Introduction
The decision models based in Multi Attribute Utility Theory
(MAUT) are defined with aid of utility functions \(u_1,\ldots,u_n\) which are evaluated over
indexes \(x_1,\ldots,x_n\) and those
utilities are aggregated considering additional weights \(w_1,\ldots,w_n\), the whole final utility
is given by the sum \[u(x_1,\ldots,x_n) =
\sum_{i=1}^n\, w_i\, u_i\ ( x_i )\] every utility \(u_i\) can be normalized to take values only
between \(0\) and \(1\).
A model based in MAUT additionally has a decision tree that
represents the relations between subsets of utilities, given an ordered
and conceptual development of the decision model.
This mau package is designed to implement and test
decision models based in (MAUT).
Utility definition
The utility functions for a MAUT model could be defined in a
practical format when the utilities are piecewise defined like
Constant Risk Averse Utilities (CRAU for short), satisfying the
equation: \[ \frac{u''}{u'} =
\lambda \] being \(\lambda\) a
constant. The previous equation only admits two kind of solutions, \(u(x) = a \cdot x + b\) or \(u(x) = a \cdot e^{b \cdot x} + c\). To
completely determine an utility, it is only necessary to know the three
parameters \(a,b,c\). Additionally, the
following convention is assumed, if \(c\) is \(0\) then the utility is linear otherwise is
an exponential function.
For piecewise CRAU, it is only necessary to define the parameters
\(a,b,c\) of the function for each part
of the domain of definition. The mau package could load
the utilities from an standardized text file with the following internal
structure.
The capabilities of mau are not only restricted to
work with CRAU class, you can define any utility by employing the
correct R script.
Header
Function name
min1 max1 a1 b1 c1
min2 max2 a2 b2 c2
min3 max3 a3 b3 c3
…
Function name
min1 max1 a1 b1 c1
min2 max2 a2 b2 c2
min3 max3 a3 b3 c3
…
Here an example of the structure of the standardized file for utility
definitions
library( mau )
file <- system.file( "extdata", "utilities.txt", package = "mau" )
lines <- readLines( file )
for ( i in 1:length( lines ) ) {
cat( lines[i], '\n' )
}
## Utilities
##
## Project
## 1 2 1.5 -0.5 0
## 2 3 1.5 -0.5 0
##
## Self implementation
## 1 2 1.5 -0.5 0
## 2 3 1.5 -0.5 0
##
## External and local relations
## 1 10 1 0 0
## 0 1 0 1 0
##
## Scope of capabilities
## 6 15 1 0 0
## 0 6 1.225 -1.225 0.2824
Main example
In the sources below is developed a complete example of a MAUT model,
the package mau is employed to load utilities defined
in the file utilities.txt, automatically the script with
utilities is built and saved in the local working directory, after that
with eval_utilities every function is evaluated over the
columns of the index table, the names for utilities were previously
standardized with stand_string. With another file
tree.csv the decision tree associated to the MAUT model is
built and every weight and relative weight assigned with the
make_decision_tree function, in addition the whole model
with utilities of every criteria is obtained with
compute_model. The simulation of constrained weights is
made with sim_const_weights, the result could be employed
for a sensitivity test of the decision model regarding concentrated
weights variation.
