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1 Illustrations

This document reproduces the data analyses presented in Biihlmann and Hothorn
(2007). For a description of the theory behind applications shown here we refer

to the original manuscript. The results differ slightly due to technical changes

or bugfixes in mboost that have been implemented after the paper was printed.

Most important, gamboost uses penalized B-splines instead of smoothing splines

as baselearners. The computations are much faster and the results differ only

slightly (Schmid and Hothorn, 2008).

Illustration: Prediction of total body fat Garcia et al. (2005) report on the
development of predictive regression equations for body fat content by means of
p = 9 common anthropometric measurements which were obtained for n = 71
healthy German women. In addition, the women’s body composition was mea-
sured by Dual Energy X-Ray Absorptiometry (DXA). This reference method is
very accurate in measuring body fat but finds little applicability in practical en-
vironments, mainly because of high costs and the methodological efforts needed.
Therefore, a simple regression equation for predicting DXA measurements of
body fat is of special interest for the practitioner. Backward-elimination was
applied to select important variables from the available anthropometrical mea-
surements and Garcia et al. (2005) report a final linear model utilizing hip
circumference, knee breadth and a compound covariate which is defined as the
sum of log chin skinfold, log triceps skinfold and log subscapular skinfold:

R> bf_1m <- 1lm(DEXfat ~ hipcirc + kneebreadth + anthro3a, data = bodyfat)
R> coef (bf_1m)



(Intercept) hipcirc kneebreadth anthro3a
-75.23478 0.51153 1.90199 8.90964

A simple regression formula which is easy to communicate, such as a linear
combination of only a few covariates, is of special interest in this application:
we employ the glmboost function from package mboost to fit a linear regression
model by means of LoBoosting with componentwise linear least squares. By
default, the function glmboost fits a linear model (with initial mgep = 100 and
shrinkage parameter v = 0.1) by minimizing squared error (argument family
= Gaussian() is the default):

R> bf_glm <- glmboost(DEXfat ” ., data = bodyfat, center = TRUE)

Note that, by default, the mean of the response variable is used as an offset
in the first step of the boosting algorithm. We center the covariates prior to
model fitting in addition. As mentioned above, the special form of the base
learner, i.e., componentwise linear least squares, allows for a reformulation of
the boosting fit in terms of a linear combination of the covariates which can be
assessed via

R> coef (bf_glm)

(Intercept) age waistcirc hipcirc
-98.816608 0.013602 0.189716 0.351626
elbowbreadth kneebreadth anthro3a anthro3b
-0.384140 1.736589 3.326860 3.656524
anthro3c
0.595363
attr(, "offset")
[1] 30.783

We notice that most covariates have been used for fitting and thus no ex-
tensive variable selection was performed in the above model. Thus, we need to
investigate how many boosting iterations are appropriate. Resampling methods
such as cross-validation or the bootstrap can be used to estimate the out-of-
sample error for a varying number of boosting iterations. The out-of-bootstrap
mean squared error for 100 bootstrap samples is depicted in the upper part
of Figure 1. The plot leads to the impression that approximately mgiop, = 44
would be a sufficient number of boosting iterations. In Section ??, a corrected
version of the Akaike information criterion (AIC) is proposed for determining
the optimal number of boosting iterations. This criterion attains its minimum
for

R> mstop(aic <- AIC(bf_glm))

[1] 45

boosting iterations, see the bottom part of Figure 1 in addition. The coefficients
of the linear model with mg, = 45 boosting iterations are

R> coef (bf_glm[mstop(aic)])
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Figure 1: bodyfat data: Out-of-bootstrap squared error for varying number of
boosting iterations mgiop (top). The dashed horizontal line depicts the average
out-of-bootstrap error of the linear model for the pre-selected variables hipcirc,
kneebreadth and anthro3a fitted via ordinary least squares. The lower part
shows the corrected AIC criterion.



