1 1 1 0.02 0.1165 0.0200 1.000 0 V each
2 serving numeric 1001 1 1 1 5.17 48.3735 43.9192 219.976 0 V each
3 expo numeric 1001 1 1 1 1.03 56.0684 14.0630 987.649 0 V each
4 dose numeric 1001 1 1 1 0.00 56.1618 15.0000 962.000 0 V each
5 risk numeric 1001 1 1 1 0.00 0.0508 0.0149 0.618 0 V each
> summary (EC1)
cook :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's

NoUnc 0.117 0.176 0.02 0.02 0.02 0.02 0.2 1 1 1001 0
serving :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 48.4 24.3 5.17 14.5 29.8 43.9 62.5 103 220 1001 0
expo :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 56.1 96.2 1.03 3.1 8.17 14.1 79.7 259 988 1001 0
dose :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 56.2 96.1 0 2 7 15 79 262 962 1001 0
risk :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's

NoUnc 0.0508 0.07563 0 0.002 0.00698 0.0149 0.076 0.231 0.618 1001 0

The print output provides for each node: the mode of the variable (numeric or logical), nsv, the size of
the variability dimension (here, 1001), nsu, the size of the uncertainty dimension (here, 1 since no uncertainty is
considered), nva, the number of variate (here, all the variables are univariate), some statistics such as the minimum,
the mean, the median and the maximum, evaluated after gathering the two dimensions, the number of missing
data Nas, the type of the variable (0 for fix, V for variable, U for uncertain or VU for variable and uncertain (here,
all nodes are variable parameters only) and, finally, the level of output outm (used for multivariate parameters).
The summary output provides additional statistics.

This One-Dimensional Monte-Carlo simulation provides an estimate of the mean risk (approximately 5%), as
well as some quantiles of the risk distribution (2.5% of the population has a risk of illness greater than 20.3%).

1.3.2 Two dimensional Monte-Carlo Simulation

Assume now that:

e The mean concentration of bacteria in the batch is not known with certainty, but was only a point estimate.
Microbiologists think that the uncertainty around this estimate can be represented via a normal distribution
with parameters ¢ = 10 and o = 2;



e Epidemiological studies suggest that the r parameter is also uncertain. The uncertainty around the mean
value of 0.001 can be represented with a uniform distribution between 0.0005 and 0.0015.

The model could then be written as:

¢ ~ N(10,2)
i ~ emp({1,1/5,1/50},{0.027,0.373,0.600})
s ~ gamma(3.93,0.0806)
n ~ Poisson(cx1iXs)
r ~ Unif (0.0005,0.0015)
P = 1-(1-n)"
Note that the distributions of r and ¢ represent uncertainty, while the distributions of ¢ and s represent
variability. n, which is a function of ¢, ¢ and s, will become both variable and uncertain.

We will use a two-dimensional Monte-Carlo simulation, with 1,001 iterations in the variability dimension and
101 iterations in the uncertainty dimension. Using the mc2d package, the model may be written as:

> ndunc (101)

[1] 101
> conc <- mcstoc(rnorm,type="U",mean=10,sd=2)
> cook <- mcstoc(rempiricalD, type="V",values=c(1,1/5,1/50), prob=c(0.027,0.373,0.600))
> serving <- mcstoc(rgamma,type="V",shape=3.93,rate=0.0806)
> expo <- conc * cook * serving
> dose <- mcstoc(rpois,type="VU",lambda=expo)
> r <- mcstoc(runif,type="U",min=0.0005,max=0.0015)
> risk <- 1-(1-r) " dose
> EC2 <- mc(conc,cook,serving, expo,dose,r,risk)
> print (EC2,digits=2)

node mode nsv nsu nva variate min mean median max Nas type outm
1 conc numeric 1 101 1 1 5.91980 1.0e+01 10.045 1.6e+01 0 U each
2 cook numeric 1001 1 1 1 0.02000 1.1e-01 0.020 1.0e+00 0 V each
3 serving numeric 1001 1 1 1 2.66586 5.0e+01 44.942 1.6e+02 O V each
4 expo numeric 1001 101 1 1 0.75130 5.4e+01 13.910 1.6e+03 0 VU each
5 dose numeric 1001 101 1 1 0.00000 5.4e+01 14.000 1.5e+03 0 VU each
6 r numeric 1 101 1 1 0.00052 9.8e-04 0.001 1.5e-03 0 U each
7 risk numeric 1001 101 1 1 0.00000 4.7e-02 0.014 8.4e-01 0 VU each

> summary (EC2)

conc :

NoVar
median 10.05
mean 10.10

2.5% 6.03
97.5% 14.20
cook :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 0.107 0.166 0.02 0.02 0.02 0.02 0.2 0.2 1 1001 0

serving :



mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 49.6 24.9 2.67 13.6 31 44.9 63.9 110 161 1001 0

expo :
mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 53.7 95.6 1.275 3.36 8.10 14.14 75.8 243 960 1001 0
mean 54.0 96.2 1.282 3.38 8.15 14.22 76.2 244 966 1001 0
2.5% 32.2 57.4 0.765 2.02 4.86 8.48 45.5 146 576 1001 0
97.5% 75.9 135.2 1.802 4.75 11.45 19.98 107.1 343 1356 1001 0
dose :
mean sd Min 2.5%  25% 50% 75% 97.5% Max nsv Na's
median 53.5 96.5 0.0000 2.00 8.00 14.0 76.0 245 946 1001 0
mean 54.1 96.5 0.0495 2.08 7.63 14.4 74.7 252 964 1001 0
2.5% 32.3 57.6 0.0000 1.00 4.50 9.0 45.0 152 592 1001 0
97.5% 76.4 136.3 1.0000 3.50 11.50 20.5 105.5 364 1407 1001 0
r
NoVar
median 0.001006
mean 0.000976
2.5% 0.000536
97.5% 0.001480
risk :
mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 0.0457 0.0714 0.00e+00 0.001925 0.00714 0.01340 0.0658 0.210 0.583 1001 0
mean 0.0473 0.0728 5.41e-05 0.002032 0.00744 0.01399 0.0702 0.216 0.588 1001 0
2.5% 0.0238 0.0397 0.00e+00 0.000653 0.00345 0.00657 0.0336 0.110 0.360 1001 0
97.5% 0.0794 0.1133 9.40e-04 0.003996 0.01372 0.02535 0.1234 0.359 0.807 1001 0

Note that the syntax is similar to the earlier model. However, a type argument is provided for each distribution,
indicating whether the parameter distribution represents variability (type=V, by default), uncertainty (type=U),
or both (type=VU).