- Loading necessary packages
library( mau )
library( data.table )
library( igraph )
library( ggplot2 )
- Index definition
index <- data.table( cod = paste( 'A', 1:10, sep = '' ),
i1 = c( 0.34, 1, 1, 1, 1, 0.2, 0.7, 0.5, 0.11, 0.8 ),
i2 = c( 0.5, 0.5, 1, 0.5, 0.3, 0.1, 0.4, 0.13, 1, 0.74 ),
i3 = c( 0.5, 1.0, 0.75, 0.25, 0.1, 0.38, 0.57, 0.97, 0.3, 0.76 ),
i4 = c( 0, 0.26, 0.67, 0.74, 0.84, 0.85, 0.74, 0.65, 0.37, 0.92 ) )
| A1 |
0.34 |
0.50 |
0.50 |
0.00 |
| A2 |
1.00 |
0.50 |
1.00 |
0.26 |
| A3 |
1.00 |
1.00 |
0.75 |
0.67 |
| A4 |
1.00 |
0.50 |
0.25 |
0.74 |
| A5 |
1.00 |
0.30 |
0.10 |
0.84 |
| A6 |
0.20 |
0.10 |
0.38 |
0.85 |
| A7 |
0.70 |
0.40 |
0.57 |
0.74 |
| A8 |
0.50 |
0.13 |
0.97 |
0.65 |
| A9 |
0.11 |
1.00 |
0.30 |
0.37 |
| A10 |
0.80 |
0.74 |
0.76 |
0.92 |
- Loading file with utilities
file <- system.file( "extdata", "utilities.txt", package = "mau" )
lines <- 17
skip <- 2
encoding <- 'utf-8'
functions <- read_utilities( file, lines, skip, encoding )
# script <- 'utilities.R'
# write( functions[[ 2 ]], script )
functions <- functions[[ 1 ]]
The functions data.table has the following structure
with the piecewise definition of CRAU’s
| External and local relations |
0 |
1 |
0.000 |
1.000 |
0.0000 |
external_local_relations |
| External and local relations |
1 |
10 |
1.000 |
0.000 |
0.0000 |
external_local_relations |
| Project |
1 |
2 |
1.500 |
-0.500 |
0.0000 |
project |
| Project |
2 |
3 |
1.500 |
-0.500 |
0.0000 |
project |
| Scope of capabilities |
0 |
6 |
1.225 |
-1.225 |
0.2824 |
scope_capabilities |
| Scope of capabilities |
6 |
15 |
1.000 |
0.000 |
0.0000 |
scope_capabilities |
| Self implementation |
1 |
2 |
1.500 |
-0.500 |
0.0000 |
self_implementation |
| Self implementation |
2 |
3 |
1.500 |
-0.500 |
0.0000 |
self_implementation |
- Evaluation of utilities over every index
# Index positions
columns <- c( 2, 3, 4, 5 )
# Function names
functions <- sapply( c( 'Project',
'Self implementation',
'External and local relations',
'Scope of capabilities' ),
FUN = stand_string )
names( functions ) <- NULL
# Evaluation of utilities
utilities <- eval_utilities( index, columns, functions )
The utilities data.table has the following structure
| A1 |
0 |
0 |
0.50 |
0.0000000 |
| A2 |
1 |
0 |
1.00 |
0.0867217 |
| A3 |
1 |
1 |
0.75 |
0.2111724 |
| A4 |
1 |
0 |
0.25 |
0.2310170 |
| A5 |
1 |
0 |
0.10 |
0.2586944 |
| A6 |
0 |
0 |
0.38 |
0.2614194 |
| A7 |
0 |
0 |
0.57 |
0.2310170 |
| A8 |
0 |
0 |
0.97 |
0.2054301 |
| A9 |
0 |
1 |
0.30 |
0.1215376 |
| A10 |
0 |
0 |
0.76 |
0.2802804 |
- Construction of the decision tree
file <- system.file("extdata", "tree.csv", package = "mau" )
tree.data <- read_tree( file, skip = 0, nrow = 8 )
tree <- make_decision_tree( tree.data )
utilities <- eval_utilities( index, columns, functions )
plot( tree, layout = layout_as_tree )

- Computing the decision model
weights <- tree.data[ !is.na( weight ) ]$weight
model <- compute_model( tree, utilities, weights )
| 1 |
Performance |
A1 |
NA |
0 |
0.0500000 |
0.0500000 |
1.0 |
1.0000000 |
| 1 |
Performance |
A2 |
NA |
0 |
0.3173443 |
0.3173443 |
1.0 |
1.0000000 |
| 1 |
Performance |