(Intercept) age walistcirc hipcirc kneebreadth
-97.8458288 0.0023271 0.1893046 0.3488781 1.5217686
anthro3a anthro3b anthro3c
3.3268603 3.6051548 0.5043133
attr(, "offset")
[1] 30.783

and thus 8 covariates have been selected for the final model (intercept equal to
zero occurs here for mean centered response and predictors and hence, n =1 Z?Zl Y, =
30.783 is the intercept in the uncentered model). Note that the variables hip-
circ, kneebreadth and anthro3a, which we have used for fitting a linear model

at the beginning of this paragraph, have been selected by the boosting algorithm

as well.

Hlustration: Prediction of total body fat (cont.) Being more flexible than the
linear model which we fitted to the bodyfat data in Section ?7, we estimate
an additive model using the gamboost function from mboost (first with pre-
specified mgtop = 100 boosting iterations, v = 0.1 and squared error loss):

R> bf_gam <- gamboost(DEXfat ~ ., data = bodyfat, baselearner = "bss")

The degrees of freedom in the componentwise smoothing spline base procedure
can be defined by the dfbase argument, defaulting to 4.

We can estimate the number of boosting iterations msop using the corrected
AIC criterion described in Section ?7 via

R> mstop(aic <- AIC(bf_gam))
[1] 46

Similar to the linear regression model, the partial contributions of the covariates
can be extracted from the boosting fit. For the most important variables, the
partial fits are given in Figure 2 showing some slight non-linearity, mainly for
kneebreadth.

Ilustration: Prediction of total body fat (cont.) Such transformations and esti-
mation of a corresponding linear model can be done with the glmboost function,
where the model formula performs the computations of all transformations by
means of the bs (B-spline basis) function from the package splines. First, we
set up a formula transforming each covariate

R> bsfm
DEXfat ~ bs(age) + bs(waistcirc) + bs(hipcirc) + bs(elbowbreadth) +

bs (kneebreadth) + bs(anthro3a) + bs(anthro3b) + bs(anthro3c) +
bs (anthro4)

and then fit the complex linear model by using the glmboost function with
initial mgiop = 5000 boosting iterations:



fpa\maI
2
11
fpanlal
0
|

I _oclfll T ' _dﬁ&)&%ﬁ B

90 100 110 120 130 70 80 90 100 110

hipcirc waistcirc

~
© - J f
,

fparu al
2 4
| |
Qb O,
%o
fpartl al
0
|

(¢}
e N O@P
o - e
°o— AT v do=
T T I T I T
8 9 10 11 25 3.0 35 40 45 50
kneebreadth anthro3b

Figure 2: bodyfat data: Partial contributions of four covariates in an additive
model (without centering of estimated functions to mean zero).

R> ctrl <- boost_control(mstop = 5000)
R> bf_bs <- glmboost(bsfm, data = bodyfat, control = ctrl)
R> mstop(aic <- AIC(bf_bs))

[1] 136

The corrected AIC criterion (see Section ??) suggests to stop after mgyop =
136 boosting iterations and the final model selects 17 (transformed) predictor
variables. Again, the partial contributions of each of the 9 original covariates
can be computed easily and are shown in Figure 3 (for the same variables as
in Figure 2). Note that the depicted functional relationship derived from the
model fitted above (Figure 3) is qualitatively the same as the one derived from
the additive model (Figure 2).



Illustration: Breast cancer subtypes Variable selection is especially important
in high-dimensional situations. As an example, we study a binary classification
problem involving p = 7129 gene expression levels in n = 49 breast cancer tumor
samples (data taken from West et al., 2001). For each sample, a binary response
variable describes the lymph node status (25 negative and 24 positive).