The summary provides estimates of the variability distributions (in rows) but with a measure of their uncer-
tainty, linked to the uncertainty around conc and r. The estimate of the mean risk is now uncertain. The median
of the 101 simulations leads to a best estimate of 0.0457, with a 95% credible interval of [0.0238, 0.0794].

2 Basic Principles and Functions

A typical session of R using mc2d is as follows:

e From data, expert knowledge, etc. an empirical or parametric distribution is chosen for each parent pa-
rameter. The fitdistrplus [3] package is a convenient tool for assessing a parametric distribution from
data;

e For each parameter, an mcnode object is constructed (key functions: medata, mcstoc);
e Various mcnode objects are grouped into an mc object (key function: mc).

e The mc object is studied through summaries, graphs, and sensitivity analysis (key functions: summary.mc,
plot.mc, tornado, tornadounc).



2.1 Preliminary Step

The mc2d library should be loaded at the beginning of your R session (library(mc2d)).
The default size of the Monte-Carlo Simulation should be defined using the ndvar() function (dimension of
variability) and the ndunc() function (dimension of uncertainty).

2.2 The mcnode Object as an Elementary Object.
2.2.1 mcnode Object Structure

An mcnode object is the basic element of an mc object. An mcnode is associated to one variable while an mc is a
set of associated variables.

An mcnode is an array of dimension (nsv X nsu X nvariates) where nsv is the dimension of variability, nsu is
the dimension of uncertainty and nvariates is the number of variates of the mcnode?. Four types of mcnode exist:

e V mcnode, for Variability, is an array of dimension (nsv x 1 x nvariates). The distribution represents
variability in the parameter;

e U mcnode, for Uncertainty, is an array of dimension (1 x nsu X nvariates). The distribution represents
uncertainty in the parameter.

e VU mcnode, for Variability and Uncertainty, is an array of dimension (nsv X nsu X nvariates). The distri-
bution represents both variability (in the first dimension) and uncertainty (in the second dimension) in the
parameter.

e Additionally, a 0 mcnode is also defined. 0 stands for Neither Variability or Uncertainty. Such nodes are
arrays of dimension (1 x 1 x nvariates). No uncertainty or variability is considered for these nodes. A
0 mcnode is not necessary in the univariate context (use a scalar instead) but is useful in constructing
multivariate nodes (See section 3).

There are several ways to construct an mcnode object:

1. The mcstoc function constructs an mcnode from random number generating functions;
2. The mcdata function constructs an mcnode from data sets;

3. An mcnode can be constructed directly from operations on mcnode objects;

4. mcprobtree is a special function that constructs an mcnode from other mcnodes using a mixture of distri-
bution, called ”probability tree” in QRA;

5. Some functions, such as == or > , is.na, is.finite generate a new mcnode when applied to an existing

mcnode.

2.2.2 The mcstoc function

The mcstoc function® is written as*:

mcstoc (func=runif, type=c(V, U, VU, 0), ..., nsv=ndvar(), nsu=ndunc(), nvariates=1,
outm=each, nsample=’n’, seed=NULL, rtrunc=FALSE, linf=-Inf, lsup=Inf, lhs=FALSE)

e func is a function providing random data or its name as a character. The table 1 provides available
distributions from the stats and the mc2d libraries that can be used in mcstoc;

e type is the type of requested mcnode. By default, mcstoc constructs a V mcnode;

2In this section, we will only consider univariate mcnodes, that is menodes with nvariates = 1.
3from stochastic
4as is standard in R, most arguments have default values and will be infrequently modified.
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Figure 2: Structure of the various mcnode objects.

e ... are the arguments to be passed to the function func, with the exception of the argument providing
the size of the sample. This latter is calculated by the function according to func, type, nsv, nsu and
nvariates. Note that all of the following arguments should be named;

e nsv and nsu are the number of samples needed in the variability and uncertainty dimensions, respectively.
By default, these values are the ones provided by ndvar () and ndunc(), respectively;

e nvariates is the desired number of variates in the mcnode. see section 3;
e outm is the default output for multivariate nodes. see section 3;

e nsample is the name of the argument of func specifying the size of the sample. It is usually n, with the
notable exception of the rhyper and rwilcox where nsample should be changed in nn.

e seed optionally specifies a seed for the random number generator. If NULL, the seed is unchanged;

e rtrunc allows truncation of a distribution between linf and lsup. This option is not valid for every
distribution (see table 1). See the rtrunc function help for further details;

e 1lhs allows Latin hypercube sampling of the node . This function is not valid for every distribution (see
table 1). See the 1hs function help for further details.

In our basic example, mcstoc was used to specify conc (a normal distribution), cook (an empirical discrete
distribution), serving (a gamma distribution), and dose (a Poisson distribution). Note that the argument lambda
of the Poisson distribution (node dose) is itself an mcnode.

> conc <- mcstoc(rnorm,type="U",mean=10,sd=2)

> cook <- mcstoc(rempiricalD, type="V",values=c(1,1/5,1/50), prob=c(0.027,0.373,0.600))
> serving <- mcstoc(rgamma,type="V",shape=3.93,rate=0.0806)

> ...