A3 |
NA |
0 |
0.8172345 |
0.8172345 |
1.0 |
1.0000000 |
| 1 |
Performance |
A4 |
NA |
0 |
0.2712034 |
0.2712034 |
1.0 |
1.0000000 |
| 1 |
Performance |
A5 |
NA |
0 |
0.2617389 |
0.2617389 |
1.0 |
1.0000000 |
| 1 |
Performance |
A6 |
NA |
0 |
0.0902839 |
0.0902839 |
1.0 |
1.0000000 |
| 1 |
Performance |
A7 |
NA |
0 |
0.1032034 |
0.1032034 |
1.0 |
1.0000000 |
| 1 |
Performance |
A8 |
NA |
0 |
0.1380860 |
0.1380860 |
1.0 |
1.0000000 |
| 1 |
Performance |
A9 |
NA |
0 |
0.5543075 |
0.5543075 |
1.0 |
1.0000000 |
| 1 |
Performance |
A10 |
NA |
0 |
0.1320561 |
0.1320561 |
1.0 |
1.0000000 |
| 2 |
Planing |
A1 |
NA |
1 |
0.0000000 |
0.0000000 |
0.7 |
0.7000000 |
| 2 |
Planing |
A2 |
NA |
1 |
0.2000000 |
0.2857143 |
0.7 |
0.7000000 |
| 2 |
Planing |
A3 |
NA |
1 |
0.7000000 |
1.0000000 |
0.7 |
0.7000000 |
| 2 |
Planing |
A4 |
NA |
1 |
0.2000000 |
0.2857143 |
0.7 |
0.7000000 |
| 2 |
Planing |
A5 |
NA |
1 |
0.2000000 |
0.2857143 |
0.7 |
0.7000000 |
| 2 |
Planing |
A6 |
NA |
1 |
0.0000000 |
0.0000000 |
0.7 |
0.7000000 |
| 2 |
Planing |
A7 |
NA |
1 |
0.0000000 |
0.0000000 |
0.7 |
0.7000000 |
| 2 |
Planing |
A8 |
NA |
1 |
0.0000000 |
0.0000000 |
0.7 |
0.7000000 |
| 2 |
Planing |
A9 |
NA |
1 |
0.5000000 |
0.7142857 |
0.7 |
0.7000000 |
| 2 |
Planing |
A10 |
NA |
1 |
0.0000000 |
0.0000000 |
0.7 |
0.7000000 |
| 3 |
Capabilities |
A1 |
NA |
1 |
0.0500000 |
0.1666667 |
0.3 |
0.3000000 |
| 3 |
Capabilities |
A2 |
NA |
1 |
0.1173443 |
0.3911478 |
0.3 |
0.3000000 |
| 3 |
Capabilities |
A3 |
NA |
1 |
0.1172345 |
0.3907816 |
0.3 |
0.3000000 |
| 3 |
Capabilities |
A4 |
NA |
1 |
0.0712034 |
0.2373447 |
0.3 |
0.3000000 |
| 3 |
Capabilities |
A5 |
NA |
1 |
0.0617389 |
0.2057963 |
0.3 |
0.3000000 |
| 3 |
Capabilities |
A6 |
NA |
1 |
0.0902839 |
0.3009463 |
0.3 |
0.3000000 |
| 3 |
Capabilities |
A7 |
NA |
1 |
0.1032034 |
0.3440113 |
0.3 |
0.3000000 |
| 3 |
Capabilities |
A8 |
NA |
1 |
0.1380860 |
0.4602868 |
0.3 |
0.3000000 |
| 3 |
Capabilities |
A9 |
NA |
1 |
0.0543075 |
0.1810251 |
0.3 |
0.3000000 |
| 3 |
Capabilities |
A10 |
NA |
1 |
0.1320561 |
0.4401870 |
0.3 |
0.3000000 |
| 4 |
Project |
A1 |
1 |
2 |
0.0000000 |
0.0000000 |
0.2 |
0.2857143 |
| 4 |
Project |
A2 |
1 |
2 |
0.2000000 |
1.0000000 |
0.2 |
0.2857143 |
| 4 |
Project |
A3 |
1 |
2 |
0.2000000 |
1.0000000 |
0.2 |
0.2857143 |
| 4 |
Project |
A4 |
1 |
2 |
0.2000000 |
1.0000000 |
0.2 |
0.2857143 |
| 4 |
Project |
A5 |
1 |
2 |
0.2000000 |
1.0000000 |
0.2 |
0.2857143 |
| 4 |
Project |
A6 |
1 |
2 |
0.0000000 |
0.0000000 |
0.2 |
0.2857143 |
| 4 |
Project |
A7 |
1 |
2 |
0.0000000 |
0.0000000 |
0.2 |
0.2857143 |
| 4 |
Project |
A8 |
1 |
2 |
0.0000000 |
0.0000000 |
0.2 |
0.2857143 |
| 4 |
Project |
A9 |
1 |
2 |
0.0000000 |
0.0000000 |
0.2 |
0.2857143 |
| 4 |
Project |
A10 |
1 |
2 |
0.0000000 |
0.0000000 |
0.2 |
0.2857143 |
| 5 |
Self implementation |
A1 |
2 |
2 |
0.0000000 |
0.0000000 |
0.5 |
0.7142857 |
| 5 |
Self implementation |
A2 |
2 |
2 |
0.0000000 |
0.0000000 |
0.5 |
0.7142857 |
| 5 |
Self implementation |
A3 |
2 |
2 |
0.5000000 |
1.0000000 |
0.5 |
0.7142857 |
| 5 |
Self implementation |
A4 |
2 |
2 |
0.0000000 |
0.0000000 |