The data are stored in form of an exprSet object westbc (see Gentleman
et al., 2004) and we first extract the matrix of expression levels and the response
variable:

R> ### extract matrix of expression levels and binary response
R> x <- t(exprs(westbc))
R> y <- pData(westbc)$nodal.y

We aim at using LoBoosting for classification, see Section ??, with classical AIC
based on the binomial log-likelihood for stopping the boosting iterations. Thus,
we first transform the factor y to a numeric variable with 0/1 coding:

R> ### numeric 0/1 response variable
R> yfit <- as.numeric(y) - 1

The general framework implemented in mboost allows us to specify the neg-
ative gradient (the ngradient argument) corresponding to the surrogate loss
function, here the squared error loss implemented as a function rho, and a dif-
ferent evaluating loss function (the loss argument), here the negative binomial
log-likelihood, with the Family function as follows:

R> ### L2 boosting for classification with response in 0/1
R> ### and binomial log-likelihood as loss function
R> #i## ATTENTION: use offset = 1/2 instead of O!!!
R> rho <- function(y, f, w = 1) {

p <- pmax(pmin(1l - le-5, f), le-5)

-y * log(p) - (1 - y) * log(1 - p)

}
R> ngradient <- function(y, f, w=1) y - £
R> offset <- function(y, w) weighted.mean(y, w)
R> L2fm <- Family(ngradient = ngradient,
loss = rho, offset = offset)

The resulting object (called L2fm), bundling the negative gradient, the loss
function and a function for computing an offset term (offset), can now be
passed to the glmboost function for boosting with componentwise linear least
squares (here initial mgyop = 200 iterations are used):

R> ### fit a linear model with initial mstop = 200 boosting iterations

R> ctrl <- boost_control(mstop = 200)
R> west_glm <- glmboost(x, yfit, family = L2fm, center = TRUE,
control = ctrl)



Fitting such a linear model to p = 7129 covariates for n = 49 observations
takes about 0.1 seconds on a medium scale desktop computer (Intel Pentium 4,
2.8GHz). Thus, this form of estimation and variable selection is computationally
very efficient.

The question how to choose mgop can be addressed by the classical AIC
criterion as follows

R> ### evaluate AIC based on binomial log-likelihood for _all_ boosting
R> ### iterations m = 1, ..., mstop = 200

R> aic <- AIC(west_glm, method = "classical")

R> ### where should one stop? mstop = 108 or 107

R> mstop(aic)

[1] 100

where the AIC is computed as -2(log-likelihood) + 2(degrees of freedom) =
2 (evaluating loss) + 2(degrees of freedom), see Formula (??). The notion of
degrees of freedom is discussed in Section ?7.

Figure 4 shows the AIC curve depending on the number of boosting itera-
tions. When we stop after mgiop = 100 boosting iterations, we obtain 33 genes

with non-zero regression coefficients whose standardized values 3¢) \//a\r(X ()
are depicted in the left panel of Figure 4.

Of course, we could also use BinomialBoosting for analyzing the data: the
computational CPU time would be of the same order of magnitude, i.e., only a
few seconds.

Illustration: Wisconsin prognostic breast cancer Prediction models for recur-
rence events in breast cancer patients based on covariates which have been
computed from a digitized image of a fine needle aspirate of breast tissue (those
measurements describe characteristics of the cell nuclei present in the image)
have been studied by Street et al. (1995) (the data is part of the UCI repository
Blake and Merz, 1998).

We first analyze this data as a binary prediction problem (recurrence vs. non-
recurrence) and later in Section ?? by means of survival models. We are faced
with many covariates (p = 32) for a limited number of observations without
missing values (n = 194), and variable selection is an important issue. We can
choose a classical logistic regression model via AIC in a stepwise algorithm as
follows

R> ### remove missing values and time variable
R> cc <- complete.cases(wpbc)

R> wpbc2 <- wpbclcc, colnames(wpbc) != "time"]
R> ### fit logistic regression model
R> wpbc_step <- step(glm(status ~ ., data = wpbc2, family = binomial()), trace = 0)

The final model consists of 16 parameters with

R> logLik(wpbc_step)



'log Lik.' -80.13 (df=16)

R> AIC(wpbc_step)

[1] 192.26

and we want to compare this model to a logistic regression model fitted via
gradient boosting. We simply select the Binomial family (with default offset of
1/2log(p/(1 — p)), where p is the empirical proportion of recurrences) and we
initially use mgiop = 500 boosting iterations