10



Table 1: Available distributions

Package Distribution function Parameter n Other Parameters \ trunc \ lhs ‘
stats beta rbeta n shapel, shape2, ncp Y Y
binomial rbinom n size, prob Y Y
Cauchy rcauchy n location, scale Y Y
chi-squared rchisq n df, ncp Y Y
exponential rexp n rate Y Y
F rf n df1, df2, ncp Y Y
gamma rgamma n shape, rate (or scale) Y Y
geometric rgeom n prob Y Y
hypergeometric rhyper nn m, n, k Y Y
lognormal rlnorm n meanlog, sdlog Y Y
logistic rlogis n location, scale Y Y
negative binomial rnbinom n size, prob (or mu) Y Y
normal rnorm n mean, sd Y Y
Poisson rpois n lambda Y Y
Student’s t rt n df, ncp Y Y
uniform runif n min, max Y Y
Weibull rweibull n shape, scale Y Y
Wilcoxon rwilcox nn m,n Y Y
mc2d Bernoulli rbern n prob Y Y
empirical discrete rempiricalD n values, prob Y Y
empirical continuous rempiricalC n min, max, values, prob Y Y
PERT rpert n min, mode, max, shape Y Y
triangular rtriang n min, mode, max Y Y
generalised beta rbetagen n shapel,shape2,min,max,ncp Y Y
multinomial rmultinomial n n, size, prob N N
Dirichlet rdirichlet n alpha N N
multivariate normal | rmultinormal n mean, sigma N N
beta subjective rbetasubj n min, mode, mean, max Y U
minimum information rmqi n mqi, mgi.quantile, Y U
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> dose <- mcstoc(rpois,type="VU",lambda=expo)
> r <- mestoc(runif,type="U",min=0.0005,max=0.0015)
> ...

A normal distribution with parameters mean = 2, sd = 3, truncated on the interval [1.5, 2], with samples
generated via Latin hypercube sampling could be written®:

> x <- mcstoc(rnorm, mean=2, sd=3, rtrunc=TRUE, linf=1.5, lsup=2, lhs=TRUE)
> summary (x)

node :
mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 1.75 0.144 1.5 1.51 1.63 1.75 1.88 1.99 2 1001 0

For convenience in using mcstoc, the following additional distributions have been implemented: the Bernoulli
distribution (rbern), the empirical discrete distribution (rempiricalD), the PERT distribution (rpert)[8], the
triangular distribution (rtriang), the Dirichlet distribution (rdirichlet) and the multivariate normal distribu-
tion (rmultinormal). The multinomial distribution has been adapted (vectorized) and rmultinomial (library
mc2d) should be used in place of rmultinom (library stats). The empirical discrete (e.g. for bootstrap), the
Dirichlet, the multinomial and the multivariate normal may be used with uncertain and/or variable parameters
by specifying multivariate nodes. See section 3.

2.2.3 The mcdata function

Another way to construct a mcnode object is via the mcdata function, when data are available.

mcdata(data, type=c(V, U, VU, 0), nsv=ndvar(), nsu=ndunc(), nvariates=1, outm=each)

See the documentation associated with this function to see the size/type of data that can be used to construct
an mcnode. The following example places a TRUE value in a U node in half of the simulations:

> nu <- ndunc()
> tmp <- (1:nu) > (nu/2)
> mcdata(tmp, type="U")

node mode nsv nsu nva variate min mean median max Nas type outm
1 x logical 1 101 1 1 0 0.505 1 1 0 U each

2.2.4 Operations on an mcnode

mcnodes can be automatically constructed using operations on other mcnodes. Rules are used to transfer uncer-
tainty and variability coherently within the model. Logically, the rules are as follows (illustrated here with a +,
see table 2)6:

«0+0=0;
e 0 +V=1V
« 0 +U=T;
* 0+ VU= VU;
oV V=1V

5Note that the mean and the standard deviation of the non-truncated normal distribution are not preserved in the truncated
distribution.
6These rules are not the standard R rules for recycling.
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Table 2: mcnodes combinations
L [ o[V ][U]I[VU]

0 0 A% U | VU
Vv V|V |VU]|VU
U U |VU| U |VU
VU || VU | VU | VU | VU
eV ILU=VUT;
oV | VU=VUS3;
e U+ U=T;

e U+ VU=VU?
e VU + VU =VU
Thus, in our example:

> ...

> expo <- conc * cook * serving
> ...

> risk <- 1-(1-r) dose

expo is a function of a U and two V mcnodes: it is a VU mcnode with variability in the row dimension and
uncertainty in the column dimension. risk is a function of a U and a VU mcnode: it is therefore a VU mcnode.

2.2.5 The mcprobtree function

The mcprobtree function can be used if a mixture of distribution is needed to construct an mcnode. Assume that
the distribution representing the uncertainty on conc was not itself certain, and that the microbiologists suggest
that they are 75% sure that conc ~ N (10,2) but that they are 25% sure that conc ~ U (8,12). This could be
written using mcprobtree as!?:

concl <- mcstoc(rnorm,type="U",mean=10,sd=2)

conc2 <- mcstoc(runif,type="U",min=8,max=12)

whichdist <- ¢(0.75,0.25)

concbis <- mcprobtree(whichdist,list("0"=concl,'"1"=conc2),type="U")

vV VvV Vv Vv

mcprobtree can also be used to generate samples from a mixture distribution for variability .

2.2.6 Other functions for constructing an mcnode

The functions ==, <, <=, >=, >, generate an mcnode when applied to another mcnode.
Special functions is.na(x), is.nan(x), is.finite(x), is.infinite(x) are implemented to test if any values
are NA (missing data), NaN (Not A Number), finite or infinite .

> cook < 1

node mode nsv nsu nva variate min mean median max Nas type outm
1 X logical 1001 1 1 1 0 0.975 1 1 0 V each

“the U mcnode is recycled by row, the V mcnode is recycled in the standard manner by column.

8the V mcnode is recycled in the standard manner by column.

9the U mcnode is recycled by row.