0.5 |
0.7142857 |
| 5 |
Self implementation |
A5 |
2 |
2 |
0.0000000 |
0.0000000 |
0.5 |
0.7142857 |
| 5 |
Self implementation |
A6 |
2 |
2 |
0.0000000 |
0.0000000 |
0.5 |
0.7142857 |
| 5 |
Self implementation |
A7 |
2 |
2 |
0.0000000 |
0.0000000 |
0.5 |
0.7142857 |
| 5 |
Self implementation |
A8 |
2 |
2 |
0.0000000 |
0.0000000 |
0.5 |
0.7142857 |
| 5 |
Self implementation |
A9 |
2 |
2 |
0.5000000 |
1.0000000 |
0.5 |
0.7142857 |
| 5 |
Self implementation |
A10 |
2 |
2 |
0.0000000 |
0.0000000 |
0.5 |
0.7142857 |
| 6 |
External and local relations |
A1 |
3 |
2 |
0.0500000 |
0.5000000 |
0.1 |
0.3333333 |
| 6 |
External and local relations |
A2 |
3 |
2 |
0.1000000 |
1.0000000 |
0.1 |
0.3333333 |
| 6 |
External and local relations |
A3 |
3 |
2 |
0.0750000 |
0.7500000 |
0.1 |
0.3333333 |
| 6 |
External and local relations |
A4 |
3 |
2 |
0.0250000 |
0.2500000 |
0.1 |
0.3333333 |
| 6 |
External and local relations |
A5 |
3 |
2 |
0.0100000 |
0.1000000 |
0.1 |
0.3333333 |
| 6 |
External and local relations |
A6 |
3 |
2 |
0.0380000 |
0.3800000 |
0.1 |
0.3333333 |
| 6 |
External and local relations |
A7 |
3 |
2 |
0.0570000 |
0.5700000 |
0.1 |
0.3333333 |
| 6 |
External and local relations |
A8 |
3 |
2 |
0.0970000 |
0.9700000 |
0.1 |
0.3333333 |
| 6 |
External and local relations |
A9 |
3 |
2 |
0.0300000 |
0.3000000 |
0.1 |
0.3333333 |
| 6 |
External and local relations |
A10 |
3 |
2 |
0.0760000 |
0.7600000 |
0.1 |
0.3333333 |
| 7 |
Scope of capabilities |
A1 |
4 |
2 |
0.0000000 |
0.0000000 |
0.2 |
0.6666667 |
| 7 |
Scope of capabilities |
A2 |
4 |
2 |
0.0173443 |
0.0867217 |
0.2 |
0.6666667 |
| 7 |
Scope of capabilities |
A3 |
4 |
2 |
0.0422345 |
0.2111724 |
0.2 |
0.6666667 |
| 7 |
Scope of capabilities |
A4 |
4 |
2 |
0.0462034 |
0.2310170 |
0.2 |
0.6666667 |
| 7 |
Scope of capabilities |
A5 |
4 |
2 |
0.0517389 |
0.2586944 |
0.2 |
0.6666667 |
| 7 |
Scope of capabilities |
A6 |
4 |
2 |
0.0522839 |
0.2614194 |
0.2 |
0.6666667 |
| 7 |
Scope of capabilities |
A7 |
4 |
2 |
0.0462034 |
0.2310170 |
0.2 |
0.6666667 |
| 7 |
Scope of capabilities |
A8 |
4 |
2 |
0.0410860 |
0.2054301 |
0.2 |
0.6666667 |
| 7 |
Scope of capabilities |
A9 |
4 |
2 |
0.0243075 |
0.1215376 |
0.2 |
0.6666667 |
| 7 |
Scope of capabilities |
A10 |
4 |
2 |
0.0560561 |
0.2802804 |
0.2 |
0.6666667 |
- Bar plot for every utility
xlab <- 'Utility'
ylab <- 'Institutions'
title <- 'Criteria utilities'
colors <- c( 'dodgerblue4', 'orange', 'gold', 'red3' )
deep <- 2
bar <- bar_plot( model, deep, colors, title, xlab, ylab )
plot( bar )

- Sensitivity analysis under weights change. The weights are simulated
employing a Dirichlet distribution.
n <- 800
alpha <- c( 0.2, 0.5, 0.1, 0.2 )
constraints <- list( list( c(1,2), 0.7 ),
list( c(3,4), 0.3 ) )
S <- sim_const_weights( n, utilities, alpha, constraints )
plot.S <- plot_sim_weight( S$simulation, title = 'Simulations',
xlab = 'ID', ylab = 'Utility' )
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## ℹ The deprecated feature was likely used in the mau package.
## Please report the issue to the authors.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