R> ### fit logistic regression model via gradient boosting

R> ctrl <- boost_control(mstop = 500)

R> wpbc_glm <- glmboost(status ~ ., data = wpbc2, family = Binomial(),
center = TRUE, control = ctrl)

The classical AIC criterion (-2 log-likelihood + 2 df) suggests to stop after

R> aic <- AIC(wpbc_glm, "classical")
R> aic

[1] 198.44
Optimal number of boosting iterations: 260
Degrees of freedom (for mstop = 260): 7.0319

boosting iterations. We now restrict the number of boosting iterations to
Mstop = 260 and then obtain the estimated coefficients via

R> ### fit with new mstop
R> wpbc_glm <- wpbc_glm[mstop(aic)]
R> coef (wpbc_glm) [abs (coef (wpbc_glm)) > 0]

(Intercept) mean_texture mean_symmetry
2.3013e-01 -2.4215e-02 -3.3878e+00
mean_fractaldim SE_texture SE_perimeter
-2.0321e+01 -2.6603e-02 4.0908e-02
SE_compactness SE_concavity SE_concavepoints
7.0280e+00 -4.6303e+00 -1.5737e+01
SE_symmetry worst_radius worst_perimeter
2.8601e+00 1.7777e-02 1.2639e-03
worst_area worst_smoothness tsize
1.5854e-04 8.8372e+00 3.1014e-02
pnodes
2.5981e-02

(because of using the offset-value f O we have to add the value f O to the
reported intercept estimate above for the logistic regression model).

A generalized additive model adds more flexibility to the regression function
but is still interpretable. We fit a logistic additive model to the wpbc data as
follows:

R> wpbc_gam <- gamboost(status ~ ., data = wpbc2, family = Binomial(), baselearner

R> mopt <- mstop(aic <- AIC(wpbc_gam, "classical"))
R> aic

Ilbssll)



[1] 196.46
Optimal number of boosting iterations: 84
Degrees of freedom (for mstop = 84): 13.715

This model selected 18 out of 32 covariates. The partial contributions of the
four most important variables are depicted in Figure 5 indicating a remarkable
degree of non-linearity.

Ilustration: Wisconsin prognostic breast cancer (cont.) Instead of the binary
response variable describing the recurrence status, we make use of the addi-
tionally available time information for modeling the time to recurrence, i.e., all
observations with non-recurrence are censored. First, we calculate IPC weights

R> library("survival")
R> ### calculate IPC weights

R> censored <- wpbc$status == "R"
R> iw <- IPCweights(Surv(wpbc$time, censored))
R> wpbc3 <- wpbc[,names(wpbc) != "status"]

and fit a weighted linear model by boosting with componentwise linear weighted
least squares as base procedure:

R> ctrl <- boost_control(mstop = 500)
R> wpbc_surv <- glmboost(log(time) ~ ., data = wpbc3,

weights = iw, center = TRUE, control = ctrl)
R> mstop(aic <- AIC(wpbc_surv))

[1] 106
R> wpbc_surv <- wpbc_surv[mstop(aic)]
The following variables have been selected for fitting

R> names (coef (wpbc_surv) [abs (coef (wpbc_surv)) > 0])

[1] "(Intercept)" "mean_radius"

[3] "mean_texture" "mean_smoothness"

[5] "mean_symmetry" "SE_texture"

[7] "SE_smoothness" "SE_concavepoints"

[9] "SE_symmetry" "worst_concavepoints"

[11] "pnodes"

and the fitted values are depicted in Figure 6, showing a reasonable model fit.

Alternatively, a Cox model with linear predictor can be fitted using LoBoosting
by implementing the negative gradient of the partial likelihood (see Ridgeway
(1999)) via

R> glmboost (Surv(wpbc$time, wpbc$status == "R") ~ .,
data = wpbc, family = CoxPH(), center = TRUE)

For more examples, such as fitting an additive Cox model using mboost, see
(Hothorn and Biihlmann, 2006).
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