10two alternatives for whichdist are whichdist <- mcstoc(rempiricalD, type=U, values=c(0,1), prob=c(75,25)) or whichdist
<- mcstoc(rbern,type=U,prob=0.25)
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> suppressWarnings (tmp <- log(mcstoc(runif,min=-1,max=1)))
> tmp

node mode nsv nsu nva variate min mean median max Nas type outm
1 x numeric 1001 1 1 1 -7.08 -1.08 -0.777 -0.001 481 V each

> is.na(tmp)

node mode nsv nsu nva variate min mean median max Nas type outm
1 x logical 1001 1 1 1 0 0.481 0 1 0 V each

2.2.7 Specifying a correlation between mcnodes

Structural links between sets of parameters may be very important in QRA. In me2d, a Spearman rank correlation
structure for 2 or more nodes may be specified with the cornode function. This function uses the method of
Iman & Conover to generate correlated samples [4]. Assume that a study suggests that people who consume rare
ground beef also consume larger serving sizes. We could specify this relation using!!:

> cornode (cook, serving, target=0.5,resul t=TRUE)

output Rank Correlation per variates
variates: 1
[1] 1.000 0.396 0.396 1.000
$cook
node mode nsv nsu nva variate min mean median max Nas type outm
1 X numeric 1001 1 1 1 0.02 0.107 0.02 1 0 V each

$serving
node mode nsv nsu nva variate min mean median max Nas type outm
1 X numeric 1001 1 1 1 2.67 49.6 44.9 161 O V each

It is possible to create such correlations between V nodes, between U nodes, between VU nodes, or between
one V node and multiple VU nodes.

The use of a multivariate normal distribution (rmultinormal) is another way to specify correlations among
nodes, assuming that the individual nodes are normally distributed.

2.3 The mc Object

Once the mcnode objects are constructed, one should group them into a single object in order to analyse the
Monte-Carlo results. The mc object is a list of mcnodes. There are three ways to construct an mc object: using
the mc function, using the evalmcmod function, or within the evalmccut function.

2.3.1 The mc Function

mc(..., name=NULL, devname=FALSE)
. are mcnodes or mc objects to be gathered into an mc object. mc value is an mc object with specific methods,
e.g. print or summary. In our example, we used:

> ...

> EC2 <- mc(conc,cook,serving,expo,dose,r,risk)
> print (EC2)

> summary (EC2)

1 Note that the resulting correlation (around 0.4) is obviously an approximation to the desired value of 0.5, because a discrete
distribution (cook: 3 categories) is correlated with a continuous distribution (serving).
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2.3.2 The mcmodel and the evalmcmod Functions

A model may be written in one step using mcmodel (just a wrapper of your model in a function), and then
evaluated using evalmecmod. These functions may be used once your model is correct and has been tested using
a small number of iterations. For our example:

> modelEC3 <- mcmodel ({

+  conc <- mcstoc(rnorm,type="U",mean=10,sd=2)

+  cook <- mcstoc(rempiricalD, type="V",values=c(1,1/5,1/50),
+ prob=c(0.027,0.373,0.600))

+ serving <- mcstoc(rgamma,type="V",shape=3.93,rate=0.0806)
+ r <- mcstoc(runif,type="U",min=0.0005,max=0.0015)

+ expo <- conc * cook * serving

+ dose <- mcstoc(rpois,type="VU",lambda=expo)

+ risk <- 1-(1-r) dose

+ mc(conc,cook,serving,expo,dose,r,risk)

+ 3
> modelEC3
expression({
conc <- mcstoc(rnorm, type = "U", mean = 10, sd = 2)
cook <- mcstoc(rempiricalD, type = "V", values = c(1, 1/5,

1/50), prob = c(0.027, 0.373, 0.6))
serving <- mcstoc(rgamma, type = "V", shape = 3.93, rate = 0.0806)
r <- mcstoc(runif, type = "U", min = 5e-04, max = 0.0015)
expo <- conc * cook * serving
dose <- mcstoc(rpois, type = "VU", lambda = expo)
risk <- 1 - (1 - r)~dose
mc(conc, cook, serving, expo, dose, r, risk)

1))

attr(,"class")
[1] "mcmodel"

Note that:
e the model is wrapped between { and };
e any (valid) R code may be placed in the model'?;
e The model should end with an mc() function.
The model is then evaluated using the evalmcmod function:
evalmcmod (expr, nsv=ndvar(), nsu=ndunc(), seed=NULL)

One can re-run the model with different dimensions or random seeds in one line:

> EC3 <- evalmcmod(modelEC3,nsv=100,nsu=10,seed=666)
> EC4 <- evalmcmod(modelEC3,nsv=100,nsu=1000,seed=666)

2.3.3 The mcmodelcut and the evalmccut Functions

When evaluating a high-dimensional model, R may exceed its memory limit. To overcome this drawback,
evalmccut evaluates a 2-dimensional Monte-Carlo model (written with the mcmodelcut function) using a loop,
and calculates and stores statistics in the uncertainty dimension for further analysis. Readers should refer to the
corresponding documentation for further details. Our example would be written as'3:

127f needed, it is possible to make reference to the simulation dimensions using ndvar () and/or ndunc().
I3Note that the use of a tornado function in the model should be avoided as it slows the evalmccut function considerably.
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modEC4 <- mcmodelcut ({

## First block: unidimensional nodes

{cook <- mcstoc(rempiricalD, type = "V'", values = c(0, 1/5, 1/50),
prob = ¢(0.027, 0.373, 0.6))

serving <- mcstoc(rgamma, type = "V'", shape = 3.93, rate = 0.0806)

conc <- mcstoc(rnorm, type = "U", mean = 10, sd = 2)

r <- mcstoc(runif, type = "U", min = 5e-04, max = 0.0015)
}
## Second block: two dimensional nodes

{expo <- conc * cook * serving

dose <- mcstoc(rpois, type = "VU", lambda = expo)

risk <- 1 - (1 - r)-dose

res <- mc(conc, cook, serving, expo, dose, r, risk) }
## Third block: Outputs

{list(

sum = summary(res),

plot = plot(res, draw=FALSE),
minmax = lapply(res,range),
tor=tornado (res),

et = sapply(res,sd))

Y Y

}

b))

res <- evalmccut (modEC4, nsv = 10001, nsu = 101, seed = 666)
summary (res)

2.4 Analysing an mc Object

As a reminder, the print function provides a very basic summary of the mc object. It has a digits argument
(default: 3). Other more informative functions are provided in the mc2d package.

2.4.1 The summary Function

The summary function provides statistics on an mc object:
summary (object, probs=c(0,0.025,0.25,0.5,0.75,0.975,1), 1lim=c(0.025,0.975), ...)

The mean, the standard deviation and the quantiles provided in the probs arguments are evaluated on the
variability dimension. Then, the median and the quantiles provided in the 1im argument are evaluated on these
statistics.

> tmp <- summary (EC2,probs=c(0.995,0.999),digits=12)
> tmp$risk

mean sd 99.5% 99.9% nsv Na's
median 0.0457 0.0714 0.464 0.525 1001
mean 0.0473 0.0728 0.465 0.523 1001
2.5% 0.0238 0.0397 0.265 0.318 1001
97.5% 0.0794 0.1133 0.681 0.761 1001
attr(,"type")
[1] IIVUII

S O O O

2.4.2 The hist Function

The hist provides a histogram of the different mcnodes making up the mc object (cf. Figure 3).
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Figure 3: Function hist.
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In the current version, uncertainty and variability distributions are collapsed. Thus, the resulting histogram
may be meaningless.

> hist (EC2)

Note that, from mc2d version 0.2-0, the gghist function draws an histogram within the ggplot2 framework.

2.4.3 The plot function

The plot function provides a graph of the cumulative empirical distribution function of the estimate (mean or
median) of the quantiles.

plot(x, prec = 0.001, stat c("median", "mean"), lim = c(0.025, 0.25, 0.75, 0.975), na.rm =
TRUE, griddim = NULL, xlab = NULL, ylab = "Fn(x)", main = "", draw = TRUE, paint = TRUE, ...)

For our example, see Figure 4, a default graph. The 0.25 and 0.75 quantiles (default values of 1im) in the
uncertainty dimension of the quantiles (variability dimension) are used as the envelope.
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Figure 4: plot Function .
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> plot(EC2)

Note that, from mc2d version 0.2-0, the ggplotmc function draws an histogram within the ggplot2 frame-
work.

> ggplotmc (EC2)

The spaghetti function (and its ggplot2 version ggspaghetti) allow to plot a spaghetti graph, rather than
the ecdf with envelope.

Note that mcnode objects have the same methods print, summary, plot, and hist. Running a ggplotmc, a
gghist or a ggspaghetti function on an mcnode is handy to post-process the graph.

2.4.4 The tornado function

The tornado function calculates the Spearman (default) rank correlation between nodes of the mc object.

tornado(x, output=length(x), use=all.obs, method=c(spearman, kendall,pearson), lim=c(0.025,
0.975))
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Figure 5: ggplotmc Function .
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Figure 6: plot.tornado Function .
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where output is the mcnode (name or rank) of the output (default: the last mcnode). Missing data are treated
using the use arguments (see the reference documentation). tornado creates a tornado object with a plot
method (cf. Figure 6).

> torEC2 <- tornado(EC2)
> plot(torEC2)

Note that, from mc2d version 0.2-0, the ggplottornado function draws an histogram within the ggplot2
framework.

2.4.5 The tornadounc function

The tornadounc function examines the impact of the uncertainty on the estimate of an output. It calculates the
Spearman (default) rank correlation between statistics of the mc object in the variability dimension.

tornadounc (mc,output = length(mc), quant=c(0.5,0.75,0.975), use = all.obs,
method=c(spearman,kendall,pearson), ...)
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The quant argument indicates which quantiles should be used in the variability dimension. tornadounc
creates a tornadounc object with a plot method

> tornadounc(EC2, output="risk", quant=.99)

Tornado on uncertainty
Spearman's rho statistic
Qutput: risk

$risk

conc mean expo sd expo 997, expo mean dose sd dose 997 dose r
mean risk 0.612 0.612 0.612 0.612 0.610 0.609 0.614 0.813
sd risk 0.611 0.611 0.611 0.611 0.609 0.608 0.613 0.813
99% risk 0.611 0.611 0.611 0.611 0.609 0.608 0.616 0.811

The output shows the impact of the uncertain nodes (type U nodes) and some statistics (mean, median and,
here, the 99*"percentile) calculated on the variability dimension (type VU nodes) of some output statistics .
2.4.6 The mcratio function

The mcratio function provides measures of variability, uncertainty, and both combined propose by [5] for an mc
or an mcnode object. Given:

A the median of uncertainty for the median of variability;
B the median of uncertainty for the 97.5th percentile of variability;
C the 97.5th percentile of uncertainty for the median percentile of variability;
D the 97.5th percentile of uncertainty for the 97.5th percentile of variability.
The following ratio are estimated:

e Variability Ratio: B / A

e Uncertainty Ratio: C / A

e Overall Uncertainty Ratio: D / A
> mcratio(risk)

A B C D VariabilityR UncertaintyR Over.Unc.R
risk 0.0134 0.21 0.0254 0.359 15.6 1.89 26.8

2.5 Other Functions and mc Objects

mc objects are simply lists of three dimensional arrays; within each array, values in a given column represent
variability in the parameter.

Knowing the structure of the mc and the structure of the mcnode objects, it is straightforward to apply any
R function to these objects. The $ function is helpful for extracting an mcnode from an mc object. The unmc
function removes all attributes, classes, and dimensions equal to one, providing a list of vectors, matrices and/or
arrays.

Here is an example building a linear model (in fact 100 linear models) between the risk and the dose within
each uncertainty dimension and estimating some statistics for the coefficients. This example is here only to
illustrate that the entire spectrum of R functionality is available for your analysis.

> tmp <- unmc(EC2, drop=TRUE)

> dimu <- ncol(tmp$risk)

> coef <- sapply(1:dimu, function(x) Ilm(tmp$risk[,x] ~ tmp$dosel,x])$coerf)
> apply(coef,1, summary)
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(Intercept) tmp$dosel, x]

Min. 0.00117 0.000461
1st Qu. 0.00335 0.000593
Median 0.00592 0.000773
Mean 0.00702 0.000752
3rd Qu. 0.00966 0.000861
Max. 0.02083 0.001140

3 Multivariate Nodes

The dimension nvariates is the third dimension of the mcnode. One can ignore it while using mc2d . Nevertheless,
its use is mandatory to handle some multivariate distributions, and it may be useful in other circumstances.
Constructing multivariate nodes is straightforward. We note that the following code:

> mcstoc(runif, nvariates=3, min=c(1,2,3),max=4)

node mode nsv nsu nva variate min mean median max Nas type outm
1 x numeric 1001 1 3 11.04 3.02 3.21 4 0 V each
2 x numeric 1001 1 3 2 1.00 3.00 3.18 4 0 V each
3 x numeric 1001 1 3 3 1.01 2.97 3.14 4 O V each

will logically not provide a node with 3 variates, each having a different limit. The classical R recycling rule
implies that the vector c(1, 2, 3) will be recycled in the first dimension, i.e. the variability dimension. Use
instead:

> lim <- mcdata(c(1,2,3), type="0", nvariates=3)
> mcstoc(runif, nvariates=3, min=1lim,max=4)

node mode nsv nsu nva variate min mean median max Nas type outm
1 x numeric 1001 1 3 1 1 2.50 2.51 4 0 V each
2 x numeric 1001 1 3 2 2 2.95 2.90 4 O V each
3 x numeric 1001 1 3 3 3 3.51 3.51 4 0 V each

to let mc2d knows that the values should be considered for a multivariate node.

3.1 Multivariate Nodes for Multivariate Distributions

The basic usage of multivariate nodes (and the reason why they have been implemented) is for multivariate
distributions such as the Dirichlet distribution, the multinomial distribution, the multivariate normal distribution
and, possibly, the empirical distribution

As an example, assume that 3-member families buy 500 g of ground beef. The proportions of steak eaten by
the baby, his older brother and his mother follow a Dirichlet (uncertainty) distribution with (vector) parameter
a = (2,3,5). We want to derive the distribution (variability) of steak masses eaten by 500 babies sampled from
such families.

> (p <- mcstoc(rdirichlet, type="U", nvariates=3, alpha=c(2,3,5)))

node mode nsv nsu nva variate min mean median max Nas type outm
1 X numeric 1 101 3 1 0.00389 0.184 0.173 0.486 O U each
2 x numeric 1 101 3 2 0.04085 0.290 0.281 0.593 0 U each
3 x numeric 1 101 3 3 0.21786 0.526 0.519 0.851 O U each

> s <- mcstoc(rmultinomial,type="VU", nvariates=3, size=500, prob=p)
> summary(s)
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node :
[[1]1]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 92.0 51.9 0.000 13.0 53.0 86.0 121 216 259 1001
mean 92.0 51.8 0.228 13.4 52.6 86.1 121 216 260 1001
2.5% 91.5 51.2 0.000 11.5 51.0 84.0 119 212 249 1001
97.5% 92.5 52.4 1.500 15.0 54.0 88.0 122 219 274 1001

O O O O

[[2]1]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 145 70.9 13.0 32.0 85.0 141 198 291 315 1001
mean 145 70.9 13.5 32.3 84.8 141 198 291 315 1001
2.5% 144 70.4 10.0 30.0 83.0 138 196 287 308 1001
97.5% 146 71.5 18.0 34.5 87.0 144 200 294 327 1001

O O O O

[[3]1]

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 263 74.0 93.0 117 211 261 316 401 437 1001
mean 263 74.1 92.4 117 211 261 316 401 437 1001
2.5% 262 73.4 83.0 114 209 259 314 397 429 1001
97.5% 264 74.8 99.0 120 214 264 318 404 444 1001

O O O O

As a second example, assume that each member of these families eats a normal distribution (variability) of
steak with mean 100, 150 and 250 g. There is a positive correlation between the servings of the children, and a
negative one with the serving of the mother. We want to derive the distribution (variability) of steak eaten by
500 babies.

> sigma <- matrix(c(10,2,-5,2,10,-5,-5,-5,10), ncol=3)
> (x <- mcstoc(rmultinormal,type="V", nvariates=3, mean=c(100,150,250),

+ sigma=as.vector (sigma)))

node mode nsv nsu nva variate min mean median max Nas type outm
1 X numeric 1001 1 3 1 89.3 100 100 110 O V each
2 X numeric 1001 1 3 2 140.6 150 150 160 O V each
3 X numeric 1001 1 3 3 239.9 250 250 262 O V each

> cor(x[,1,])

[,1] [,2] [,3]
[1,1] 1.000 0.166 -0.475
[2,] 0.166 1.000 -0.521
[3,] -0.475 -0.521 1.000

In this example, mean could be variable or uncertain, as well as sigma'“. You could have used, for an uncertain
mean:

> m <- mcdata(c(100,150,250), type="0", nvariates=3)

> mun <- mcstoc(rnorm, type="U", nvariates=3, mean=m, sd=20)

> x <- mcstoc(rmultinormal, type="VU", nvariates=3, mean=mun, sigma=as.vector (sigma))
> cor(x[,1,])

[,11  [,21 [,3]
[1,] 1.000 0.187 -0.467
[2,] 0.187 1.000 -0.543
[3,] -0.467 -0.543 1.000

14

rmultinormal is a vectorized version of rmvnorm (library mvtnorm).
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The correlation is preserved, but the mean of each category is uncertain.

As a third example, multivariate nodes may be useful to derive a nonparametric bootstrap. Assume that,
based on a study, you obtained 6 individuals who eat 100 g, 12 individuals who eat 150 g, 6 individuals who eat
170 g and 6 individuals who eat 200 g of ground beef. You want to use a nonparametric bootstrap to derive
uncertainty [2], and then select samples from the empirical distribution.

> val <- ¢(100,150,170,200)
> pr <- c¢(6,12,6,6)
> out <- c¢('min', 'mean’', 'max')
> (x <- mcstoc(rempiricalD, type="U", outm=out, nvariates=30,
+ values=val,prob=pr))

node mode nsv nsu nva variate min mean median max Nas type outm
1 X numeric 1 101 30 NA 100 100 100 100 0 U min
2 X numeric 1 101 30 NA 137 155 155 169 0 U mean
3 X numeric 1 101 30 NA 200 200 200 200 0 U max

> mcstoc(rempiricalD, type="VU", values=x)

node mode nsv nsu nva variate min mean median max Nas type outm
1 X numeric 1001 101 1 1 100 155 150 200 O VU each

Printing the statistics of the 30 variates of x is of no interest. Instead, we use the outm option, which allows
us to specify which output we want (none for none, each, the default, for a series of statistics for each variate,
or, as in the example, a vector of function names that are applied over all the 30 variates).

3.2 Multivariate Nodes as a Third Dimension for Multiple Options in a Model

The recycling rules in mc2d regarding the nvariate dimension are as follows: if needed, the recycling will be done
from nvariates=1 to nvariates=n with n > 1. This allows you to use multivariates nodes as a third dimension,
in case you want to test various alternatives.

Assume, as in section 2.2.5, that the distribution representing uncertainty in conc was not certain, and that
the microbiologists suggest that conc ~ N (10,2) is possible, but that conc ~ U (8,12) is also possible. We can
i) build a bivariate node reflecting these two independent options; ii) transfer these options into the final risk
estimate. We obtain a bivariate node for the risk, one using the first hypothesis, the second the second hypothesis.

> concl <- mcstoc(rnorm, type="U", mean=10, sd=2)
> conc2 <- mcstoc(runif, type="U", min=8, max=12)
> conc <- mcdata(c(concl,conc2),type="U",nvariates=2)
> cook <- mcstoc(rempiricalD, type="V", values=c(1,1/5,1/50), prob=c(0.027,0.373,0.600))
> serving <- mcstoc(rgamma,type="V",shape=3.93,rate=0.0806)
> expo <- conc * cook * serving
> dose <- mcstoc(rpois,type="VU",nvariates=2,lambda=expo)
> r <- mecstoc(runif,type="U",min=0.0005,max=0.0015)
> risk <- 1-(1-r) dose
> EC5 <- mc(conc,risk)
> summary (EC5)
conc :
[[1]1]
NoVar
median 9.99
mean 9.87
2.5% 6.11
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97.5% 13
[[2]1]

No
9
10
8
11

median
mean
2.5Y%
97.5%

risk :

[[1]1]

median
mean
2.5Y%
97.5%

[[2]1]

median
mean
2.5Y%
97.5%

(Do not forget to transfer the number of variates you want in mcstoc... (see the definition of dose). mc2d

.07

Var
.99
.01
.19
.91

mean

.0463
.0472
.0261
.0760

mean

.0485
.0481
.0259
.0769

cannot guess...)

3.3 Multivariate Nodes as a Third Dimension for Multiple Vectors/Contaminants

The recycling rules in mc2d also allow you to use multivariate nodes as a third dimension for multiple vec-

O O © O

sd

.0716
.0720
.0428
.1082

sd

0.0743
0.0733
0.

0.1094

0428

tors/Contaminants.

Assume in our ground beef example that we have two contaminants: one has a mean concentration that
follows an uncertainty distribution conc ~ N (10, 2), the second one follows conc ~ N (14,2). We can i) build a
bivariate node reflecting these two concentrations'® ; ii) transfer these options into the final dose; ii) sum the

Min

0.
1.
0.
0.

2.5Y%
01433
01658
00635
03346

259,
0.00650 0.01
0.00689 0.01
0.00372 0.00
0.01174 0.02

S O O O
O O O O
S O O O

Min 2.5% 257
00e+00 0.001774 0.00697
12e-05 0.001760 0.00705
00e+00 0.000563 0.00351
00e+00 0.002908 0.01247

50% 75%
317 0.0667
365 0.0687
713 0.0370
345 0.1150

50%
0.01402 0.
0.01395 0.
0.00701 O.
0.02305 0.

97.5%
0.229
0.235
0.133
0.369

Max
0.672
0.659
0.440
0.856

nsv
1001
1001
1001
1001

75% 97.5%  Max
0691 0.241 0.693
0700 0.240 0.671
0364 0.134 0.458
1155 0.377 0.856

SO OO ownm

nsv Na'
1001
1001
1001
1001

dose over the variates (using mcapply). The behavior of contaminants is transferred in the model.

conc <-
cook <-

expo <-
dose <-
dosetot

V VVV VYV VVVVYV

No

serving

mconc <- mcdata(c(10,14), type="0", nvariates=2)

mcstoc (rnorm, nvariates=2, type="U'", mean=mconc, sd=2)

mcstoc (rempiricalD, type="V'", values=c(1,1/5,1/50), prob=c(0.027,0.373,0.600))
<- mcstoc(rgamma, type="V", shape=3.93,rate=0.0806)

conc * cook * serving

mcstoc (rpois, type="VU",nvariates=2,lambda=expo)

<- mcapply(dose, margin='"variates'", fun=sum)

Var

15Note that we could simulate a correlation between both contaminants using a multivariate normal distribution.

r <- mcstoc(runif,type="U",min=0.0005,max=0.0015)
risk <- 1-(1-r) dosetot
EC6 <- mc(conc,risk)
summary (EC6)
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median 10.25
mean 10.00

2.5% 5.61
97.5% 13.68
[[2]]

NoVar
median 14.1
mean 14.0
2.5% 10.3
97.5% 17.8
risk :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's

median 0.1017 0.1245 0.00116 0.00588 0.01782 0.0326 0.1671 0.415 0.845 1001
mean 0.1051 0.1265 0.00117 0.00617 0.01865 0.0347 0.1734 0.421 0.828 1001
2.5% 0.0611 0.0798 0.00000 0.00314 0.00997 0.0187 0.0955 0.259 0.638 1001
97.5% 0.1525 0.1729 0.00276 0.00970 0.02912 0.0530 0.2590 0.581 0.951 1001

O O O O

As a conclusion, this third dimension is highly flexible...

4 Another Example: A QRA of Waterborne Cryptosporidiosis in France

This example is adapted from [6]. The aim is to evaluate the risk of infection with Cryptosporidium parvum from
consumption of tap water, given that n oocysts /100 1. have been observed in a storage reservoir. The study is
simplified here for illustration purpose and the reference for the subject remains [6].

4.1 Tap Water Consumption Model

We have raw data of daily consumption of tap water from 1,180 tap water consumers (var inca, see Figure 7).
We could choose to use this empirical distribution to evaluate the variability in the tap water consumption:

> ndvar(1001)

[1] 1001

> ndunc(101)

[1]1 101

> mcstoc(rempiricalD, type="V",values=inca)

node mode nsv nsu nva variate min mean median max Nas type outm
1 X numeric 1001 1 1 1 0 0.4 0.33.2 0 V each

but we will use the fitdistrplus [3] library. inca includes a lot of 0 nodes, corresponding to days when
individuals do not drink tap water (possibly they drink bottled water on those days). We could try a mixture of
distributions, with 0 and non-0 data.

> library(fitdistrplus)

> pzero <- sum(inca==0)/length(inca)
> inca_non_0 <- incalinca!=0]

> descdist(inca_non_0)
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Figure 7: Histogram of daily tap water intake
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summary statistics

min: 0.0221 max: 3.2
median: 0.48

mean: 0.566

estimated sd: 0.385
estimated skewness: 1.75
estimated kurtosis: 7.99

Following the descdist function (See figure 8), let us try the lognormal distribution.

> Adj_water <- fitdist(inca_non_O0,"lnorm",method="mle")
> meanlog <- Adj_water$est[1]

> sdlog <- Adj_water$est[2]

> summary (Adj_water)

Fitting of the distribution ' lnorm ' by maximum likelihood
Parameters :

estimate Std. Error
meanlog -0.784 0.00891
sdlog 0.674 0.00630
Loglikelihood: -1374 AIC: 2752 BIC: 2765
Correlation matrix:

meanlog sdlog

meanlog 1.00e+00 -6.39e-12
sdlog -6.39e-12 1.00e+00

The fit seems correct, and better than the one obtained using a gamma distribution (results not shown). We
can now rebuild our mixture. We could consider uncertainty around the maximum likelihood estimates using the
bootdist function of the fitdistrplus [3] package, using something like:

Boot <- bootdist(Adj_water, bootmethod="param", niter=ndunc())
Mean_conso <- mcdata(Boot$estim$meanlog, type="U")

Sd_conso <- mcdata(Boot$estim$sdlog, type="U")

consol <- mcstoc(rlnorm, type="VU'", meanlog= Mean_conso, sdlog= Sd_conso)

vV Vv Vv Vv

But for simplicity, we will not consider uncertainty around the estimates.
We will use the mcprobtree function to construct a mixture of 0 and non-0 distributions:

conso0 <- mcdata(0,type="V")

consol <- mcstoc(rlnorm, type="V'", meanlog=meanlog, sdlog=sdlog)

v <- mcprobtree(c(pzero,1-pzero), list("0"=conso0,"1"=consol), type = "V")
summary (v)

vV Vv Vv Vv

node :
mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
NoUnc 0.394 0.419 0 0 0 0.313 0.597 1.41 2.98 1001 0

4.2 The Dose-Response Model

We propose a bootstrap from data (datDR) derived from [1]. We first define a function DR with an n argument
for the size of the sample to draw. This function may then be used in a mcstoc function:

> datDR <- list( dose=c(30,100,300,500,1000,10000,100000,1000000),
+ pi=c(2,4,2,5,2,3,1,1),
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Figure 8: Graph from the descdist function.
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+ ni=c(5,8,3,6,2,3,1,1))
> estDR <- function(pos,ref){
+ suppressWarnings (
+ -glm(cbind (ref$ni-pos,pos) ~ ref$dose + 0,
+ binomial (1ink="1log"))$coefficients)}
> ml <- 1-exp(-estDR(datDR$pi, datDR) * datDR$dose)
> DR <- function(n){
+ boot <- matrix(rbinom(length(datDR$dose)*n,datDR$ni,ml),nrow=length(datDR$dose))
+ apply (boot,2,estDR,ref=datDR) }
> r <- mcstoc(DR, type="U")
> summary (r)
node :
NoVar

median 0.00536
mean 0.00600
2.5% 0.00274
97.5% 0.01113

4.3 The Model

Deriving the final model is straightforward. We construct the mcnode corresponding to the recovery rate (Uncer-
tainty, Rr), the probability for an oocyst to be infective (Variability, w):

> Rr <- mcstoc(rbeta, type="U", shapel=2.65, shape2=3.64)
> w <- mcstoc(rbeta, type="V", shapel=2.6, shape2=3.4)

Given that O, = 2 oocysts are observed in 100 | of water, the expected number of oocysts in the sample is 1:

%

Oo <- 2
1 <- (0o + mcstoc(rnbinom, type="U", size=0o+1, prob=Rr))/100

A\

The expected number of oocysts drunk by the individuals is Or and the risk (x10000) is estimated by:

v

Or <- 1 *v *w
P <- 10000 * (1-exp(-r*0r))
summary (P)

v Vv

node :

mean sd Min 2.5% 25% 50% 75% 97.5% Max nsv Na's
median 0.486 0.572 0 0 0 0.321 0.713 2.026 3.97 1001 0
mean 0.687 0.809 0 0 0 0.454 1.008 2.864 5.61 1001 0
2.5% 0.162 0.191 0 0 0 0.107 0.238 0.675 1.32 1001 0
97.5% 2.411 2.837 0 0 0 1.594 3.538 10.047 19.67 1001 0

This result can be compared (roughly since there are some differences in the model variability) to the results
shown in Table 2 in [6].
Improvement: the results for O, = {0, 1,2, 5, 10, 20, 50, 100, 1000} can be obtained in one step using:

> 0o <- mcdata(c(0,1,2,5,10,20,50,100,1000),type="0",nvariates=9)

As a Conclusion

We think and hope that mc2d could help risk assessors to construct and analyse their models, and that it may
help in developing two-dimensional simulations. Please report any bugs you get to rpouillot@yahoo.fr.
If you would like to improve mc2d, join us at

http:/ /riskassessment.r-forge.r-project.org/
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